& RedHat

OpenShift Container Platform 4.15

Networking

Configuring and managing cluster networking

Last Updated: 2024-05-02

OpenShift Container Platform 4.15 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your OpenShift Container
Platform cluster network, including DNS, ingress, and the Pod network.

Table of Contents

Table of Contents

CHAPTER 1. ABOUT NETWORKING ...ttt ittt tttieee e ettanaeeeeeennaaneenannaeeeennnnnns 22
CHAPTER 2. UNDERSTANDING NETWORKING ... ittt ittt it iiiteeeeetnneneeennnnneeeennnn, 23
2.1. OPENSHIFT CONTAINER PLATFORM DNS 23
2.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR 23
2.2.1. Comparing routes and Ingress 24
2.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NETWORKING 24
CHAPTER 3. ZERO TRUST NETWORKING ... ittt et tttteeeeetnneaaeennnnneeeennnn, 27
3.1. ROOT OF TRUST 27
3.2. TRAFFIC AUTHENTICATION AND ENCRYPTION 27
3.3. IDENTIFICATION AND AUTHENTICATION 28
3.4. INTER-SERVICE AUTHORIZATION 28
3.5. TRANSACTION-LEVEL VERIFICATION 28
3.6. RISK ASSESSMENT 28
3.7.SITE-WIDE POLICY ENFORCEMENT AND DISTRIBUTION 29
3.8. OBSERVABILITY FOR CONSTANT, AND RETROSPECTIVE, EVALUATION 29
3.9. ENDPOINT SECURITY 29
3.10. EXTENDING TRUST OUTSIDE OF THE CLUSTER 30
CHAPTER 4. ACCESSING HOST S . i.titittttitteittt ettt eaateeaeeeneeeaneeeaneenaneennneenneenns 31
4.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE
CLUSTER 31
CHAPTER 5. NETWORKING OPERATORS OVERVIEW ..ttt it ittiee e iennaeeeannnn, 32
51. CLUSTER NETWORK OPERATOR 32
5.2. DNS OPERATOR 32
5.3.INGRESS OPERATOR 32
5.4. EXTERNAL DNS OPERATOR 32
5.5. INGRESS NODE FIREWALL OPERATOR 32
5.6. NETWORK OBSERVABILITY OPERATOR 32
CHAPTER 6. NETWORKING DASHBOARDS ... ittt ittt ettt eaneeeeeeannnaeaannnn, 33
6.1. NETWORK OBSERVABILITY OPERATOR 33
6.2. NETWORKING AND OVN-KUBERNETES DASHBOARD 33
6.3. INGRESS OPERATOR DASHBOARD 33
CHAPTER 7. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM 34
7.1. CLUSTER NETWORK OPERATOR 34
7.2.VIEWING THE CLUSTER NETWORK CONFIGURATION 34
7.3. VIEWING CLUSTER NETWORK OPERATOR STATUS 35
7.4.VIEWING CLUSTER NETWORK OPERATOR LOGS 35
7.5. CLUSTER NETWORK OPERATOR CONFIGURATION 35
7.5.1. Cluster Network Operator configuration object 36
defaultNetwork object configuration 37
Configuration for the OpenShift SDN network plugin 37
Configuration for the OVN-Kubernetes network plugin 38
kubeProxyConfig object configuration (OpenShiftSDN container network interface only) 42
7.5.2. Cluster Network Operator example configuration 43
7.6. ADDITIONAL RESOURCES 44
CHAPTER 8. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM ... ittt 45
8.1. DNS OPERATOR 45

OpenShift Container Platform 4.15 Networking

8.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE 45
8.3. CONTROLLING DNS POD PLACEMENT 46
8.4.VIEW THE DEFAULT DNS 47
8.5. USING DNS FORWARDING 47
8.6. DNS OPERATOR STATUS 51
8.7. DNS OPERATOR LOGS 52
8.8.SETTING THE COREDNS LOG LEVEL 52
8.9. SETTING THE COREDNS OPERATOR LOG LEVEL 52
8.10. TUNING THE COREDNS CACHE 53
CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINERPLATFORMiiiiiiiiiiiiiinnenn, 55
9.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR 55
9.2. THE INGRESS CONFIGURATION ASSET 55
9.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS 55
9.3.1. Ingress Controller TLS security profiles 66
9.3.1.1. Understanding TLS security profiles 66
9.3.1.2. Configuring the TLS security profile for the Ingress Controller 67
9.3.1.3. Configuring mutual TLS authentication 69
9.4.VIEW THE DEFAULT INGRESS CONTROLLER 71
9.5. VIEW INGRESS OPERATOR STATUS 71
9.6. VIEW INGRESS CONTROLLER LOGS 71
9.7. VIEW INGRESS CONTROLLER STATUS 71
9.8. CONFIGURING THE INGRESS CONTROLLER 71
9.8.1. Setting a custom default certificate 72
9.8.2. Removing a custom default certificate 73
9.8.3. Autoscaling an Ingress Controller 74
9.8.4. Scaling an Ingress Controller 78
9.8.5. Configuring Ingress access logging 79
9.8.6. Setting Ingress Controller thread count 82
9.8.7. Configuring an Ingress Controller to use an internal load balancer 82
9.8.8. Configuring global access for an Ingress Controller on GCP 84
9.8.9. Setting the Ingress Controller health check interval 85
9.8.10. Configuring the default Ingress Controller for your cluster to be internal 86
9.8.11. Configuring the route admission policy 87
9.8.12. Using wildcard routes 88
9.8.13. HTTP header configuration 88
9.8.13.1. Order of precedence 88
9.8.13.2. Special case headers 90
9.8.14. Setting or deleting HTTP request and response headers in an Ingress Controller 91
9.8.15. Using X-Forwarded headers 93
Example use cases 93
9.8.16. Enabling HTTP/2 Ingress connectivity 94
9.8.17. Configuring the PROXY protocol for an Ingress Controller 95
9.8.18. Specifying an alternative cluster domain using the appsDomain option 96
9.8.19. Converting HTTP header case 97
9.8.20. Using router compression 99
9.8.21. Exposing router metrics 99
9.8.22. Customizing HAProxy error code response pages 101
9.8.23. Setting the Ingress Controller maximum connections 103
9.9. ADDITIONAL RESOURCES 104
CHAPTER 10. INGRESS SHARDING IN OPENSHIFT CONTAINERPLATFORMottt 105
10.1. INGRESS CONTROLLER SHARDING 105

Table of Contents

10.1.1. Traditional sharding example 106
10.1.2. Overlapped sharding example 107
10.1.3. Sharding the default Ingress Controller 107
10.1.4. Ingress sharding and DNS 108
10.1.5. Configuring Ingress Controller sharding by using route labels 108
10.1.6. Configuring Ingress Controller sharding by using namespace labels 110
10.2. CREATING A ROUTE FOR INGRESS CONTROLLER SHARDING m
Additional Resources 13
CHAPTER 11. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM 14
11.1. INGRESS NODE FIREWALL OPERATOR 14
1.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR 14
11.2.1. Installing the Ingress Node Firewall Operator using the CLI n4
11.2.2. Installing the Ingress Node Firewall Operator using the web console 16
11.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR n7
11.3.1. Ingress Node Firewall configuration object n7
Ingress Node Firewall Operator example configuration 18
11.3.2. Ingress Node Firewall rules object 18
Ingress object configuration 19
Ingress Node Firewall rules object example 120
Zero trust Ingress Node Firewall rules object example 121
11.4. VIEWING INGRESS NODE FIREWALL OPERATOR RULES 122
11.5. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR 122
CHAPTER 12. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS MANAGEMENT 124
12.1. MANAGED DNS MANAGEMENT POLICY 124
12.2. UNMANAGED DNS MANAGEMENT POLICY 124
12.3. CREATING A CUSTOM INGRESS CONTROLLER WITH THE UNMANAGED DNS MANAGEMENT POLICY
124
12.4. MODIFYING AN EXISTING INGRESS CONTROLLER 125
12.5. ADDITIONAL RESOURCES 126
CHAPTER 13. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY 127
13.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY 127
13.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal 128
13.1.2. Configuring the Ingress Controller endpoint publishing scope to External 129
13.2. ADDITIONAL RESOURCES 129
CHAPTER 14. VERIFYING CONNECTIVITY TO AN ENDPOINT ..ttt ieieiieeneennnens 130
14.1. CONNECTION HEALTH CHECKS PERFORMED 130
14.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS 130
14.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS 130
Connection log fields 132
14.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT 133
CHAPTER 15. CHANGING THE MTU FOR THE CLUSTERNETWORKottt nnnens 138
15.1. ABOUT THE CLUSTER MTU 138
15.1.1. Service interruption considerations 138
15.1.2. MTU value selection 138
15.1.3. How the migration process works 138
15.2. CHANGING THE CLUSTER NETWORK MTU 140
15.3. ADDITIONAL RESOURCES 146
CHAPTER 16. CONFIGURING THE NODE PORT SERVICERANGE ..ottt iiiinneennnens 147
16.1. PREREQUISITES 147

OpenShift Container Platform 4.15 Networking

16.2. EXPANDING THE NODE PORT RANGE 147
16.3. ADDITIONAL RESOURCES 148
CHAPTER 17. CONFIGURING THE CLUSTERNETWORKRANGEo i 149
17.1. EXPANDING THE CLUSTER NETWORK IP ADDRESS RANGE 149
17.2. ADDITIONAL RESOURCES 150
CHAPTER18. CONFIGURING IP FAILOVER i 151
18.1. IP FAILOVER ENVIRONMENT VARIABLES 152
18.2. CONFIGURING IP FAILOVER 153
18.3. ABOUT VIRTUAL IP ADDRESSES 156
18.4. CONFIGURING CHECK AND NOTIFY SCRIPTS 157
18.5. CONFIGURING VRRP PREEMPTION 159
18.6. ABOUT VRRP ID OFFSET 160
18.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES 160
18.8. HIGH AVAILABILITY FOR INGRESSIP 161
18.9. REMOVING IP FAILOVER 161

CHAPTER 19. CONFIGURING SYSTEM CONTROLS AND INTERFACE ATTRIBUTES USING THE TUNING

PLUGIN o i e e e e e 164
19.1. CONFIGURING SYSTEM CONTROLS BY USING THE TUNING CNI 164
19.2. ENABLING ALL-MULTICAST MODE BY USING THE TUNING CNI 167
19.3. ADDITIONAL RESOURCES 170

CHAPTER 20. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL

(0 I3 X PPN 171
20.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER
PLATFORM 171

20.1.1. Example configurations using SCTP protocol 171
20.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 172
20.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED 173

CHAPTER 21. USING PTP HARDW A RE ...ttt tte ettt ettt eaeeaneeeanneeaneennneennnens 176

21.1. ABOUT PTP IN OPENSHIFT CONTAINER PLATFORM CLUSTER NODES 176

21.1.1. Elements of a PTP domain 176
Advantages of PTP over NTP 177
21.1.2. Using PTP with dual NIC hardware 178
21.1.3. Overview of linuxptp and gpsd in OpenShift Container Platform nodes 178
21.1.4. Overview of GNSS timing for PTP grandmaster clocks 179
21.2. CONFIGURING PTP DEVICES 180
21.2.1. Installing the PTP Operator using the CLI 181
21.2.2. Installing the PTP Operator by using the web console 182
21.2.3. Discovering PTP capable network devices in your cluster 183
21.2.4. Using hardware-specific NIC features with the PTP Operator 183
21.2.5. Configuring linuxptp services as a grandmaster clock 184
21.2.5.1. Grandmaster clock PtpConfig configuration reference 193
21.2.5.2. Grandmaster clock class sync state reference 195
21.2.5.3. Intel Westport Channel E810 hardware configuration reference 196
21.2.6. Configuring linuxptp services as a boundary clock 198
21.2.6.1. Configuring linuxptp services as boundary clocks for dual NIC hardware 203
21.2.7. Configuring linuxptp services as an ordinary clock 205
21.2.7.1. Intel Columbiaville ESOO series NIC as PTP ordinary clock reference 21
21.2.8. Configuring FIFO priority scheduling for PTP hardware 21
21.2.9. Configuring log filtering for linuxptp services 212
21.2.10. Troubleshooting common PTP Operator issues 214

21.2.11. Collecting PTP Operator data
21.3. USING THE PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK
21.3.1. About PTP and clock synchronization error events
21.3.2. About the PTP fast event notifications framework
21.3.3. Configuring the PTP fast event notifications publisher
21.3.4. Migrating consumer applications to use HTTP transport for PTP or bare-metal events
21.3.5. Installing the AMQ messaging bus
21.3.6. Subscribing DU applications to PTP events with the REST API
21.3.6.1. PTP events REST API reference
21.3.6.1.1. api/ocloudNotifications/v1/subscriptions
HTTP method
Description
HTTP method
Description
21.3.6.1.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>
HTTP method
Description
21.3.6.1.3. api/ocloudNotifications/vl/health
HTTP method
Description
21.3.6.1.4. api/ocloudNotifications/vl/publishers
HTTP method
Description
21.3.6.1.5. api/ocloudNotifications/vl/<resource_address>/CurrentState
HTTP method
Description
21.3.7. Monitoring PTP fast event metrics
21.3.8. PTP fast event metrics reference
21.4. DEVELOPING PTP EVENTS CONSUMER APPLICATIONS
21.4.1. PTP events consumer application reference
21.4.2. Reference cloud-event-proxy deployment and service CRs
21.4.3. PTP events available from the cloud-event-proxy sidecar REST API
21.4.4. Subscribing the consumer application to PTP events
21.4.4.1. Subscribing to PTP lock-state events
21.4.4.2. Subscribing to PTP os-clock-sync-state events
21.4.4.3. Subscribing to PTP ptp-clock-class-change events
21.4.5. Getting the current PTP clock status
21.4.6. Verifying that the PTP events consumer application is receiving events

CHAPTER 22. EXTERNAL DNS OPERATOR ... i i

22.1. EXTERNAL DNS OPERATOR RELEASE NOTES
22.1.1. External DNS Operator 1.2.0
22.1.1.1. New features
22.1.1.2. Bug fixes
22.1.2. External DNS Operator 1.1.1
22.1.3. External DNS Operator 1.1.0
22.1.3.1. Bug fixes
22.1.4. External DNS Operator 1.0.1
22.1.5. External DNS Operator 1.0.0
22.1.5.1. Bug fixes
22.2. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
22.2.1. External DNS Operator
22.2.2. External DNS Operator logs

Table of Contents

217

217

217
218
220

221
222
223
224
224
224
224
225
225
225
225
225
225
225
226
226
226
226
229
229
229

231
232
233
234
235
238
238
238
239
239
240
240

........... 243

243
243
243
243
243
243
243
243
243
244
244
244
245

OpenShift Container Platform 4.15 Networking

22.2.2.1. External DNS Operator domain name limitations 245
22.3.INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS 245
22.3.1. Installing the External DNS Operator 246
22.4. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS 246
22.4.1. External DNS Operator configuration parameters 246
22.5. CREATING DNS RECORDS ON AWS 249
22.5.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator 249
22.5.2. Creating DNS records in a different AWS Account using a shared VPC 250
22.6. CREATING DNS RECORDS ON AZURE 252
22.6.1. Creating DNS records on an Azure public DNS zone 252
22.7. CREATING DNS RECORDS ON GCP 254
22.7.1. Creating DNS records on a public managed zone for GCP 254
22.8. CREATING DNS RECORDS ON INFOBLOX 256
22.8.1. Creating DNS records on a public DNS zone on Infoblox 256
22.9. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR 257
22.9.1. Trusting the certificate authority of the cluster-wide proxy 257
CHAPTER 23. NETWORK PO LICY ottt ettt ettt et ettt et eaeennneeaneeraneenaneennnns 259
23.1. ABOUT NETWORK POLICY 259
23.1.1. About network policy 259
23.1.1.1. Using the allow-from-router network policy 261
23.1.1.2. Using the allow-from-hostnetwork network policy 261
23.1.2. Optimizations for network policy with OpenShift SDN 262
23.1.3. Optimizations for network policy with OVN-Kubernetes network plugin 262
23.1.4. Next steps 264
23.1.5. Additional resources 264
23.2. CREATING A NETWORK POLICY 264
23.2.1. Example NetworkPolicy object 264
23.2.2. Creating a network policy using the CLI 265
23.2.3. Creating a default deny all network policy 267
23.2.4. Creating a network policy to allow traffic from external clients 268
23.2.5. Creating a network policy allowing traffic to an application from all namespaces 269
23.2.6. Creating a network policy allowing traffic to an application from a namespace 271
23.2.7. Additional resources 274
23.3. VIEWING A NETWORK POLICY 274
23.3.1. Example NetworkPolicy object 274
23.3.2. Viewing network policies using the CLI 275
23.4. EDITING ANETWORK POLICY 276
23.4.1. Editing a network policy 276
23.4.2. Example NetworkPolicy object 277
23.4.3. Additional resources 278
23.5. DELETING A NETWORK POLICY 278
23.5.1. Deleting a network policy using the CLI 278
23.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS 279
23.6.1. Modifying the template for new projects 279
23.6.2. Adding network policies to the new project template 280
23.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY 282
23.7.1. Configuring multitenant isolation by using network policy 282
23.7.2. Next steps 285
23.7.3. Additional resources 285
CHAPTER 24. CIDR RANGE DEFINITIONS .. .ttt ittt e ittt et eneeeaneeenneennnns 286
24.1. MACHINE CIDR 286

Table of Contents

24.2. SERVICE CIDR 286
24.3. POD CIDR 286
24.4. HOST PREFIX 286
CHAPTER 25. AWS LOAD BALANCER OPERATOR ..ttt it ei et eeieeaneeeaneeenneennnns 287
25.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES 287
25.1.1. AWS Load Balancer Operator 1.1.1 287
25.1.2. AWS Load Balancer Operator 1.1.0 287
25.1.2.1. Notable changes 287
25.1.2.2. New features 287
25.1.2.3. Bug fixes 287
25.1.3. AWS Load Balancer Operator 1.0.1 288
25.1.4. AWS Load Balancer Operator 1.0.0 288
25.1.4.1. Notable changes 288
25.1.4.2. Bug fixes 288
25.1.5. Earlier versions 288
25.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER PLATFORM 288
25.2.1. AWS Load Balancer Operator considerations 289
25.2.2. AWS Load Balancer Operator 289
25.2.3. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost 290
25.2.4. AWS Load Balancer Operator logs 291
25.3. INSTALLING THE AWS LOAD BALANCER OPERATOR 291
25.3.1. Installing the AWS Load Balancer Operator by using the web console 291
25.3.2. Installing the AWS Load Balancer Operator by using the CLI 292
25.4. INSTALLING THE AWS LOAD BALANCER OPERATOR ON A CLUSTER USING THE AWS SECURITY
TOKEN SERVICE 293
25.4.1. Creating an IAM role for the AWS Load Balancer Operator 294
25.4.1.1. Creating an AWS IAM role by using the Cloud Credential Operator utility 294
25.4.1.2. Creating an AWS IAM role by using the AWS CLI 295
25.4.2. Configuring the ARN role for the AWS Load Balancer Operator 296
25.4.3. Creating an IAM role for the AWS Load Balancer Controller 297
25.4.3.1. Creating an AWS IAM role for the controller by using the Cloud Credential Operator utility 297
25.4.3.2. Creating an AWS IAM role for the controller by using the AWS CLI 298
25.4.4. Additional resources 300
25.5. CREATING AN INSTANCE OF THE AWS LOAD BALANCER CONTROLLER 300
25.5.1. Creating the AWS Load Balancer Controller 300
25.6. SERVING MULTIPLE INGRESS RESOURCES THROUGH A SINGLE AWS LOAD BALANCER 303
25.6.1. Creating multiple ingress resources through a single AWS Load Balancer 303
25.7. ADDING TLS TERMINATION 306
25.7.1. Adding TLS termination on the AWS Load Balancer 306
25.8. CONFIGURING CLUSTER-WIDE PROXY 308
25.8.1. Trusting the certificate authority of the cluster-wide proxy 308
25.8.2. Additional resources 309
CHAPTER 26. MULTIPLE NETWORKS ...ttt ittt ettt e e e eaneeenneennnens 310
26.1. UNDERSTANDING MULTIPLE NETWORKS 310
26.1.1. Usage scenarios for an additional network 310
26.1.2. Additional networks in OpenShift Container Platform 310
26.2. CONFIGURING AN ADDITIONAL NETWORK 3N
26.2.1. Approaches to managing an additional network 31
26.2.2. Configuration for an additional network attachment 312
26.2.2.1. Configuration of an additional network through the Cluster Network Operator 312
26.2.2.2. Configuration of an additional network from a YAML manifest 313

OpenShift Container Platform 4.15 Networking

26.2.3. Configurations for additional network types
26.2.3.1. Configuration for a bridge additional network
26.2.3.1.1. bridge configuration example
26.2.3.2. Configuration for a host device additional network
26.2.3.2.1. host-device configuration example
26.2.3.3. Configuration for an VLAN additional network
26.2.3.3.1. vlan configuration example
26.2.3.4. Configuration for an IPVLAN additional network
26.2.3.4.1. ipvlan configuration example
26.2.3.5. Configuration for a MACVLAN additional network
26.2.3.5.1. macvlan configuration example
26.2.3.6. Configuration for a TAP additional network
26.2.3.6.1. Tap configuration example
26.2.3.6.2. Setting SELinux boolean for the TAP CNI plugin
26.2.3.7. Configuration for an OVN-Kubernetes additional network
26.2.3.7.1. Supported platforms for OVN-Kubernetes additional network
26.2.3.7.2. OVN-Kubernetes network plugin JSON configuration table
26.2.3.7.3. Compatibility with multi-network policy
26.2.3.7.4. Configuration for a layer 2 switched topology
26.2.3.7.5. Configuration for a localnet topology
26.2.3.7.5.1. Prerequisites for configuring OVN-Kubernetes additional network
26.2.3.7.5.2. Configuration for an OVN-Kubernetes additional network mapping
26.2.3.7.6. Configuring pods for additional networks
26.2.3.7.7. Configuring pods with a static IP address
26.2.4. Configuration of IP address assignment for an additional network
26.2.4.1. Static IP address assignment configuration
26.2.4.2. Dynamic IP address (DHCP) assignment configuration
26.2.4.3. Dynamic IP address assignment configuration with Whereabouts
26.2.4.4. Creating a whereabouts-reconciler daemon set
26.2.4.5. Configuring the Whereabouts IP reconciler schedule
26.2.4.6. Creating a configuration for assignment of dual-stack IP addresses dynamically
26.2.5. Creating an additional network attachment with the Cluster Network Operator
26.2.6. Creating an additional network attachment by applying a YAML manifest
26.2.7. About configuring the master interface in the container network namespace
26.2.7.1. Creating multiple VLANs on SR-IOV VFs
26.2.7.2. Creating a subinterface based on a bridge master interface in a container namespace
26.3. ABOUT VIRTUAL ROUTING AND FORWARDING
26.3.1. About virtual routing and forwarding
26.3.1.1. Benefits of secondary networks for pods for telecommunications operators
26.4. CONFIGURING MULTI-NETWORK POLICY
26.4.1. Differences between multi-network policy and network policy
26.4.2. Enabling multi-network policy for the cluster
26.4.3. Supporting multi-network policies in IPv6 networks
26.4.4. Working with multi-network policy
26.4.4.1. Prerequisites
26.4.4.2. Creating a multi-network policy using the CLI
26.4.4.3. Editing a multi-network policy
26.4.4.4. Viewing multi-network policies using the CLI
26.4.4.5. Deleting a multi-network policy using the CLI
26.4.4.6. Creating a default deny all multi-network policy
26.4.4.7. Creating a multi-network policy to allow traffic from external clients
26.4.4.8. Creating a multi-network policy allowing traffic to an application from all namespaces
26.4.4.9. Creating a multi-network policy allowing traffic to an application from a namespace

313

313

315

315

316

316

317

317

318

319
320
320

321

321
322
323
323
325
326
326
326
326
328
329
330
330

331
332
333
334
336
337
338
339
339
344
347
347
347
348
348
348
349
350
350
350
353
354
355
356
357
359

361

Table of Contents

26.4.5. Additional resources 363
26.5. ATTACHING A POD TO AN ADDITIONAL NETWORK 363
26.5.1. Adding a pod to an additional network 363
26.5.1.1. Specifying pod-specific addressing and routing options 365
26.6. REMOVING A POD FROM AN ADDITIONAL NETWORK 369
26.6.1. Removing a pod from an additional network 369
26.7. EDITING AN ADDITIONAL NETWORK 369
26.7.1. Modifying an additional network attachment definition 369
26.8. REMOVING AN ADDITIONAL NETWORK 370
26.8.1. Removing an additional network attachment definition 370
26.9. ASSIGNING A SECONDARY NETWORK TO A VRF 371
26.9.1. Creating an additional network attachment with the CNI VRF plugin 372
CHAPTER 27. HARDWARE NETWORKS ...ttt tit et eaiteeaeeanneeanneraneennneennnns 375
27.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS 375
27.1.1. Components that manage SR-IOV network devices 375
27.1.1.1. Supported platforms 376
27.1.1.2. Supported devices 376
27.1.1.3. Automated discovery of SR-IOV network devices 378
27.1.1.3.1. Example SriovNetworkNodeState object 378
27.1.1.4. Example use of a virtual function in a pod 379
27.1.1.5. DPDK library for use with container applications 381
27.1.1.6. Huge pages resource injection for Downward API 381
27.1.2. Additional resources 382
27.1.3. Next steps 382
27.2. INSTALLING THE SR-IOV NETWORK OPERATOR 382
27.2.1. Installing the SR-IOV Network Operator 382
27.2.1.1. CLI: Installing the SR-IOV Network Operator 382
27.2.1.2. Web console: Installing the SR-IOV Network Operator 383
27.2.2. Next steps 385
27.3. CONFIGURING THE SR-IOV NETWORK OPERATOR 385
27.3.1. Configuring the SR-IOV Network Operator 385
27.3.1.1. SR-IOV Network Operator config custom resource 385
27.3.1.2. About the Network Resources Injector 386
27.3.1.3. About the SR-IOV Network Operator admission controller webhook 386
27.3.1.4. About custom node selectors 387
27.3.1.5. Disabling or enabling the Network Resources Injector 387
27.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook 388
27.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon 388
27.3.1.8. Configuring the SR-IOV Network Operator for single node installations 389
27.3.1.9. Deploying the SR-IOV Operator for hosted control planes 390
27.3.2. Next steps 392
27.4. CONFIGURING AN SR-IOV NETWORK DEVICE 392
27.4.1. SR-IOV network node configuration object 392
27.4.1.1. SR-I0V network node configuration examples 394
27.4.1.2. Virtual function (VF) partitioning for SR-IOV devices 395
27.4.2. Configuring SR-IOV network devices 397
27.4.3. Troubleshooting SR-IOV configuration 398
27.4.4. Assigning an SR-IOV network to a VRF 398
27.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin 399
27.4.5. Exclude the SR-IOV network topology for NUMA-aware scheduling 401
27.4.5.1. Excluding the SR-IOV network topology for NUMA-aware scheduling 401
27.4.6. Next steps 405

9

OpenShift Container Platform 4.15 Networking

27.5. CONFIGURING AN SR-10OV ETHERNET NETWORK ATTACHMENT
27.5.1. Ethernet device configuration object
27.5.1.1. Configuration of IP address assignment for an additional network
27.5.1.1.1. Static IP address assignment configuration
27.5.1.1.2. Dynamic IP address (DHCP) assignment configuration
27.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts
27.5.1.2. Creating a configuration for assignment of dual-stack IP addresses dynamically
27.5.2. Configuring SR-IOV additional network
27.5.3. Next steps
27.5.4. Additional resources
27.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
27.6.1. InfiniBand device configuration object
27.6.1.1. Configuration of IP address assignment for an additional network
27.6.1.1.1. Static IP address assignment configuration
27.6.1.1.2. Dynamic IP address (DHCP) assignment configuration
27.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts
27.6.1.2. Creating a configuration for assignment of dual-stack IP addresses dynamically
27.6.2. Configuring SR-IOV additional network
27.6.3. Next steps
27.6.4. Additional resources
27.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
27.7.1. Runtime configuration for a network attachment
27.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment
27.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment
27.7.2. Adding a pod to an additional network
27.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
27.7.4. A test pod template for clusters that use SR-IOV on OpenStack
27.7.5. Additional resources

405
405
406
407
408
409
410
4n
412
412
412
412
413
413
415
416
416
417
418
418
418
418
418
419
420
423
424
425

27.8. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTL SETTINGS AND ALL-MULTICAST MODE FOR

SR-IOV NETWORKS
27.8.1. Labeling nodes with an SR-IOV enabled NIC
27.8.2. Setting one sysctl flag
27.8.2.1. Setting one sysctl flag on nodes with SR-IOV network devices
27.8.2.2. Configuring sysctl on a SR-IOV network
27.8.3. Configuring sysctl settings for pods associated with bonded SR-IOV interface flag
27.8.3.1. Setting all sysctl flag on nodes with bonded SR-IOV network devices
27.8.3.2. Configuring sysctl on a bonded SR-1OV network
27.8.4. About all-multicast mode
27.8.4.1. Enabling the all-multicast mode on an SR-IOV network
27.9. USING HIGH PERFORMANCE MULTICAST
27.9.1. High performance multicast
27.9.2. Configuring an SR-IOV interface for multicast
27.10. USING DPDK AND RDMA
27.10.1. Using a virtual function in DPDK mode with an Intel NIC
27.10.2. Using a virtual function in DPDK mode with a Mellanox NIC
27.10.3. Using the TAP CNI to run a rootless DPDK workload with kernel access
27.10.4. Overview of achieving a specific DPDK line rate
27.10.5. Using SR-IOV and the Node Tuning Operator to achieve a DPDK line rate
27.10.5.1. Example SR-IOV Network Operator for virtual functions
27.10.5.2. Example SR-IOV network operator
27.10.5.3. Example DPDK base workload
27.10.5.4. Example testpmd script
27.10.6. Using a virtual function in RDMA mode with a Mellanox NIC

10

425
425
425
426
427

431

431
433
437
437
442
442
442
444
444
447
450
455
456
457
459
460

461

461

27.10.7. A test pod template for clusters that use OVS-DPDK on OpenStack
27.10.8. A test pod template for clusters that use OVS hardware offloading on OpenStack
27.10.9. Additional resources
27.11. USING POD-LEVEL BONDING
27.11.1. Configuring a bond interface from two SR-IOV interfaces
27.11.1.1. Creating a bond network attachment definition
27.11.1.2. Creating a pod using a bond interface
27.12. CONFIGURING HARDWARE OFFLOADING
27.12.1. About hardware offloading
27.12.2. Supported devices
27.12.3. Prerequisites
27.12.4. Configuring a machine config pool for hardware offloading
27.12.5. Configuring the SR-IOV network node policy
27.12.5.1. An example SR-IOV network node policy for OpenStack
27.12.6. Improving network traffic performance using a virtual function
27.12.7. Creating a network attachment definition
27.12.8. Adding the network attachment definition to your pods
27.13. SWITCHING BLUEFIELD-2 FROM DPU TO NIC
27.13.1. Switching Bluefield-2 from DPU mode to NIC mode
27.14. UNINSTALLING THE SR-IOV NETWORK OPERATOR
27.14.. Uninstalling the SR-IOV Network Operator

CHAPTER 28. OVN-KUBERNETES NETWORKPLUGINo,

28.1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
28.1.1. OVN-Kubernetes purpose
28.1.2. Supported network plugin feature matrix
28.1.3. OVN-Kubernetes IPv6 and dual-stack limitations
28.1.4. Session affinity
Stickiness timeout for session affinity
28.2. OVN-KUBERNETES ARCHITECTURE
28.2.1. Introduction to OVN-Kubernetes architecture
28.2.2. Listing all resources in the OVN-Kubernetes project
28.2.3. Listing the OVN-Kubernetes northbound database contents
28.2.4. Command line arguments for ovn-nbctl to examine northbound database contents
28.2.5. Listing the OVN-Kubernetes southbound database contents
28.2.6. Command line arguments for ovn-sbctl to examine southbound database contents
28.2.7. OVN-Kubernetes logical architecture
28.2.7.1. Installing network-tools on local host
28.2.7.2. Running network-tools
28.2.8. Additional resources
28.3. TROUBLESHOOTING OVN-KUBERNETES
28.3.1. Monitoring OVN-Kubernetes health by using readiness probes
28.3.2. Viewing OVN-Kubernetes alerts in the console
28.3.3. Viewing OVN-Kubernetes alerts in the CLI
28.3.4. Viewing the OVN-Kubernetes logs using the CLI
28.3.5. Viewing the OVN-Kubernetes logs using the web console
28.3.5.1. Changing the OVN-Kubernetes log levels
28.3.6. Checking the OVN-Kubernetes pod network connectivity
28.3.7. Additional resources
28.4. OVN-KUBERNETES NETWORK POLICY
28.4.1. AdminNetworkPolicy
AdminNetworkPolicy example
28.4.1.1. AdminNetworkPolicy actions for rules

Table of Contents

465
466
466
467
467
467
469
470
470

471

471

471
473
474
474
476
477
477
478
479
479

............. 481

481

481
482
482
483
483
484
484
486
488
492
493
495
496
497
497

501

501

501
502
502
503
504
504
508
509
509

510

510

512

1

OpenShift Container Platform 4.15 Networking

AdminNetworkPolicy Allow example
AdminNetworkPolicy Deny example
AdminNetworkPolicy Pass example
28.4.2. BaselineAdminNetworkPolicy
BaselineAdminNetworkPolicy example
BaselineAdminNetworkPolicy Deny example
28.5. TRACING OPENFLOW WITH OVNKUBE-TRACE
28.5.1. Installing the ovnkube-trace on local host
28.5.2. Running ovnkube-trace
28.5.3. Additional resources
28.6. MIGRATING FROM THE OPENSHIFT SDN NETWORK PLUGIN
28.6.1. Migration to the OVN-Kubernetes network plugin
28.6.1.1. Considerations for migrating to the OVN-Kubernetes network plugin
Namespace isolation
Egress IP addresses
Egress network policies
Egress router pods
Multicast
Network policies
28.6.1.2. How the migration process works
28.6.2. Migrating to the OVN-Kubernetes network plugin
28.6.3. Additional resources
28.7. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
28.7.1. Migrating to the OpenShift SDN network plugin
28.8. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
28.8.1. Converting to a dual-stack cluster network
28.8.2. Converting to a single-stack cluster network
28.9. LOGGING FOR EGRESS FIREWALL AND NETWORK POLICY RULES
28.9.1. Audit logging
28.9.2. Audit configuration
28.9.3. Configuring egress firewall and network policy auditing for a cluster
28.9.4. Enabling egress firewall and network policy audit logging for a namespace
28.9.5. Disabling egress firewall and network policy audit logging for a namespace
28.9.6. Additional resources
28.10. CONFIGURING IPSEC ENCRYPTION
28.10.1. Modes of operation
28.10.2. Prerequisites
28.10.3. Network connectivity requirements when IPsec is enabled
28.10.4. IPsec encryption for pod-to-pod traffic
28.10.4.1. Types of network traffic flows encrypted by pod-to-pod IPsec
28.10.4.2. Encryption protocol and IPsec mode
28.10.4.3. Security certificate generation and rotation
28.10.5. IPsec encryption for external traffic
28.10.5.1. Supported platforms
28.10.5.2. Limitations
28.10.6. Enabling IPsec encryption
28.10.7. Configuring IPsec encryption for external traffic
28.10.8. Disabling IPsec encryption for an external IPsec endpoint
28.10.9. Disabling IPsec encryption
28.10.10. Additional resources
28.11. CONFIGURE AN EXTERNAL GATEWAY ON THE DEFAULT NETWORK
28.11.1. Prerequisites

28.11.2. How OpenShift Container Platform determines the external gateway IP address

12

512
512
513
514
514
515
516
516
518
523
523
524
524
525
525
525
526
526
526
526
528
535
535
535
541
541
542
543
543
544
545
549
550
551
551
552
552
553
553
553
554
554
554
554
555
555
556
561
562
562
563
563
563

28.11.3. AdminPolicyBasedExternalRoute object configuration
28.11.3.1. Example secondary external gateway configurations
28.11.4. Configure a secondary external gateway
28.11.5. Additional resources
28.12. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
28.12.1. How an egress firewall works in a project
28.12.1.1. Limitations of an egress firewall
28.12.1.2. Matching order for egress firewall policy rules
28.12.1.3. How Domain Name Server (DNS) resolution works
28.12.2. EgressFirewall custom resource (CR) object
28.12.2.1. EgressFirewall rules
28.12.2.2. Example EgressFirewall CR objects
28.12.2.3. Example nodeSelector for EgressFirewall
28.12.3. Creating an egress firewall policy object
28.13. VIEWING AN EGRESS FIREWALL FOR A PROJECT
28.13.1. Viewing an EgressFirewall object
28.14. EDITING AN EGRESS FIREWALL FOR A PROJECT
28.14.1. Editing an EgressFirewall object
28.15. REMOVING AN EGRESS FIREWALL FROM A PROJECT
28.15.1. Removing an EgressFirewall object
28.16. CONFIGURING AN EGRESS IP ADDRESS
28.16.1. Egress IP address architectural design and implementation
28.16.1.1. Platform support
28.16.1.2. Public cloud platform considerations
28.16.1.2.1. Amazon Web Services (AWS) IP address capacity limits
28.16.1.2.2. Google Cloud Platform (GCP) IP address capacity limits
28.16.1.2.3. Microsoft Azure IP address capacity limits

28.16.1.3. Considerations for using an egress IP on additional network interfaces

Table of Contents

564
565
567
567
568
568
569
570
570
570

571
572
572
573
573
574
574
574
575
575
576
576
576
577
578
579
579
579

Requirements for assigning an egress IP to a network interface that is not the primary network interface

28.16.1.4. Assignment of egress IPs to pods
28.16.1.5. Assignment of egress IPs to nodes
28.16.1.6. Architectural diagram of an egress IP address configuration
28.16.2. EgresslIP object
28.16.3. EgressIPconfig object
28.16.4. Labeling a node to host egress IP addresses
28.16.5. Next steps
28.16.6. Additional resources
28.17. ASSIGNING AN EGRESS IP ADDRESS
28.17.1. Assigning an egress IP address to a namespace
28.17.2. Additional resources
28.18. CONFIGURING AN EGRESS SERVICE
28.18.1. Egress service custom resource
28.18.2. Deploying an egress service
28.19. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
28.19.1. About an egress router pod
28.19.1.1. Egress router modes
28.19.1.2. Egress router pod implementation
28.19.1.3. Deployment considerations
28.19.1.4. Failover configuration
28.19.2. Additional resources
28.20. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
28.20.1. Egress router custom resource

580
580
581
581
582
584
585
585
585
586
586
587
587
587
588

591

591

591
592
592
593
593
593
593

13

OpenShift Container Platform 4.15 Networking

28.20.2. Deploying an egress router in redirect mode

28.21. ENABLING MULTICAST FOR A PROJECT
28.21.1. About multicast
28.21.2. Enabling multicast between pods

28.22. DISABLING MULTICAST FOR A PROJECT
28.22.1. Disabling multicast between pods

28.23. TRACKING NETWORK FLOWS
28.23.1. Network object configuration for tracking network flows
28.23.2. Adding destinations for network flows collectors
28.23.3. Deleting all destinations for network flows collectors
28.23.4. Additional resources

28.24. CONFIGURING HYBRID NETWORKING
28.24.1. Configuring hybrid networking with OVN-Kubernetes
28.24.2. Additional resources

CHAPTER 29. OPENSHIFT SDN NETWORKPLUGIN i

29.1. ABOUT THE OPENSHIFT SDN NETWORK PLUGIN
29.1.1. OpenShift SDN network isolation modes
29.1.2. Supported network plugin feature matrix
29.2. CONFIGURING EGRESS IPS FOR A PROJECT
29.2.1. Egress IP address architectural design and implementation
29.2.1.1. Platform support
29.2.1.2. Public cloud platform considerations
29.2.1.2.1. Amazon Web Services (AWS) IP address capacity limits
29.2.1.2.2. Google Cloud Platform (GCP) IP address capacity limits
29.2.1.2.3. Microsoft Azure IP address capacity limits

29.2.1.3. Considerations for using an egress IP on additional network interfaces

595
598
598
598
600

601

601
602
603
604
605
605
605
606

607
607
607
608
608
609
610
611
611
611
611

Requirements for assigning an egress IP to a network interface that is not the primary network interface

29.2.1.4. IP address assignment approaches

29.2.1.4.1. Considerations when using automatically assigned egress IP addresses

29.2.1.4.2. Considerations when using manually assigned egress IP addresses
29.2.2. Configuring automatically assigned egress IP addresses for a namespace
29.2.3. Configuring manually assigned egress IP addresses for a namespace

29.2.4. Additional resources
29.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
29.3.1. How an egress firewall works in a project
29.3.1.1. Limitations of an egress firewall
29.3.1.2. Matching order for egress firewall policy rules
29.3.1.3. How Domain Name Server (DNS) resolution works
29.3.2. EgressNetworkPolicy custom resource (CR) object
29.3.2.1. EgressNetworkPolicy rules
29.3.2.2. Example EgressNetworkPolicy CR objects
29.3.3. Creating an egress firewall policy object
29.4. EDITING AN EGRESS FIREWALL FOR A PROJECT
29.4.1. Viewing an EgressNetworkPolicy object
29.5. EDITING AN EGRESS FIREWALL FOR A PROJECT
29.5.1. Editing an EgressNetworkPolicy object
29.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT
29.6.1. Removing an EgressNetworkPolicy object
29.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
29.7.1. About an egress router pod
29.7.1.1. Egress router modes

14

612
613
613
614
614
616
617
617
617
619
620
620
621
621
622
622
623
623
623
624
624
625
625
625
626

Table of Contents

29.7.1.2. Egress router pod implementation 626
29.7.1.3. Deployment considerations 626
29.7.1.4. Failover configuration 627
29.7.2. Additional resources 628
29.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE 628
29.8.1. Egress router pod specification for redirect mode 628
29.8.2. Egress destination configuration format 629
29.8.3. Deploying an egress router pod in redirect mode 630
29.8.4. Additional resources 631
29.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE 631
29.9.1. Egress router pod specification for HTTP mode 631
29.9.2. Egress destination configuration format 632
29.9.3. Deploying an egress router pod in HTTP proxy mode 632
29.9.4. Additional resources 633
29.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE 633
29.10.1. Egress router pod specification for DNS mode 633
29.10.2. Egress destination configuration format 635
29.10.3. Deploying an egress router pod in DNS proxy mode 635
29.10.4. Additional resources 636
29.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP 636
29.11.1. Configuring an egress router destination mappings with a config map 636
29.11.2. Additional resources 638
29.12. ENABLING MULTICAST FOR A PROJECT 638
29.12.1. About multicast 638
29.12.2. Enabling multicast between pods 639
29.13. DISABLING MULTICAST FOR A PROJECT 641
29.13.1. Disabling multicast between pods 641
29.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN 641
29.14.1. Prerequisites 642
29.14.2. Joining projects 642
29.14.3. Isolating a project 642
29.14.4. Disabling network isolation for a project 643
29.15. CONFIGURING KUBE-PROXY 643
29.15.1. About iptables rules synchronization 643
29.15.2. kube-proxy configuration parameters 644
29.15.3. Modifying the kube-proxy configuration 644
CHAPTER 30. CONFIGURING ROUTESiiittiiitttiittit et eeneeeaneennneeanneraneeenneennnns 646
30.1. ROUTE CONFIGURATION 646
30.1.1. Creating an HTTP-based route 646
30.1.2. Creating a route for Ingress Controller sharding 647
30.1.3. Configuring route timeouts 649
30.1.4. HTTP Strict Transport Security 650
30.1.4.1. Enabling HTTP Strict Transport Security per-route 650
30.1.4.2. Disabling HTTP Strict Transport Security per-route 651
30.1.4.3. Enforcing HTTP Strict Transport Security per-domain 652
30.1.5. Throughput issue troubleshooting methods 655
30.1.6. Using cookies to keep route statefulness 656
30.1.6.1. Annotating a route with a cookie 656
30.1.7. Path-based routes 657
30.1.8. HTTP header configuration 658
30.1.8.1. Order of precedence 658
30.1.8.2. Special case headers 659

15

OpenShift Container Platform 4.15 Networking

30.1.9. Setting or deleting HTTP request and response headers in a route

30.1.10. Route-specific annotations

30.1.11. Configuring the route admission policy

30.1.12. Creating a route through an Ingress object

30.1.13. Creating a route using the default certificate through an Ingress object

30.1.14. Creating a route using the destination CA certificate in the Ingress annotation

30.1.15. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking
30.2. SECURED ROUTES

30.2.1. Creating a re-encrypt route with a custom certificate

30.2.2. Creating an edge route with a custom certificate

30.2.3. Creating a passthrough route

CHAPTER 31. CONFIGURING INGRESS CLUSTER TRAFFIC e

31.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
31.1.1. Comparision: Fault tolerant access to external IP addresses
31.2. CONFIGURING EXTERNALIPS FOR SERVICES
31.2.1. Prerequisites
31.2.2. About ExternallP
31.2.2.1. Configuration for ExternallP
31.2.2.2. Restrictions on the assignment of an external IP address
31.2.2.3. Example policy objects
31.2.3. ExternallP address block configuration
Example external IP configurations
31.2.4. Configure external IP address blocks for your cluster
31.2.5. Next steps
31.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
31.3.1. Using Ingress Controllers and routes
31.3.2. Prerequisites
31.3.3. Creating a project and service
31.3.4. Exposing the service by creating a route
31.3.5. Configuring Ingress Controller sharding by using route labels
31.3.6. Configuring Ingress Controller sharding by using namespace labels
31.3.7. Creating a route for Ingress Controller sharding
31.3.8. Additional resources
31.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
31.4.1. Using a load balancer to get traffic into the cluster
31.4.2. Prerequisites
31.4.3. Creating a project and service
31.4.4. Exposing the service by creating a route
31.4.5. Creating a load balancer service
31.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS
31.5.1. Configuring Classic Load Balancer timeouts on AWS
31.5.1.1. Configuring route timeouts
31.5.1.2. Configuring Classic Load Balancer timeouts
31.5.2. Configuring ingress cluster traffic on AWS using a Network Load Balancer

31.5.2.1. Switching the Ingress Controller from using a Classic Load Balancer to a Network Load Balancer
31.5.2.2. Switching the Ingress Controller from using a Network Load Balancer to a Classic Load Balancer

31.5.2.3. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
31.5.2.4. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
31.5.2.5. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
31.5.3. Additional resources
31.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP

16

661
662
669
670
673
674
675
676
677
678
679

681

681

681
682
682
682
683
684
685
686
686
687
688
688
688
689
689
690
690
692
693
695
695
696
696
696
697
698
700
700
700

701

701

701

703
704
705
706
707
707

31.6.1. Prerequisites
31.6.2. Attaching an ExternallP to a service
31.6.3. Additional resources
31.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
31.7.1. Using a NodePort to get traffic into the cluster
31.7.2. Prerequisites
31.7.3. Creating a project and service
31.7.4. Exposing the service by creating a route
31.7.5. Additional resources

31.8. CONFIGURING INGRESS CLUSTER TRAFFIC USING LOAD BALANCER ALLOWED SOURCE RANGES

31.8.1. Configuring load balancer allowed source ranges
31.8.2. Migrating to load balancer allowed source ranges
31.8.3. Additional resources

CHAPTER 32. KUBERNETES NMSTATE ... i i

32.1. ABOUT THE KUBERNETES NMSTATE OPERATOR
32.1.1. Installing the Kubernetes NMState Operator
32.1.1.1. Installing the Kubernetes NMState Operator by using the web console
32.1.1.2. Installing the Kubernetes NMState Operator using the CLI
32.2. OBSERVING AND UPDATING THE NODE NETWORK STATE AND CONFIGURATION
32.2.1. Viewing the network state of a node by using the CLI
32.2.2. Viewing the network state of a node from the web console
32.2.3. Managing policy from the web console
32.2.3.1. Monitoring the policy status
32.2.3.2. Creating a policy
32.2.3.3. Updating the policy
32.2.3.3.1. Updating the policy by using form
32.2.3.3.2. Updating the policy by using YAML
32.2.3.4. Deleting the policy
32.2.4. Managing policy by using the CLI
32.2.4.1. Creating an interface on nodes
Additional resources
32.2.4.2. Confirming node network policy updates on nodes
32.2.4.3. Removing an interface from nodes
32.2.5. Example policy configurations for different interfaces
32.2.5.1. Example: Linux bridge interface node network configuration policy
32.2.5.2. Example: VLAN interface node network configuration policy

32.2.5.3. Example: Node network configuration policy for virtual functions (Technology Preview)

32.2.5.4. Example: Bond interface node network configuration policy
32.2.5.5. Example: Ethernet interface node network configuration policy
32.2.5.6. Example: Multiple interfaces in the same node network configuration policy

32.2.5.7. Example: Network interface with a VRF instance node network configuration policy

32.2.6. Capturing the static IP of a NIC attached to a bridge

Table of Contents

707
708
709
709
709
709
709
710
71

71
712
712
713

734

32.2.6.1. Example: Linux bridge interface node network configuration policy to inherit static IP address from

the NIC attached to the bridge

32.2.7. Examples: IP management
32.2.7.1. Static
32.2.7.2.No IP address
32.2.7.3. Dynamic host configuration
32.2.7.4.DNS
32.2.7.5. Static routing

32.3. TROUBLESHOOTING NODE NETWORK CONFIGURATION

735
736
736
736
737
737
738
738

17

OpenShift Container Platform 4.15 Networking

32.3.1. Troubleshooting an incorrect node network configuration policy configuration

CHAPTER 33. CONFIGURING THE CLUSTER-WIDE PROXYot

33.1. PREREQUISITES

33.2. ENABLING THE CLUSTER-WIDE PROXY

33.3. REMOVING THE CLUSTER-WIDE PROXY
Additional resources

CHAPTER 34. CONFIGURING A CUSTOM PKI ... e

34.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
34.2. ENABLING THE CLUSTER-WIDE PROXY
34.3. CERTIFICATE INJECTION USING OPERATORS

CHAPTER 35. LOAD BALANCING ONRHOSP i

35.1. LIMITATIONS OF LOAD BALANCER SERVICES
35.1.1. Local external traffic policies

35.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA
35.2.1. Scaling clusters by using Octavia

35.3. SERVICES FOR AN EXTERNAL LOAD BALANCER
35.3.1. Configuring an external load balancer

CHAPTER 36. LOAD BALANCING WITHMETALLB e

36.1. ABOUT METALLB AND THE METALLB OPERATOR
36.1.1. When to use MetalLB
36.1.2. MetalLB Operator custom resources
36.1.3. MetallLB software components
36.1.4. MetallLB and external traffic policy
36.1.5. MetalLLB concepts for layer 2 mode
36.1.6. MetalLB concepts for BGP mode
36.1.7. Limitations and restrictions
36.1.7.1. Infrastructure considerations for MetalLB
36.1.7.2. Limitations for layer 2 mode
36.1.7.2.1. Single-node bottleneck
36.1.7.2.2. Slow failover performance
36.1.7.2.3. Additional Network and MetalLB cannot use same network
36.1.7.3. Limitations for BGP mode
36.1.7.3.1. Node failure can break all active connections
36.1.7.3.2. Support for a single ASN and a single router ID only
36.1.8. Additional resources
36.2. INSTALLING THE METALLB OPERATOR
36.2.1. Installing the MetalLB Operator from the OperatorHub using the web console
36.2.2. Installing from OperatorHub using the CLI
36.2.3. Starting MetalLLB on your cluster
36.2.4. Deployment specifications for MetallLB
36.2.4.1. Limit speaker pods to specific nodes
36.2.4.2. Configuring a container runtime class in a MetalLB deployment
36.2.4.3. Configuring pod priority and pod affinity in a MetalLB deployment
36.2.4.4. Configuring pod CPU limits in a MetalLB deployment
36.2.5. Additional resources
36.2.6. Next steps
36.3. UPGRADING THE METALLB
36.3.1. Deleting the MetalLB Operator from a cluster using the web console
36.3.2. Deleting MetalLB Operator from a cluster using the CLI
36.3.3. Editing the MetalLB Operator Operator group

18

738

743
743
743
745
746

747
747
749

751

753
753
753
753
753
754
757

764
764
764
765
766
767
769
770
770

771

771

771

771
772
772
772
772
772
772
773
775
776
776
777
778
780
781
781
781
782
782
783

36.3.4. Upgrading the MetalLB Operator
36.3.5. Additional resources
36.4. CONFIGURING METALLB ADDRESS POOLS
36.4.1. About the IPAddressPool custom resource
36.4.2. Configuring an address pool
36.4.3. Example address pool configurations
36.4.3.1. Example: IPv4 and CIDR ranges
36.4.3.2. Example: Reserve IP addresses
36.4.3.3. Example: IPv4 and IPv6 addresses
36.4.3.4. Example: Assign IP address pools to services or namespaces
36.4.4. Additional resources
36.4.5. Next steps
36.5. ABOUT ADVERTISING FOR THE IP ADDRESS POOLS
36.5.1. About the BGPAdvertisement custom resource
36.5.2. Configuring MetalLLB with a BGP advertisement and a basic use case
36.5.2.1. Example: Advertise a basic address pool configuration with BGP
36.5.3. Configuring MetalLB with a BGP advertisement and an advanced use case
36.5.3.1. Example: Advertise an advanced address pool configuration with BGP
36.5.4. Advertising an IP address pool from a subset of nodes
36.5.5. About the L2Advertisement custom resource
36.5.6. Configuring MetalLLB with an L2 advertisement
36.5.7. Configuring MetalLB with a L2 advertisement and label
36.5.8. Configuring MetalLB with an L2 advertisement for selected interfaces
36.5.9. Additional resources
36.6. CONFIGURING METALLB BGP PEERS
36.6.1. About the BGP peer custom resource
36.6.2. Configuring a BGP peer
36.6.3. Configure a specific set of BGP peers for a given address pool
36.6.4. Exposing a service through a network VRF
36.6.5. Example BGP peer configurations
36.6.5.1. Example: Limit which nodes connect to a BGP peer
36.6.5.2. Example: Specify a BFD profile for a BGP peer
36.6.5.3. Example: Specify BGP peers for dual-stack networking
36.6.6. Next steps
36.7. CONFIGURING COMMUNITY ALIAS
36.7.1. About the community custom resource
36.7.2. Configuring MetalLB with a BGP advertisement and community alias
36.8. CONFIGURING METALLB BFD PROFILES
36.8.1. About the BFD profile custom resource
36.8.2. Configuring a BFD profile
36.8.3. Next steps
36.9. CONFIGURING SERVICES TO USE METALLB
36.9.1. Request a specific IP address
36.9.2. Request an IP address from a specific pool
36.9.3. Accept any IP address
36.9.4. Share a specific IP address
36.9.5. Configuring a service with MetalLB
36.10. MANAGING SYMMETRIC ROUTING WITH METALLB
36.10.1. Challenges of managing symmetric routing with MetalLB
36.10.2. Overview of managing symmetric routing by using VRFs with MetalLB
36.10.3. Configuring symmetric routing by using VRFs with MetalLB
36.11. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT
36.11.1. Setting the MetalLB logging levels

Table of Contents

785
786
786
786
787
788
789
789
789
789
790
790
791
791
792
792
793
794
795
796
797
798
799
800
800
800
802
802
805
809
809
810
810
810
81
811
811
813
813
815
815
815
815
816
817
817
818
819
820
820
821
826
826

19

OpenShift Container Platform 4.15 Networking

36.11.1.1. FRRouting (FRR) log levels 829
36.11.2. Troubleshooting BGP issues 830
36.11.3. Troubleshooting BFD issues 833
36.11.4. MetalLB metrics for BGP and BFD 834
36.11.5. About collecting MetalLB data 835

CHAPTER 37. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS ... 837
37.1. EXTENDING SECONDARY NETWORK METRICS FOR MONITORING 837
37.1.1. Network Metrics Daemon 837
37.1.2. Metrics with network name 838

20

Table of Contents

21

OpenShift Container Platform 4.15 Networking

CHAPTER 1. ABOUT NETWORKING

Red Hat OpenShift Networking is an ecosystem of features, plugins and advanced networking
capabilities that extend Kubernetes networking with the advanced networking-related features that
your cluster needs to manage its network traffic for one or multiple hybrid clusters. This ecosystem of
networking capabilities integrates ingress, egress, load balancing, high-performance throughput,
security, inter- and intra-cluster traffic management and provides role-based observability tooling to
reduce its natural complexities.

NOTE

OpenShift SDN CNl is deprecated as of OpenShift Container Platform 4.14. As of
OpenShift Container Platform 4.15, the network plugin is not an option for new
installations. In a subsequent future release, the OpenShift SDN network plugin is planned
to be removed and no longer supported. Red Hat will provide bug fixes and support for
this feature until it is removed, but this feature will no longer receive enhancements. As
an alternative to OpenShift SDN CNI, you can use OVN Kubernetes CNl instead.

The following list highlights some of the most commonly used Red Hat OpenShift Networking features
available on your cluster:

22

Primary cluster network provided by either of the following Container Network Interface (CNI)
plugins:

o OVN-Kubernetes network plugin, the default plugin

o OpenShift SDN network plugin

Certified 3rd-party alternative primary network plugins

Cluster Network Operator for network plugin management
Ingress Operator for TLS encrypted web traffic

DNS Operator for name assignment

MetalLB Operator for traffic load balancing on bare metal clusters
IP failover support for high-availability

Additional hardware network support through multiple CNI plugins, including for macvlan, ipvlan,
and SR-IOV hardware networks

IPv4, IPv6, and dual stack addressing
Hybrid Linux-Windows host clusters for Windows-based workloads

Red Hat OpenShift Service Mesh for discovery, load balancing, service-to-service
authentication, failure recovery, metrics, and monitoring of services

Single-node OpenShift
Network Observability Operator for network debugging and insights

Submariner and Red Hat Application Interconnect technologies for inter-cluster networking

https://catalog.redhat.com/software/container-stacks/detail/5f0c67b7ce85fb9e399f3a12
https://access.redhat.com/documentation/en-us/red_hat_application_interconnect/1.0/html/introduction_to_application_interconnect/index

CHAPTER 2. UNDERSTANDING NETWORKING

CHAPTER 2. UNDERSTANDING NETWORKING

Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

® Service types, such as node ports or load balancers
® APl resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can network, but clients outside the cluster do not have networking access.
When you expose your application to external traffic, giving each pod its own IP address means that
pods can be treated like physical hosts or virtual machines in terms of port allocation, networking,
naming, service discovery, load balancing, application configuration, and migration.

NOTE

Some cloud platforms offer metadata APIs that listen on the 169.254.169.254 IP address,
a link-local IP address in the IPv4 169.254.0.0/16 CIDR block.

This CIDR block is not reachable from the pod network. Pods that need access to these
IP addresses must be given host network access by setting the spec.hostNetwork field
in the pod spec to true.

If you allow a pod host network access, you grant the pod privileged access to the
underlying network infrastructure.

2.1. OPENSHIFT CONTAINER PLATFORM DNS

If you are running multiple services, such as front-end and back-end services for use with multiple pods,
environment variables are created for user names, service IPs, and more so the front-end pods can
communicate with the back-end services. If the service is deleted and recreated, a new IP address can
be assigned to the service, and requires the front-end pods to be recreated to pick up the updated
values for the service IP environment variable. Additionally, the back-end service must be created
before any of the front-end pods to ensure that the service IP is generated properly, and that it can be
provided to the front-end pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port.

2.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController APl and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

23

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

OpenShift Container Platform 4.15 Networking

2.2.1. Comparing routes and Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster. The most common way to manage
Ingress traffic is with the Ingress Controller. You can scale and replicate this pod like any other regular
pod. This router service is based on HAProxy, which is an open source load balancer solution.

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

Ingress traffic accesses services in the cluster through a route. Routes and Ingress are the main
resources for handling Ingress traffic. Ingress provides features similar to a route, such as accepting
external requests and delegating them based on the route. However, with Ingress you can only allow
certain types of connections: HTTP/2, HTTPS and server name identification (SNI), and TLS with
certificate. In OpenShift Container Platform, routes are generated to meet the conditions specified by
the Ingress resource.

2.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM NETWORKING

This glossary defines common terms that are used in the networking content.

authentication

To control access to an OpenShift Container Platform cluster, a cluster administrator can configure
user authentication and ensure only approved users access the cluster. To interact with an
OpenShift Container Platform cluster, you must authenticate to the OpenShift Container Platform
API. You can authenticate by providing an OAuth access token or an X.509 client certificate in your
requests to the OpenShift Container Platform API.

AWS Load Balancer Operator

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the aws-load-
balancer-controller.

Cluster Network Operator

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) network plugin selected for the cluster during installation.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

custom resource (CR)
A CRis extension of the Kubernetes API. You can create custom resources.
DNS

Cluster DNS is a DNS server which serves DNS records for Kubernetes services. Containers started
by Kubernetes automatically include this DNS server in their DNS searches.

DNS Operator

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods.
This enables DNS-based Kubernetes Service discovery in OpenShift Container Platform.

deployment

A Kubernetes resource object that maintains the life cycle of an application.

24

http://www.haproxy.org/

CHAPTER 2. UNDERSTANDING NETWORKING

domain

Domain is a DNS name serviced by the Ingress Controller.
egress

The process of data sharing externally through a network'’s outbound traffic from a pod.
External DNS Operator

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

HTTP-based route

An HTTP-based route is an unsecured route that uses the basic HTTP routing protocol and exposes
a service on an unsecured application port.

Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster.

Ingress Controller

The Ingress Operator manages Ingress Controllers. Using an Ingress Controller is the most common
way to allow external access to an OpenShift Container Platform cluster.

installer-provisioned infrastructure
The installation program deploys and configures the infrastructure that the cluster runs on.
kubelet

A primary node agent that runs on each node in the cluster to ensure that containers are runningin a
pod.

Kubernetes NMState Operator

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState.

kube-proxy

Kube-proxy is a proxy service which runs on each node and helps in making services available to the
external host. It helps in forwarding the request to correct containers and is capable of performing
primitive load balancing.

load balancers

OpenShift Container Platform uses load balancers for communicating from outside the cluster with
services running in the cluster.

MetalLB Operator

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service
of type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the
service.

multicast
With IP multicast, data is broadcast to many IP addresses simultaneously.
namespaces

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

networking
Network information of a OpenShift Container Platform cluster.
node

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

25

OpenShift Container Platform 4.15 Networking

OpenShift Container Platform Ingress Operator

The Ingress Operator implements the IngressController APl and is the component responsible for
enabling external access to OpenShift Container Platform services.

pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and
managed.

PTP Operator
The PTP Operator creates and manages the linuxptp services.
route

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

scaling
Increasing or decreasing the resource capacity.
service
Exposes a running application on a set of pods.
Single Root I/O Virtualization (SR-IOV) Network Operator

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network
devices and network attachments in your cluster.

software-defined networking (SDN)

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a
unified cluster network that enables communication between pods across the OpenShift Container
Platform cluster.

NOTE

OpenShift SDN CNl is deprecated as of OpenShift Container Platform 4.14. As of
OpenShift Container Platform 4.15, the network plugin is not an option for new
installations. In a subsequent future release, the OpenShift SDN network plugin is planned
to be removed and no longer supported. Red Hat will provide bug fixes and support for
this feature until it is removed, but this feature will no longer receive enhancements. As
an alternative to OpenShift SDN CNI, you can use OVN Kubernetes CNl instead.

Stream Control Transmission Protocol (SCTP)
SCTP is a reliable message based protocol that runs on top of an IP network.
taint

Taints and tolerations ensure that pods are scheduled onto appropriate nodes. You can apply one or
more taints on a node.

toleration

You can apply tolerations to pods. Tolerations allow the scheduler to schedule pods with matching
taints.

web console

A user interface (Ul) to manage OpenShift Container Platform.

26

CHAPTER 3. ZERO TRUST NETWORKING

CHAPTER 3. ZERO TRUST NETWORKING

Zero trust is an approach to designing security architectures based on the premise that every
interaction begins in an untrusted state. This contrasts with traditional architectures, which might
determine trustworthiness based on whether communication starts inside a firewall. More specifically,
zero trust attempts to close gaps in security architectures that rely on implicit trust models and one-
time authentication.

OpenShift Container Platform can add some zero trust networking capabilities to containers running on
the platform without requiring changes to the containers or the software running in them. There are also
several products that Red Hat offers that can further augment the zero trust networking capabilities of
containers. If you have the ability to change the software running in the containers, then there are other
projects that Red Hat supports that can add further capabilities.

Explore the following targeted capabilities of zero trust networking.

3.1. ROOT OF TRUST

Public certificates and private keys are critical to zero trust networking. These are used to identify
components to one another, authenticate, and to secure traffic. The certificates are signed by other
certificates, and there is a chain of trust to a root certificate authority (CA). Everything participating in
the network needs to ultimately have the public key for a root CA so that it can validate the chain of
trust. For public-facing things, these are usually the set of root CAs that are globally known, and whose
keys are distributed with operating systems, web browsers, and so on. However, it is possible to run a
private CA for a cluster or a corporation if the certificate of the private CA is distributed to all parties.

Leverage:

® OpenShift Container Platform: OpenShift creates a cluster CA at installation that is used to
secure the cluster resources. However, OpenShift Container Platform can also create and sign
certificates for services in the cluster, and can inject the cluster CA bundle into a pod if
requested. Service certificates created and signed by OpenShift Container Platform have a 26-
month time to live (TTL) and are rotated automatically at 13 months. They can also be rotated
manually if necessary.

® OpenShift cert-manager Operator: cert-manager allows you to request keys that are signed by
an external root of trust. There are many configurable issuers to integrate with external issuers,
along with ways to run with a delegated signing certificate. The cert-manager API can be used
by other software in zero trust networking to request the necessary certificates (for example,
Red Hat OpenShift Service Mesh), or can be used directly by customer software.

3.2. TRAFFIC AUTHENTICATION AND ENCRYPTION

Ensure that all traffic on the wire is encrypted and the endpoints are identifiable. An example of this is
Mutual TLS, or mTLS, which is a method for mutual authentication.

Leverage:
® OpenShift Container Platform: With transparent pod-to-pod IPsec, the source and destination
of the traffic can be identified by the IP address. There is the capability for egress traffic to be
encrypted using IPsec. By using the egress IP feature, the source IP address of the traffic can be

used to identify the source of the traffic inside the cluster.

® Red Hat OpenShift Service Mesh : Provides powerful mTLS capabilities that can transparently
augment traffic leaving a pod to provide authentication and encryption.

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#cert-types-bootstrap-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#cert-types-service-ca-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#cert-manager-operator-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-security-mtls_ossm-security

OpenShift Container Platform 4.15 Networking

® OpenShift cert-manager Operator: Use custom resource definitions (CRDs) to request
certificates that can be mounted for your programs to use for SSL/TLS protocols.

3.3. IDENTIFICATION AND AUTHENTICATION

After you have the ability to mint certificates using a CA, you can use it to establish trust relationships by
verification of the identity of the other end of a connection — either a user or a client machine. This also
requires management of certificate lifecycles to limit use if compromised.

Leverage:

® OpenShift Container Platform: Cluster-signed service certificates to ensure that a client is
talking to a trusted endpoint. This requires that the service uses SSL/TLS and that the client
uses the cluster CA. The client identity must be provided using some other means.

® Red Hat Single Sign-On: Provides request authentication integration with enterprise user
directories or third-party identity providers.

® Red Hat OpenShift Service Mesh: Transparent upgrade of connections to mTLS, auto-rotation,
custom certificate expiration, and request authentication with JSON web token (JWT).

® OpenShift cert-manager Operator: Creation and management of certificates for use by your

application. Certificates can be controlled by CRDs and mounted as secrets, or your application
can be changed to interact directly with the cert-manager API.

3.4.INTER-SERVICE AUTHORIZATION

It is critical to be able to control access to services based on the identity of the requester. This is done
by the platform and does not require each application to implement it. That allows better auditing and
inspection of the policies.

Leverage:

® OpenShift Container Platform: Can enforce isolation in the networking layer of the platform
using the Kubernetes NetworkPolicy and AdminNetworkPolicy objects.

® Red Hat OpenShift Service Mesh : Sophisticated L4 and L7 control of traffic using standard Istio

objects and using mTLS to identify the source and destination of traffic and then apply policies
based on that information.

3.5. TRANSACTION-LEVEL VERIFICATION
In addition to the ability to identify and authenticate connections, it is also useful to control access to
individual transactions. This can include rate-limiting by source, observability, and semantic validation
that a transaction is well formed.
Leverage:

® Red Hat OpenShift Service Mesh: Perform L7 inspection of requests, rejecting malformed

HTTP requests, transaction-level observability and reporting. Service Mesh can also provide
request-based authentication using JWT.

3.6. RISK ASSESSMENT

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#cert-manager-operator-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#add-service-certificate-configmap_service-serving-certificate
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#security-platform-red-hat-sso_security-platform
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#cert-manager-operator-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-security
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#understanding-kiali
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#restrict-access-with-json-web-token

CHAPTER 3. ZERO TRUST NETWORKING

As the number of security policies in a cluster increase, visualization of what the policies allow and deny
becomes increasingly important. These tools make it easier to create, visualize, and manage cluster
security policies.

Leverage:
® Red Hat OpenShift Service Mesh: Create and visualize Kubernetes NetworkPolicy and
AdminNetworkPolicy, and OpenShift Networking EgressFirewall objects using the OpenShift

web console.

® Red Hat Advanced Cluster Security for Kubernetes : Advanced visualization of objects.

3.7.SITE-WIDE POLICY ENFORCEMENT AND DISTRIBUTION

After deploying applications on a cluster, it becomes challenging to manage all of the objects that make
up the security rules. It becomes critical to be able to apply site-wide policies and audit the deployed
objects for compliance with the policies. This should allow for delegation of some permissions to users
and cluster administrators within defined bounds, and should allow for exceptions to the policies if
necessary.
Leverage:

® Red Hat OpenShift Service Mesh : RBAC to control policy objects and delegate control.

® Red Hat Advanced Cluster Security for Kubernetes : Policy enforcement engine.

® Red Hat Advanced Cluster Management (RHACM) for Kubernetes : Centralized policy control.

3.8. OBSERVABILITY FOR CONSTANT, AND RETROSPECTIVE,
EVALUATION

After you have a running cluster, you want to be able to observe the traffic and verify that the traffic
comports with the defined rules. This is important for intrusion detection, forensics, and is helpful for
operational load management.

Leverage:

e Network Observability Operator: Allows for inspection, monitoring, and alerting on network
connections to pods and nodes in the cluster.

® Red Hat Advanced Cluster Management (RHACM) for Kubernetes : Monitors, collects, and
evaluates system-level events such as process execution, network connections and flows, and
privilege escalation. It can determine a baseline for a cluster, and then detect anomalous activity
and alert you about it.

® Red Hat OpenShift Service Mesh : Can monitor traffic entering and leaving a pod.
® Red Hat OpenShift distributed tracing platform: For suitably instrumented applications, you can

see all traffic associated with a particular action as it splits into sub-requests to microservices.
This allows you to identify bottlenecks within a distributed application.

3.9. ENDPOINT SECURITY

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/web_console/#web-console-overview
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/4.3/html/operating/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#security-platform-multi-tenancy_security-platform
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/4.1/html/operating/manage-security-policies#doc-wrapper
https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/network_observability/#installing-network-observability-operators
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-kiali-overview_ossm-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#understanding-distributed-tracing

OpenShift Container Platform 4.15 Networking

It is important to be able to trust that the software running the services in your cluster has not been
compromised. For example, you might need to ensure that certified images are run on trusted hardware,
and have policies to only allow connections to or from an endpoint based on endpoint characteristics.

Leverage:
® OpenShift Container Platform: Secureboot can ensure that the nodes in the cluster are running
trusted software, so the platform itself (including the container runtime) have not been
tampered with. You can configure OpenShift Container Platform to only run images that have

been signed by certain signatures.

® Red Hat Trusted Artifact Signer: This can be used in a trusted build chain and produce signed
container images.

3.10. EXTENDING TRUST OUTSIDE OF THE CLUSTER

You might want to extend trust outside of the cluster by allowing a cluster to mint CAs for a subdomain.
Alternatively, you might want to attest to workload identity in the cluster to a remote endpoint.

Leverage:

® OpenShift cert-manager Operator: You can use cert-manager to manage delegated CAs so
that you can distribute trust across different clusters, or through your organization.

® Red Hat OpenShift Service Mesh : Can use SPIFFE to provide remote attestation of workloads
to endpoints running in remote or local clusters.

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#security-container-signature
https://catalog.redhat.com/software/container-stacks/detail/6525b71aa53de2eb01ac9628
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/security_and_compliance/#cert-manager-operator-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/service_mesh/#ossm-about

CHAPTER 4. ACCESSING HOSTS

CHAPTER 4. ACCESSING HOSTS

Learn how to create a bastion host to access OpenShift Container Platform instances and access the
control plane nodes with secure shell (SSH) access.

4.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN
INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

The OpenShift Container Platform installer does not create any public IP addresses for any of the
Amazon Elastic Compute Cloud (Amazon EC2) instances that it provisions for your OpenShift
Container Platform cluster. To be able to SSH to your OpenShift Container Platform hosts, you must
follow this procedure.

Procedure

1. Create a security group that allows SSH access into the virtual private cloud (VPC) created by
the openshift-install command.

2. Create an Amazon EC2 instance on one of the public subnets the installer created.

3. Associate a public IP address with the Amazon EC2 instance that you created.
Unlike with the OpenShift Container Platform installation, you should associate the Amazon EC2
instance you created with an SSH keypair. It does not matter what operating system you choose
for this instance, as it will simply serve as an SSH bastion to bridge the internet into your
OpenShift Container Platform cluster’s VPC. The Amazon Machine Image (AMI) you use does
matter. With Red Hat Enterprise Linux CoreOS (RHCOS), for example, you can provide keys via
Ignition, like the installer does.

4. After you provisioned your Amazon EC2 instance and can SSH into it, you must add the SSH key
that you associated with your OpenShift Container Platform installation. This key can be
different from the key for the bastion instance, but does not have to be.

NOTE

Direct SSH access is only recommended for disaster recovery. When the
Kubernetes APl is responsive, run privileged pods instead.

5. Run oc get nodes, inspect the output, and choose one of the nodes that is a master. The
hostname looks similar to ip-10-0-1-163.ec2.internal.

6. From the bastion SSH host you manually deployed into Amazon EC2, SSH into that control
plane host. Ensure that you use the same SSH key you specified during the installation:

I $ ssh -i <ssh-key-path> core@<master-hostname>

31

OpenShift Container Platform 4.15 Networking

CHAPTER 5. NETWORKING OPERATORS OVERVIEW

OpenShift Container Platform supports multiple types of networking Operators. You can manage the
cluster networking using these networking Operators.

5.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) network plugin selected for the cluster during installation. For more information, see Cluster
Network Operator in OpenShift Container Platform.

5.2. DNS OPERATOR

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods. This
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform. For more
information, see DNS Operator in OpenShift Container Platform.

5.3.INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated IP addresses. The IP addresses are accessible to other pods and services running
nearby but are not accessible to external clients. The Ingress Operator implements the Ingress
Controller APl and is responsible for enabling external access to OpenShift Container Platform cluster
services. For more information, see Ingress Operator in OpenShift Container Platform.

5.4. EXTERNAL DNS OPERATOR

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform. For more
information, see Understanding the External DNS Operator.

5.5.INGRESS NODE FIREWALL OPERATOR

The Ingress Node Firewall Operator uses an extended Berkley Packet Filter (eBPF) and eXpress Data
Path (XDP) plugin to process node firewall rules, update statistics and generate events for dropped
traffic. The operator manages ingress node firewall resources, verifies firewall configuration, does not
allow incorrectly configured rules that can prevent cluster access, and loads ingress node firewall XDP
programs to the selected interfaces in the rule’s object(s). For more information, see Understanding the
Ingress Node Firewall Operator

5.6. NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator is an optional Operator that allows cluster administrators to
observe the network traffic for OpenShift Container Platform clusters. The Network Observability
Operator uses the eBPF technology to create network flows. The network flows are then enriched with
OpenShift Container Platform information and stored in Loki. You can view and analyze the stored
network flows information in the OpenShift Container Platform console for further insight and
troubleshooting. For more information, see About Network Observability Operator.

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/network_observability/#dependency-network-observability

CHAPTER 6. NETWORKING DASHBOARDS

CHAPTER 6. NETWORKING DASHBOARDS

Networking metrics are viewable in dashboards within the OpenShift Container Platform web console,
under Observe — Dashboards.

6.1. NETWORK OBSERVABILITY OPERATOR

If you have the Network Observability Operator installed, you can view network traffic metrics
dashboards by selecting the Netobserv dashboard from the Dashboards drop-down list. For more
information about metrics available in this Dashboard, see Network Observability metrics dashboards.

6.2. NETWORKING AND OVN-KUBERNETES DASHBOARD

You can view both general networking metrics as well as OVN-Kubernetes metrics from the dashboard.

To view general networking metrics, select Networking/Linux Subsystem Stats from the Dashboards

drop-down list. You can view the following networking metrics from the dashboard: Network Utilisation,
Network Saturation, and Network Errors.

To view OVN-Kubernetes metrics select Networking/Infrastructure from the Dashboards drop-down

list. You can view the following OVN-Kuberenetes metrics: Networking Configuration, TCP Latency
Probes, Control Plane Resources, and Worker Resources.

6.3. INGRESS OPERATOR DASHBOARD

You can view networking metrics handled by the Ingress Operator from the dashboard. This includes
metrics like the following:

® |ncoming and outgoing bandwidth
® HTTP error rates
® HTTP server response latency
To view these Ingress metrics, select Networking/Ingress from the Dashboards drop-down list. You

can view Ingress metrics for the following categories: Top 10 Per Route Top 10 Per Namespace and
Top 10 Per Shard

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/network_observability/#network-observability-viewing-dashboards_metrics-dashboards-alerts

OpenShift Container Platform 4.15 Networking

CHAPTER 7. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

The Cluster Network Operator (CNO) deploys and manages the cluster network components on an
OpenShift Container Platform cluster, including the Container Network Interface (CNI) network plugin
selected for the cluster during installation.

7.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OVN-Kubernetes network plugin, or the network provider plugin that you
selected during cluster installation, by using a daemon set.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

I $ oc get -n openshift-network-operator deployment/network-operator
Example output

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

2. Run the following command to view the state of the Cluster Network Operator:

I $ oc get clusteroperator/network
Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.5.4 True False False 50m

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

7.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

® Use the oc describe command to view the cluster network configuration:

I $ oc describe network.config/cluster

Example output

34

CHAPTER 7. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Name: cluster
Namespace:
Labels: <none>
Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
Self Link: /apis/config.openshift.io/v1/networks/cluster
Spec:ﬂ
Cluster Network:
Cidr: 10.128.0.0/14
Host Prefix: 23
Network Type: OpenShiftSDN
Service Network:
172.30.0.0/16
Status:g
Cluster Network:
Cidr: 10.128.0.0/14
Host Prefix: 23
Cluster Network MTU: 8951
Network Type: OpenShiftSDN
Service Network:
172.30.0.0/16
Events: <none>

ﬂ The Spec field displays the configured state of the cluster network.

9 The Status field displays the current state of the cluster network configuration.

7.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

® Run the following command to view the status of the Cluster Network Operator:

I $ oc describe clusteroperators/network
7.4.VIEWING CLUSTER NETWORK OPERATOR LOGS
You can view Cluster Network Operator logs by using the oc logs command.

Procedure

® Run the following command to view the logs of the Cluster Network Operator:

I $ oc logs --namespace=openshift-network-operator deployment/network-operator

7.5. CLUSTER NETWORK OPERATOR CONFIGURATION

35

OpenShift Container Platform 4.15 Networking

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network APl in the operator.openshift.io APl group.

The CNO configuration inherits the following fields during cluster installation from the Network APl in
the Network.config.openshift.io API group:

clusterNetwork

IP address pools from which pod IP addresses are allocated.
serviceNetwork

IP address pool for services.

defaultNetwork.type
Cluster network plugin. OVNKubernetes is the only supported plugin during installation.

NOTE

After cluster installation, you can only modify the clusterNetwork IP address range. The
default network type can only be changed from OpenShift SDN to OVN-Kubernetes
through migration.

You can specify the cluster network plugin configuration for your cluster by setting the fields for the
defaultNetwork object in the CNO object named cluster.

7.5.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 7.1. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.
spec.clusterNet array A list specifying the blocks of IP addresses from which pod IP
work addresses are allocated and the subnet prefix length assigned to

each individual node in the cluster. For example:

spec:
clusterNetwork:
- cidr: 10.128.0.0/19
hostPrefix: 23
- cidr: 10.128.32.0/19
hostPrefix: 23

36

CHAPTER 7. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Field Type Description
spec.serviceNet array A block of IP addresses for services. The OpenShift SDN and
work OVN-Kubernetes network plugins support only a single IP

address block for the service network. For example:

spec:
serviceNetwork:
-172.30.0.0/14

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec.defaultNet object Configures the network plugin for the cluster network.

work

spec.kubeProxy object The fields for this object specify the kube-proxy configuration. If
Config you are using the OVN-Kubernetes cluster network plugin, the

kube-proxy configuration has no effect.

defaultNetwork object configuration
The values for the defaultNetwork object are defined in the following table:

Table 7.2. defaultNetwork object

Field Type Description

type string OVNKubernetes. The Red Hat OpenShift
Networking network plugin is selected during
installation. This value cannot be changed after
cluster installation.

NOTE

OpensShift Container Platform uses
the OVN-Kubernetes network plugin
by default. OpenShift SDN is no
longer available as an installation
choice for new clusters.

ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes
network plugin.

Configuration for the OpenShift SDN network plugin
The following table describes the configuration fields for the OpenShift SDN network plugin:

Table 7.3. openshiftSDNConfig object

37

OpenShift Container Platform 4.15 Networking

Field Type Description
mode string The network isolation mode for OpenShift SDN.
mtu integer The maximum transmission unit (MTU) for the VXLAN overlay

network. This value is normally configured automatically.

vxlanPort integer The port to use for all VXLAN packets. The default value is 4789.

Example OpenShift SDN configuration

defaultNetwork:
type: OpenShiftSDN
openshiftSDNConfig:
mode: NetworkPolicy
mtu: 1450
vxlanPort: 4789

Configuration for the OVN-Kubernetes network plugin
The following table describes the configuration fields for the OVN-Kubernetes network plugin:

Table 7.4. ovhKubernetesConfig object

Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

genevePort integer The UDP port for the Geneve overlay network.

ipsecConfig object An object describing the IPsec mode for the cluster.
policyAuditConf object Specify a configuration object for customizing network policy
ig audit logging. If unset, the defaults audit log settings are used.
gatewayConfig object Optional: Specify a configuration object for customizing how

egress traffic is sent to the node gateway.

NOTE

While migrating egress traffic, you can expect
some disruption to workloads and service traffic
until the Cluster Network Operator (CNO)

B successfully rolls out the changes.

38

CHAPTER 7. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Field Type Description
vdinternalSubne If your existing The default value is 100.64.0.0/16.
t network

infrastructure

overlaps with the

100.64.0.0/16

IPv4 subnet, you
can specify a
different IP
address range for
internal use by
OVN-Kubernetes.
You must ensure
that the IP address
range does not
overlap with any
other subnet used
by your OpenShift
Container
Platform
installation. The IP
address range
must be larger
than the maximum
number of nodes
that can be added
to the cluster. For
example, if the
clusterNetwork.
cidr value is
10.128.0.0/14
and the
clusterNetwork.
hostPrefix value
is /23, then the
maximum number
of nodes is 2/(23-
14)=512.

This field cannot

be changed after
installation.

39

OpenShift Container Platform 4.15 Networking

Field Type Description
v6internalSubne If your existing The default value is fd98::/48.
t network

infrastructure

overlaps with the
fd98::/48 IPv6
subnet, you can
specify a different
IP address range
for internal use by
OVN-Kubernetes.
You must ensure
that the IP address
range does not
overlap with any
other subnet used
by your OpenShift
Container
Platform
installation. The IP
address range
must be larger
than the maximum
number of nodes
that can be added
to the cluster.

This field cannot
be changed after
installation.

Table 7.5. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.
maxLogFiles integer The maximum number of log files that are retained.

40

CHAPTER 7. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Field Type Description
destination string One of the following additional audit log targets:
libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>

A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>

A Unix Domain Socket file specified by <file>.
null

Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is localO.

Table 7.6. gatewayConfig object

Field Type Description

routingViaHost boolean Set this field to true to send egress traffic from pods to the
host networking stack. For highly-specialized installations and
applications that rely on manually configured routes in the
kernel routing table, you might want to route egress traffic to
the host networking stack. By default, egress traffic is processed
in OVN to exit the cluster and is not affected by specialized
routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware
offloading feature. If you set this field to true, you do not
receive the performance benefits of the offloading because
egress traffic is processed by the host networking stack.

ipForwarding object You can control IP forwarding for all traffic on OVN-Kubernetes
managed interfaces by using the ipForwarding specification in
the Network resource. Specify Restricted to only allow IP
forwarding for Kubernetes related traffic. Specify Global to
allow forwarding of all IP traffic. For new installations, the default
is Restricted. For updates to OpenShift Container Platform
414 or later, the default is Global.

Table 7.7. ipsecConfig object

Field Type Description

41

OpenShift Container Platform 4.15 Networking

Field Type Description
mode string Specifies the behavior of the IPsec implementation. Must be
one of the following values:
o Disabled: IPsecis not enabled on cluster nodes.

e External: IPsec is enabled for network traffic with
external hosts.

o Full: IPsec is enabled for pod traffic and network
traffic with external hosts.

NOTE

You can only change the configuration for your cluster network plugin during cluster
installation, except for the gatewayConfig field that can be changed at runtime as a
postinstallation activity.

Example OVN-Kubernetes configuration with IPSec enabled

defaultNetwork:
type: OVNKubernetes
ovnKubernetesConfig:
mtu: 1400
genevePort: 6081
ipsecConfig:
mode: Full

IMPORTANT
Using OVNKubernetes can lead to a stack exhaustion problem on IBM Power®.

kubeProxyConfig object configuration (OpenShiftSDN container network interface only)
The values for the kubeProxyConfig object are defined in the following table:

Table 7.8. kubeProxyConfig object

Field Type Description

42

CHAPTER 7. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Field Type Description

iptablesSyncPeriod string The refresh period for iptables rules. The default
value is 30s. Valid suffixes includes, m, and h and
are described in the Go time package
documentation.

NOTE

Because of performance
improvements introduced in
OpenShift Container Platform 4.3
and greater, adjusting the
iptablesSyncPeriod parameter is
no longer necessary.

proxyArguments.iptables- array The minimum duration before refreshing iptables

min-sync-period rules. This field ensures that the refresh does not
happen too frequently. Valid suffixes include s, m,
and h and are described in the Go time package.
The default value is:

kubeProxyConfig:
proxyArguments:
iptables-min-sync-period:
- 0s

7.5.2. Cluster Network Operator example configuration

A complete CNO configuration is specified in the following example:

Example Cluster Network Operator object

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
serviceNetwork:
- 172.30.0.0/16
networkType: OVNKubernetes
clusterNetworkMTU: 8900

43

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

OpenShift Container Platform 4.15 Networking

7.6. ADDITIONAL RESOURCES
® Network APl in the operator.openshift.io APl group
® Modifying the clusterNetwork IP address range

® Migrating from the OpenShift SDN network plugin

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/api_reference/#network-operator-openshift-io-v1

CHAPTER 8. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORWN

CHAPTER 8. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in OpenShift Container Platform.

8.1. DNS OPERATOR
The DNS Operator implements the dns API from the operator.openshift.io APl group. The Operator
deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet

to instruct pods to use the CoreDNS service IP address for name resolution.

Procedure

The DNS Operator is deployed during installation with a Deployment object.

1. Use the oc get command to view the deployment status:

I $ oc get -n openshift-dns-operator deployment/dns-operator

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

2. Use the oc get command to view the state of the DNS Operator:

I $ oc get clusteroperator/dns

Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
dns 4.1.0-0.11 True False False 92m

AVAILABLE, PROGRESSING and DEGRADED provide information about the status of the
operator. AVAILABLE is True when at least 1 pod from the CoreDNS daemon set reports an
Available status condition.

8.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE

DNS manages the CoreDNS component to provide a name resolution service for pods and services in
the cluster. The managementState of the DNS Operator is set to Managed by default, which means
that the DNS Operator is actively managing its resources. You can change it to Unmanaged, which
means the DNS Operator is not managing its resources.

The following are use cases for changing the DNS Operator managementState:
® You are a developer and want to test a configuration change to see if it fixes an issue in

CoreDNS. You can stop the DNS Operator from overwriting the fix by setting the
managementState to Unmanaged.

45

OpenShift Container Platform 4.15 Networking

® You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a
workaround until the issue is fixed. You can set the managementState field of the DNS
Operator to Unmanaged to apply the workaround.

Procedure

® Change managementState DNS Operator:

oc patch dns.operator.openshift.io default --type merge --patch '{"spec":
{"managementState":"Unmanaged"}}'

8.3. CONTROLLING DNS POD PLACEMENT

The DNS Operator has two daemon sets: one for CoreDNS and one for managing the /etc/hosts file.
The daemon set for /etec/hosts must run on every node host to add an entry for the cluster image
registry to support pulling images. Security policies can prohibit communication between pairs of nodes,
which prevents the daemon set for CoreDNS from running on every node.

As a cluster administrator, you can use a custom node selector to configure the daemon set for
CoreDNS to run or not run on certain nodes.

Prerequisites

® You installed the oc CLI.

® You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

® To prevent communication between certain nodes, configure the
spec.nodePlacement.nodeSelector API field:

1. Modify the DNS Operator object named default:

I $ oc edit dns.operator/default

2. Specify a node selector that includes only control plane nodes in the
spec.nodePlacement.nodeSelector API field:

spec:
nodePlacement:

nodeSelector:
node-role.kubernetes.io/worker: "

® To allow the daemon set for CoreDNS to run on nodes, configure a taint and toleration:

1. Modify the DNS Operator object named default:

I $ oc edit dns.operator/default

2. Specify a taint key and a toleration for the taint:

spec:
nodePlacement:

46

CHAPTER 8. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORWN

tolerations:
- effect: NoExecute
key: "dns-only"
operators: Equal
value: abc
tolerationSeconds: 3600 ﬂ

If the taint is dns-only, it can be tolerated indefinitely. You can omit
tolerationSeconds.

8.4.VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

I $ oc describe dns.operator/default

Example output

Name: default
Namespace:
Labels: <none>

Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS

Status:
Cluster Domain: cluster.local ﬂ
Cluster IP: 172.30.0.10 @

ﬂ The Cluster Domain field is the base DNS domain used to construct fully qualified pod and
service domain names.

9 The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the service CIDR range.

2. To find the service CIDR of your cluster, use the oc get command:

I $ oc get networks.config/cluster -o jsonpath="{$.status.serviceNetwork}'

Example output

I [172.30.0.0/16]

8.5. USING DNS FORWARDING

47

OpenShift Container Platform 4.15 Networking

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file
in the following ways:

® Specify name servers for every zone. If the forwarded zone is the Ingress domain managed by
OpenShift Container Platform, then the upstream name server must be authorized for the
domain.

® Provide a list of upstream DNS servers.

® Change the default forwarding policy.

NOTE

A DNS forwarding configuration for the default domain can have both the default servers
specified in the /etc/resolv.conf file and the upstream DNS servers.

Procedure

1. Modify the DNS Operator object named default:
I $ oc edit dns.operator/default

After you issue the previous command, the Operator creates and updates the config map
named dns-default with additional server configuration blocks based on Server. If none of the
servers have a zone that matches the query, then name resolution falls back to the upstream
DNS servers.

Configuring DNS forwarding

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
name: default
spec:
servers:
- name: example-server ﬂ
zones:
- example.com
forwardPlugin:
policy: Random
upstreams:
-1.1.11
-2.2.2.2:5353
upstreamResolvers: 6
policy: Random G
upstreams:
- type: SystemResolvConf 6
- type: Network
address: 1.2.3.4 Q

port: 53 @

ﬂ Must comply with the rfc6335 service name syntax.

48

CHAPTER 8. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORWN

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

A maximum of 15 upstreams is allowed per forwardPlugin.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Determines the order in which upstream servers are selected for querying. You can specify
one of these values: Random, RoundRobin, or Sequential. The default value is
Sequential.

Optional. You can use it to provide upstream resolvers.
You can specify two types of upstreams - SystemResolvConf and Network.
SystemResolvConf configures the upstream to use /etc/resolv.conf and Network

defines a Networkresolver. You can specify one or both.

If the specified type is Network, you must provide an IP address. The address field must
be a valid IPv4 or IPv6 address.

@ O 00 O ®6 o o

If the specified type is Network, you can optionally provide a port. The port field must have
a value between 1 and 65535. If you do not specify a port for the upstream, by default port
853 is tried.

2. Optional: When working in a highly regulated environment, you might need the ability to secure
DNS traffic when forwarding requests to upstream resolvers so that you can ensure additional
DNS traffic and data privacy. Cluster administrators can configure transport layer security
(TLS) for forwarded DNS queries.

Configuring DNS forwarding with TLS

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
name: default
spec:
servers:
- name: example-server 0
zones:
- example.com
forwardPlugin:
transportConfig:
transport: TLS
tls:
caBundle:
name: mycacert
serverName: dnstls.example.com ﬂ
policy: Random 9
upstreams:
-1.1.1.1

49

OpenShift Container Platform 4.15 Networking

®9

o

o0 O O O ® o

Verification

50

-2.2.2.2:5353
upstreamResolvers: ﬂ
transportConfig:
transport: TLS
tls:
caBundle:
name: mycacert
serverName: dnstls.example.com
upstreams:

- type: Network 6
address: 1.2.3.4 Q

port: 53 @

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field. The cluster
domain, cluster.local, is an invalid subdomain for zones.

When configuring TLS for forwarded DNS queries, set the transport field to have the value
TLS. By default, CoreDNS caches forwarded connections for 10 seconds. CoreDNS will
hold a TCP connection open for those 10 seconds if no request is issued. With large
clusters, ensure that your DNS server is aware that it might get many new connections to
hold open because you can initiate a connection per node. Set up your DNS hierarchy
accordingly to avoid performance issues.

When configuring TLS for forwarded DNS queries, this is a mandatory server name used as
part of the server name indication (SNI) to validate the upstream TLS server certificate.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

Required. You can use it to provide upstream resolvers. A maximum of 15 upstreams
entries are allowed per forwardPlugin entry.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Network type indicates that this upstream resolver should handle forwarded requests
separately from the upstream resolvers listed in /etc/resolv.conf. Only the Network type is
allowed when using TLS and you must provide an IP address.

The address field must be a valid IPv4 or IPv6 address.

You can optionally provide a port. The port must have a value between 1 and 65535. If you
do not specify a port for the upstream, by default port 853 is tried.

NOTE

If servers is undefined or invalid, the config map only contains the default server.

CHAPTER 8. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORWN

1. View the config map:

I $ oc get configmap/dns-default -n openshift-dns -o yaml

Sample DNS ConfigMap based on previous sample DNS

apiVersion: vi

data:

Corefile: |
example.com:53583 {

}

forward . 1.1.1.1 2.2.2.2:5353

bar.com:5353 example.com:5353 {

}

forward . 3.3.3.3 4.4.4.4:5454 §)

5353 {

}

errors

health

kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
upstream
fallthrough in-addr.arpa ip6.arpa

}

prometheus :9153

forward . /etc/resolv.conf 1.2.3.4:53 {
policy Random

}

cache 30

reload

kind: ConfigMap
metadata:
labels:
dns.operator.openshift.io/owning-dns: default
name: dns-default
namespace: openshift-dns

ﬂ Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

® For more information on DNS forwarding, see the CoreDNS forward documentation.

8.6. DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

I $ oc describe clusteroperators/dns

51

https://coredns.io/plugins/forward/

OpenShift Container Platform 4.15 Networking

8.7. DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.
Procedure

View the logs of the DNS Operator:

I $ oc logs -n openshift-dns-operator deployment/dns-operator -¢c dns-operator

8.8. SETTING THE COREDNS LOG LEVEL

You can configure the CoreDNS log level to determine the amount of detail in logged error messages.
The valid values for CoreDNS log level are Normal, Debug, and Trace. The default logLevel is Normal.

NOTE

The errors plugin is always enabled. The following logLevel settings report different error
responses:

e JogLevel: Normal enables the "errors” class: log . { class error }.
e loglLevel: Debug enables the "denial” class: log . { class denial error }.

® JogLevel: Trace enables the "all" class: log . { class all }.

Procedure

e Toset logLevel to Debug, enter the following command:

I $ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Debug"}}' --type=merge

® TosetloglLevel to Trace, enter the following command:

I $ oc patch dnses.operator.openshift.io/default -p {"spec":{"logLevel":"Trace"}}' --type=merge

Verification

® To ensure the desired log level was set, check the config map:

I $ oc get configmap/dns-default -n openshift-dns -o yaml

8.9.SETTING THE COREDNS OPERATOR LOG LEVEL

Cluster administrators can configure the Operator log level to more quickly track down OpenShift DNS
issues. The valid values for operatorLogLevel are Normal, Debug, and Trace. Trace has the most
detailed information. The default operatorlogLevel is Normal. There are seven logging levels for issues:
Trace, Debug, Info, Warning, Error, Fatal and Panic. After the logging level is set, log entries with that
severity or anything above it will be logged.

e operatorLogLevel: "Normal" sets logrus.SetLogLevel("Info").

e operatorLogLevel: "Debug” sets logrus.SetLogLevel("Debug™).

52

CHAPTER 8. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORWN

o operatorLogLevel: "Trace" sets logrus.SetLogLevel("Trace").

Procedure

e To set operatorLogLevel to Debug, enter the following command:

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Debug"}}' --
type=merge

® To set operatorLogLevel to Trace, enter the following command:

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Trace"}}' --
type=merge

8.10. TUNING THE COREDNS CACHE

You can configure the maximum duration of both successful or unsuccessful caching, also known as
positive or negative caching respectively, done by CoreDNS. Tuning the duration of caching of DNS
query responses can reduce the load for any upstream DNS resolvers.

Procedure

1. Edit the DNS Operator object named default by running the following command:

I $ oc edit dns.operator.openshift.io/default

2. Modify the time-to-live (TTL) caching values:

Configuring DNS caching

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
name: default
spec:
cache:
positiveTTL: 1h @)

negativeTTL: 0.5h10m g

ﬂ The string value 1h is converted to its respective number of seconds by CoreDNS. If this
field is omitted, the value is assumed to be 0s and the cluster uses the internal default
value of 900s as a fallback.

9 The string value can be a combination of units such as 0.5h10m and is converted to its

respective number of seconds by CoreDNS. If this field is omitted, the value is assumed to
be 0s and the cluster uses the internal default value of 30s as a fallback.

53

OpenShift Container Platform 4.15 Networking

' WARNING
A Setting TTL fields to low values could lead to an increased load on the

cluster, any upstream resolvers, or both.

54

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

9.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController APl and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

9.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
spec:
domain: apps.openshiftdemos.com

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

® The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

® The OpenShift APl Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

9.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

55

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

OpenShift Container Platform 4.15 Networking

Parameter Description

domain domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

e Forthe LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

e When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

® The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the desired number of Ingress Controller replicas. If not set, the
default value is 2.

endpointPublishingStr endpointPublishingStrategy is used to publish the Ingress Controller
ategy endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

On GCP, AWS, and Azure you can configure the following
endpointPublishingStrategy fields:

e loadBalancer.scope
o loadBalancer.allowedSourceRanges

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

e Azure: LoadBalancerService (with External scope)

® Google Cloud Platform (GCP): LoadBalancerService (with
External scope)

o Bare metal: NodePortService

o Other: HostNetwork

56

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

following default values for the optional binding ports:
httpPort: 80, httpsPort: 443, and statsPort: 1936.
With the binding ports, you can deploy multiple

Ingress Controllers on the same node for the
HostNetwork strategy.

Example

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: internal
namespace: openshift-ingress-operator
spec:
domain: example.com
endpointPublishingStrategy:
type: HostNetwork
hostNetwork:
httpPort: 80
httpsPort: 443
statsPort: 1936

NOTE

On Red Hat OpenStack Platform (RHOSP), the
LoadBalancerService endpoint publishing strategy
is only supported if a cloud provider is configured to
create health monitors. For RHOSP 16.2, this strategy
is only possible if you use the Amphora Octavia
provider.

For more information, see the "Setting cloud provider
options" section of the RHOSP installation
documentation.

For most platforms, the endpointPublishingStrategy value can be
updated. On GCP, you can configure the following
endpointPublishingStrategy fields:

e loadBalancer.scope

o loadbalancer.providerParameters.gcp.clientAccess

e hostNetwork.protocol

e nodePort.protocol

57

OpenShift Container Platform 4.15 Networking

Parameter Description

58

defaultCertificate

namespaceSelector

routeSelector

nodePlacement

The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

nodePlacement:
nodeSelector:
matchLabels:
kubernetes.io/os: linux
tolerations:
- effect: NoSchedule
operator: Exists

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Parameter Description

tisSecurityProfile tisSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of anOld or
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields,
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values:
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle.

The AllowedSubjectPatterns is an optional value that specifies a list of
regular expressions, which are matched against the distinguished name on a
valid client certificate to filter requests. The regular expressions must use
PCRE syntax. At least one pattern must match a client certificate's
distinguished name; otherwise, the Ingress Controller rejects the certificate and
denies the connection. If not specified, the Ingress Controller does not reject
certificates based on the distinguished name.

59

OpenShift Container Platform 4.15 Networking

Parameter Description

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

60

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Parameter Description

IngressControllerLoggi logging defines parameters for what is logged where. If this field is empty,
ng operational logs are enabled but access logs are disabled.

® access describes how client requests are logged. If this field is
empty, access logging is disabled.

o destination describes a destination for log messages.
m type is the type of destination for logs:

e Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

e Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

m container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

m syslog describes parameters for the Syslog logging
destination type:

e address is the IP address of the syslog endpoint that
receives log messages.

e portis the UDP port number of the syslog endpoint that
receives log messages.

e maxLength is the maximum length of the syslog
message. It must be between 480 and 4096 bytes. If this
field is empty, the maximum length is set to the default
value of 1024 bytes.

e facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, Ipr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3.local4, local5, local6, orlocal?.

o httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy's default
HTTP log format, see the HAProxy documentation.

61

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

OpenShift Container Platform 4.15 Networking

Parameter Description

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
Controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

e Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

e Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

o IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

o Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

actions specifies options for performing certain actions on headers. Headers
cannot be set or deleted for TLS passthrough connections. The actions field
has additional subfields spec.httpHeader.actions.response and
spec.httpHeader.actions.request:

e The response subfield specifies a list of HTTP response headers to
set or delete.

e The request subfield specifies a list of HTTP request headers to set
or delete.

62

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Parameter Description

httpCompression httpCompression defines the policy for HTTP traffic compression.

e mimeTypes defines a list of MIME types to which compression
should be applied. For example, text/css; charset=utf-8, text/html,
text/*, image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern,type/subtype;
[;attribute=value]. Thetypes are: application, image, message,
multipart, text, video, or a custom type prefaced by X-; e.g. To see the
full notation for MIME types and subtypes, see RFC1341

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController
image.

httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in

access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

® name specifies the name of the cookie.

e maxLength specifies tha maximum length of the cookie.

e matchType specifies if the field hame of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.

The matchType field uses the Exact and Prefix parameters.

For example:

httpCaptureCookies:

- matchType: Exact
maxLength: 128
name: MYCOOKIE

63

https://datatracker.ietf.org/doc/html/rfc1341#page-7

OpenShift Container Platform 4.15 Networking

Parameter Description

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and themaxlength field must
specify the maximum length of the header. For example:

httpCaptureHeaders:

request:

- maxLength: 256
name: Connection

- maxLength: 128
name: User-Agent

response:

- maxLength: 256
name: Content-Type

- maxLength: 256
name: Content-Length

tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

e clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection.
The default timeout is 18s.

o clientTimeout specifies how long a connection is held open while
waiting for a client response. The default timeout is 30s.

o headerBufferBytes specifies how much memory is reserved, in
bytes, for Ingress Controller connection sessions. This value must be
at least 16384 if HTTP/2 is enabled for the Ingress Controller. If not
set, the default value is 32768 bytes. Setting this field not
recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

o headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

e healthChecklInterval specifies how long the router waits between
health checks. The default is 5s.

64

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

e serverTimeout specifies how long a connection is held open while
waiting for a server response. The default timeout is 30s.

o threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

e tlsinspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
The default inspect delay is 5s.

e tunnelTimeout specifies how long a tunnel connection, including
websockets, remains open while the tunnel is idle. The default timeout
is 1h.

e maxConnections specifies the maximum number of simultaneous
connections that can be established per HAProxy process. Increasing
this value allows each ingress controller pod to handle more
connections at the cost of additional system resources. Permitted
values are 0,-1, any value within the range 2000 and 2000000, or the
field can be left empty.

o |If this field is left empty or has the value 0, the Ingress Controller
will use the default value of 50000. This value is subject to
change in future releases.

o If the field has the value of -1, then HAProxy will dynamically
compute a maximum value based on the available ulimits in the
running container. This process results in a large computed value
that will incur significant memory usage compared to the current
default value of 50000.

o |If the field has a value that is greater than the current operating
system limit, the HAProxy process will not start.

o If you choose a discrete value and the router pod is migrated to a
new node, it is possible the new node does not have an identical
ulimit configured. In such cases, the pod fails to start.

o If you have nodes with different ulimits configured, and you
choose a discrete value, it is recommended to use the value of -1
for this field so that the maximum number of connections is
calculated at runtime.

65

OpenShift Container Platform 4.15 Networking

Parameter Description

logEmptyRequests logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and
Ignore. The default value isLog.

The LoggingPolicy type accepts either one of two values:

e Log: Setting this value to Log indicates that an event should be
logged.

e Ignore: Setting this value to lgnore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsP HTTPEmptyRequestsPolicy describes how HTTP connections are handled
olicy if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value isRespond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

e Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

e Ignore: Setting this option tolgnore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to Ignore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

NOTE

All parameters are optional.

9.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

9.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations.

66

https://wiki.mozilla.org/Security/Server_Side_TLS

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

You can specify one of the following TLS security profiles for each component:

Table 9.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

» NOTE
For the Ingress Controller, the minimum TLS version is
\ converted from 1.0 to 1.1.
Intermediate This profile is the recommended configuration for the majority of clients.

Itis the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

' WARNING
A Use caution when using a Custom profile,

because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

9.3.1.2. Configuring the TLS security profile for the Ingress Controller

67

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

OpenShift Container Platform 4.15 Networking

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the APl server.

Sample IngressController CR that configures the Old TLS security profile

apiVersion: operator.openshift.io/v1
kind: IngressController

spec:
tisSecurityProfile:
old: {}
type: Old

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE
The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

I $ oc edit IngressController default -n openshift-ingress-operator

2. Add the spec.tisSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController

spec:
tisSecurityProfile:
type: Custom ﬂ
custom:

ciphers: e

- ECDHE-ECDSA-CHACHA20-POLY 1305
- ECDHE-RSA-CHACHA20-POLY 1305

68

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

- ECDHE-RSA-AES128-GCM-SHA256
- ECDHE-ECDSA-AES128-GCM-SHA256
minTLSVersion: VersionTLS11

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

o

e old:{}
e intermediate: {}
e custom:

9 For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

e Verify that the profile is set in the IngressController CR:

I $ oc describe IngressController default -n openshift-ingress-operator
Example output

Name: default

Namespace: openshift-ingress-operator
Labels: <none>

Annotations: <none>

API Version: operator.openshift.io/v1
Kind: IngressController

Spec:

Tls Security Profile:
Custom:

Ciphers:
ECDHE-ECDSA-CHACHA20-POLY 1305
ECDHE-RSA-CHACHA20-POLY1305
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-GCM-SHA256

Min TLS Version: VersionTLS11

Type: Custom

9.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.
This configuration includes setting a clientCA value, which is a reference to a config map. The config

69

OpenShift Container Platform 4.15 Networking

map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can also configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution
Point specified in each provided certificate. The Ingress Controller uses this config map during
mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.
® You have a PEM-encoded CA certificate bundle.

e |f your CA bundle references a CRL distribution point, you must have also included the end-
entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP
URI under CRL Distribution Points, as described in RFC 5280. For example:

Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1
Subject: SOME SIGNED CERT X509v3 CRL Distribution Points:
Full Name:
URI:http://crl.example.com/example.crl

Procedure

1. In the openshift-config namespace, create a config map from your CA bundle:

$ oc create configmap \
router-ca-certs-default \
--from-file=ca-bundle.pem=client-ca.crt \ﬂ
-n openshift-config

ﬂ The config map data key must be ca-bundle.pem, and the data value must be a CA
certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:
I $ oc edit IngressController default -n openshift-ingress-operator

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
clientTLS:
clientCertificatePolicy: Required
clientCA:

70

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

name: router-ca-certs-default
allowedSubjectPatterns:
- ""/CN=example.com/ST=NC/C=US/O=Security/OU=0penShift$"

9.4. VIEW THE DEFAULT INGRESS CONTROLLER
The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

® View the default Ingress Controller:

I $ oc describe --namespace=openshift-ingress-operator ingresscontroller/default
9.5. VIEW INGRESS OPERATOR STATUS
You can view and inspect the status of your Ingress Operator.

Procedure

® View your Ingress Operator status:

I $ oc describe clusteroperators/ingress
9.6. VIEW INGRESS CONTROLLER LOGS
You can view your Ingress Controller logs.
Procedure

® \iew your Ingress Controller logs:

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c
<container_name>

9.7.VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

® View the status of an Ingress Controller:

I $ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>
9.8. CONFIGURING THE INGRESS CONTROLLER

71

OpenShift Container Platform 4.15 Networking

9.8.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites
® You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configuredin a
custom PKI.
® Your certificate meets the following requirements:

o The certificate is valid for the ingress domain.

o The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

® You must have an IngressController CR. You may use the default one:

I $ oc --namespace openshift-ingress-operator get ingresscontrollers
Example output

NAME AGE
default 10m

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
itin the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
A strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

2. Update the IngressController CR to reference the new certificate secret:

72

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
--patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

3. Verify the update was effective:

$ echo Q |\

openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null \

openssl x509 -noout -subject -issuer -enddate

where:

<domain>

Specifies the base domain name for your cluster.

Example output

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

TIP

You can alternatively apply the following YAML to set a custom default certificate:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

defaultCertificate:

name: custom-certs-default

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

9.8.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.
® You have installed the OpenShift CLI (oc).

® You previously configured a custom default certificate for the Ingress Controller.

73

OpenShift Container Platform 4.15 Networking

Procedure

® Toremove the custom certificate and restore the certificate that ships with OpenShift
Container Platform, enter the following command:

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
--type json -p $'- op: remove\n path: /spec/defaultCertificate’

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

® To confirm that the original cluster certificate is restored, enter the following command:

$echoQ]\

openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\

openssl x509 -noout -subject -issuer -enddate

where:

<domain>

Specifies the base domain name for your cluster.

Example output

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

9.8.3. Autoscaling an Ingress Controller

Automatically scale an Ingress Controller to dynamically meet routing performance or availability
requirements such as the requirement to increase throughput. The following procedure provides an
example for scaling up the default IngressController.

Prerequisites

1. You have the OpenShift CLI (oc¢) installed.

2. You have access to an OpenShift Container Platform cluster as a user with the cluster-admin

role.
3. You have the Custom Metrics Autoscaler Operator installed.

4. You are in the openshift-ingress-operator project namespace.

Procedure

1. Create a service account to authenticate with Thanos by running the following command:

I $ oc create serviceaccount thanos && oc describe serviceaccount thanos

Example output

74

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Name: thanos

Namespace: openshift-ingress-operator
Labels: <none>

Annotations: <none>

Image pull secrets: thanos-dockercfg-b419s
Mountable secrets: thanos-dockercfg-b419s
Tokens: thanos-token-c422q
Events: <none>

2. Define a TriggerAuthentication object within the openshift-ingress-operator namespace
using the service account's token.

a. Define the variable secret that contains the secret by running the following command:

I $ secret=$(oc get secret | grep thanos-token | head -n 1 | awk '{ print $1 }')

b. Create the TriggerAuthentication object and pass the value of the secret variable to the
TOKEN parameter:

$ oc process TOKEN="$secret" -f - <<EOF | oc apply -f -
apiVersion: template.openshift.io/v1
kind: Template
parameters:
- name: TOKEN
objects:
- apiVersion: keda.sh/vialphai
kind: TriggerAuthentication
metadata:
name: keda-trigger-auth-prometheus
spec:
secretTargetRef:
- parameter: bearerToken
name: \${TOKEN}
key: token
- parameter: ca
name: \${TOKEN}
key: ca.crt
EOF

3. Create and apply a role for reading metrics from Thanos:

a. Create a new role, thanos-metrics-reader.yaml, that reads metrics from pods and nodes:

thanos-metrics-reader.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: thanos-metrics-reader
rules:
- apiGroups:
resources:
- pods
- nodes

75

OpenShift Container Platform 4.15 Networking

76

verbs:
- get
- apiGroups:
- metrics.k8s.io
resources:
- pods
- nodes
verbs:
- get
- list
- watch
- apiGroups:
resources:
- namespaces
verbs:
- get

b. Apply the new role by running the following command:
I $ oc apply -f thanos-metrics-reader.yaml

4. Add the new role to the service account by entering the following commands:

$ oc adm policy add-role-to-user thanos-metrics-reader -z thanos --role-
namespace=openshift-ingress-operator

I $ oc adm policy -n openshift-ingress-operator add-cluster-role-to-user cluster-monitoring-view
-z thanos

NOTE

The argument add-cluster-role-to-user is only required if you use cross-
namespace queries. The following step uses a query from the kube-metrics
namespace which requires this argument.

5. Create a new ScaledObject YAML file, ingress-autoscaler.yaml, that targets the default
Ingress Controller deployment:

Example ScaledObject definition

apiVersion: keda.sh/vialpha1
kind: ScaledObject
metadata:
name: ingress-scaler
spec:
scaleTargetRef: ﬂ
apiVersion: operator.openshift.io/v1
kind: IngressController
name: default
envSourceContainerName: ingress-operator
minReplicaCount: 1
maxReplicaCount: 20 9

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

cooldownPeriod: 1
pollinglnterval: 1
triggers:
- type: prometheus
metricType: AverageValue
metadata:
serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091 6
namespace: openshift-ingress-operator ﬂ
metricName: 'kube-node-role'
threshold: "1’
query: 'sum(kube_node_role{role="worker",service="kube-state-metrics"})' 9
authModes: "bearer"
authenticationRef:
name: keda-trigger-auth-prometheus

The custom resource that you are targeting. In this case, the Ingress Controller.

Optional: The maximum number of replicas. If you omit this field, the default maximum is
set to 100 replicas.

The Thanos service endpoint in the openshift-monitoring namespace.

The Ingress Operator namespace.

00 09

This expression evaluates to however many worker nodes are present in the deployed
cluster.

IMPORTANT

If you are using cross-namespace queries, you must target port 9091 and not port
9092 in the serverAddress field. You also must have elevated privileges to read
metrics from this port.

6. Apply the custom resource definition by running the following command:

I $ oc apply -f ingress-autoscaler.yaml

Verification

e Verify that the default Ingress Controller is scaled out to match the value returned by the kube-
state-metrics query by running the following commands:

o Use the grep command to search the Ingress Controller YAML file for replicas:

I $ oc get ingresscontroller/default -o yaml | grep replicas:
Example output
I replicas: 3

o Get the pods in the openshift-ingress project:

77

OpenShift Container Platform 4.15 Networking

I $ oc get pods -n openshift-ingress
Example output

NAME READY STATUS RESTARTS AGE
router-default-7b5df44ff-I9pmm 2/2 Running 0 17h
router-default-7b5df44ff-sbsl5 2/2 Running 0 3d22h
router-default-7b5df44ff-wwsth 2/2 Running 0 66s

Additional resources

® Enabling monitoring for user-defined projects

® |[nstalling the custom metrics autoscaler

® Understanding custom metrics autoscaler trigger authentications

® Configuring the custom metrics autoscaler to use OpenShift Container Platform monitoring

® Understanding how to add custom metrics autoscalers

9.8.4. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. o0¢c commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

Procedure

1. View the current number of available replicas for the default IngressController:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

Example output

| -

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

Example output

I ingresscontroller.operator.openshift.io/default patched

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#enabling-monitoring-for-user-defined-projects_enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-cma-autoscaling-custom-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-cma-autoscaling-custom-trigger-auth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-cma-autoscaling-custom-prometheus
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-cma-autoscaling-custom-adding

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

3. Verify that the default IngressController scaled to the number of replicas that you specified:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

Example output

E

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:

replicas: 3 ﬂ

ﬂ If you need a different amount of replicas, change the replicas value.

9.8.5. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift
Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format
for access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

® | ogin as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.
® To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify

Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

I apiVersion: operator.openshift.io/v1

79

OpenShift Container Platform 4.15 Networking

kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Container

® When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

I $ oc -n openshift-ingress logs deployment.apps/router-default -c logs
Example output

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

Configure Ingress access logging to a Syslog endpoint.

® To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.endpoint and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
port: 10514

NOTE

The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

80

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

® You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
port: 10514
httpLogFormat: '%ci:%cp [Y%t] %ft Y%b/%s %B %bq Y%eHM %HU %HV'

Disable Ingress access logging.

® To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

replicas: 2

logging:

access: null

Allow the Ingress Controller to modify the HAProxy log length when using a sidecar.

e Use spec.logging.access.destination.syslog.maxLength if you are using
spec.logging.access.destination.type: Syslog.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
maxLength: 4096
port: 10514

81

OpenShift Container Platform 4.15 Networking

e Use spec.logging.access.destination.container.maxLength if you are using
spec.logging.access.destination.type: Container.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Container
container:
maxLength: 8192

9.8.6. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

® The following assumes that you already created an Ingress Controller.

Procedure

e Update the Ingress Controller to increase the number of threads:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

9.8.7. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

82

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

' WARNING
A If your cloud provider is Microsoft Azure, you must have at least one public load

balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the

.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Figure 9.1. Diagram of LoadBalancer

A

Client

.

Cloud Provider

DNS

apps.foo.openshift.example.com foo.az.lb.cloudprovider.com Load balancer

!

’ Ingress ’
load balancer

www.yourappl.openshift.com www.yourapp2.openshift.com

Node 1 Node 2 Node N
Pod Pod Pod
T weRea— 10.0.128.5 10.0.128.6
Cluster

(Service yourapp1:8080, yourapp2:4200)

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress LoadBalancerService endpoint publishing strategy:

® You can load balance externally, using the cloud provider load balancer, or internally, using the
OpenShift Ingress Controller Load Balancer.

83

OpenShift Container Platform 4.15 Networking

® You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

e Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites
® |nstall the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <hame>-ingress-
controller.yaml, such as in the following example:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator
name: <name>
spec:
domain: <domain> g
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:

scope: Internal 6

Q Replace <names with a name for the IngressController object.
9 Specify the domain for the application published by the controller.

9 Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:
I $ oc create -f <name>-ingress-controller.yaml ﬂ

Q Replace <names with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

I $ oc --all-namespaces=true get ingresscontrollers

9.8.8. Configuring global access for an Ingress Controller on GCP

An Ingress Controller created on GCP with an internal load balancer generates an internal IP address for
the service. A cluster administrator can specify the global access option, which enables clients in any
region within the same VPC network and compute region as the load balancer, to reach the workloads
running on your cluster.

84

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

For more information, see the GCP documentation for global access.

Prerequisites

® You deployed an OpenShift Container Platform cluster on GCP infrastructure.
® You configured an Ingress Controller to use an internal load balancer.

® You installed the OpenShift CLI (o¢).

Procedure

1. Configure the Ingress Controller resource to allow global access.

NOTE

You can also create an Ingress Controller and specify the global access option.

a. Configure the Ingress Controller resource:

I $ oc -n openshift-ingress-operator edit ingresscontroller/default

b. Edit the YAML file:

Sample clientAccess configuration to Global

spec:
endpointPublishingStrategy:
loadBalancer:
providerParameters:
gcp:
clientAccess: Global ﬂ
type: GCP
scope: Internal
type: LoadBalancerService

Q Set gcp.clientAccess to Global.

c. Save the file to apply the changes.
2. Run the following command to verify that the service allows global access:
I $ oc -n openshift-ingress edit svc/router-default -o yaml

The output shows that global access is enabled for GCP with the annotation,
networking.gke.io/internal-load-balancer-allow-global-access.
9.8.9. Setting the Ingress Controller health check interval

A cluster administrator can set the health check interval to define how long the router waits between
two consecutive health checks. This value is applied globally as a default for all routes. The default value
is 5 seconds.

85

https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#global_access

OpenShift Container Platform 4.15 Networking

Prerequisites

® The following assumes that you already created an Ingress Controller.

Procedure

® Update the Ingress Controller to change the interval between back end health checks:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"healthChecklinterval": "8s"}}}'

NOTE

To override the healthChecklInterval for a single route, use the route annotation
router.openshift.io/haproxy.health.check.interval

L

9.8.10. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

' WARNING
A If your cloud provider is Microsoft Azure, you must have at least one public load

balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator

86

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

name: default
spec:
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:
scope: Internal
EOF

9.8.11. Configuring the route admission policy
Administrators and application developers can run applications in multiple namespaces with the same

domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

' WARNING
A Allowing claims across namespaces should only be enabled for clusters with trust

between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

® Cluster administrator privileges.

Procedure

e Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

Sample Ingress Controller configuration

spec:
routeAdmission:
namespaceOwnership: InterNamespaceAllowed

87

OpenShift Container Platform 4.15 Networking

TIP

You can alternatively apply the following YAML to configure the route admission policy:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

routeAdmission:

namespaceOwnership: InterNamespaceAllowed

9.8.12. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure
1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

I $ oc edit IngressController

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

spec:
routeAdmission:
wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

9.8.13. HTTP header configuration

OpenShift Container Platform provides different methods for working with HTTP headers. When setting
or deleting headers, you can use specific fields in the Ingress Controller or an individual route to modify
request and response headers. You can also set certain headers by using route annotations. The various
ways of configuring headers can present challenges when working together.

NOTE

You can only set or delete headers within an IngressController or Route CR, you cannot
append them. If an HTTP header is set with a value, that value must be complete and not
require appending in the future. In situations where it makes sense to append a header,
such as the X-Forwarded-For header, use the
spec.httpHeaders.forwardedHeaderPolicy field, instead of spec.httpHeaders.actions.

9.8.13.1. Order of precedence

88

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

When the same HTTP header is modified both in the Ingress Controller and in a route, HAProxy
prioritizes the actions in certain ways depending on whether it is a request or response header.

® For HTTP response headers, actions specified in the Ingress Controller are executed after the
actions specified in a route. This means that the actions specified in the Ingress Controller take
precedence.

e For HTTP request headers, actions specified in a route are executed after the actions specified
in the Ingress Controller. This means that the actions specified in the route take precedence.

For example, a cluster administrator sets the X-Frame-Options response header with the value DENY in
the Ingress Controller using the following configuration:

Example IngressController spec

apiVersion: operator.openshift.io/v1
kind: IngressController
#...
spec:
httpHeaders:
actions:
response:
- name: X-Frame-Options
action:
type: Set
set:
value: DENY

A route owner sets the same response header that the cluster administrator set in the Ingress
Controller, but with the value SAMEORIGIN using the following configuration:

Example Route spec

apiVersion: route.openshift.io/v1
kind: Route
#...
spec:
httpHeaders:
actions:
response:
- name: X-Frame-Options
action:
type: Set
set:
value: SAMEORIGIN

When both the IngressController spec and Route spec are configuring the X-Frame-Options header,
then the value set for this header at the global level in the Ingress Controller will take precedence, even
if a specific route allows frames.

This prioritzation occurs because the haproxy.config file uses the following logic, where the Ingress
Controller is considered the front end and individual routes are considered the back end. The header
value DENY applied to the front end configurations overrides the same header with the value
SAMEORIGIN that is set in the back end:

89

OpenShift Container Platform 4.15 Networking
frontend public
http-response set-header X-Frame-Options 'DENY'

frontend fe_sni
http-response set-header X-Frame-Options 'DENY'

frontend fe_no_sni
http-response set-header X-Frame-Options 'DENY'

backend be_secure:openshift-monitoring:alertmanager-main
http-response set-header X-Frame-Options 'SAMEORIGIN'

Additionally, any actions defined in either the Ingress Controller or a route override values set using
route annotations.

9.8.13.2. Special case headers

The following headers are either prevented entirely from being set or deleted, or allowed under specific
circumstances:

Table 9.2. Special case header configuration options

Header name Configurable Configurable Reason for Configurable
using using Route spec disallowment using another

IngressControll method
er spec

proxy No No The proxy HTTP No
request header
can be used to
exploit vulnerable
CGl applications
by injecting the
header value into
the
HTTP_PROXY
environment
variable. The
proxy HTTP
request header is
also non-standard
and prone to error
during
configuration.

host No Yes When the host No
HTTP request
header is set using
the
IngressControll
er CR, HAProxy
can fail when
looking up the
correct route.

90

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Header name Configurable Configurable Reason for Configurable
using using Route spec disallowment using another
IngressControll method
er spec
strict-transport- No No The strict- Yes: the
security transport- haproxy.router.
security HTTP openshift.io/hst
response headeris s_header route
already handled annotation
using route

annotations and
does not need a
separate

implementation.

cookie and set- No No The cookies that Yes:
cookie HAProxy sets are
used for session e the
tracking to map haproxy
. . .router.

client connections openshi

to particular back- ftio/dis

end servers. able_co

Allowing these okie

headers to be set route .

could interfere annotatio

with HAProxy's n

session affinity e the

and restrict haproxy

HAProxy's .router.

ownership of a openshi

cookie. ft_.lo/coo
kie_nam
e route
annotatio

n

9.8.14. Setting or deleting HTTP request and response headers in an Ingress
Controller

You can set or delete certain HTTP request and response headers for compliance purposes or other
reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for
specific routes.

For example, you might want to migrate an application running on your cluster to use mutual TLS, which
requires that your application checks for an X-Forwarded-Client-Cert request header, but the

OpenShift Container Platform default Ingress Controller provides an X-SSL-Client-Der request header.

The following procedure modifies the Ingress Controller to set the X-Forwarded-Client-Cert request
header, and delete the X-SSL-Client-Der request header.

Prerequisites

o1

OpenShift Container Platform 4.15 Networking

® You have installed the OpenShift CLI (oc).

® You have access to an OpenShift Container Platform cluster as a user with the cluster-admin
role.

Procedure

1. Edit the Ingress Controller resource:
I $ oc -n openshift-ingress-operator edit ingresscontroller/default

2. Replace the X-SSL-Client-Der HTTP request header with the X-Forwarded-Client-Cert HTTP
request header:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpHeaders:
actions:
request: g
- name: X-Forwarded-Client-Cert 6
action:
type: Set ﬂ
set:
value: "%{+Q}[ssl_c_der,base64]" 6
- name: X-SSL-Client-Der
action:
type: Delete

The list of actions you want to perform on the HTTP headers.
The type of header you want to change. In this case, a request header.

The name of the header you want to change. For a list of available headers you can set or
delete, see HTTP header configuration.

The type of action being taken on the header. This field can have the value Set or Delete.

When setting HTTP headers, you must provide a value. The value can be a string from a list
of available directives for that header, for example DENY, or it can be a dynamic value that
will be interpreted using HAProxy’s dynamic value syntax. In this case, a dynamic value is
added.

®0 009

NOTE

For setting dynamic header values for HTTP responses, allowed sample fetchers
are res.hdr and ssl_c_der. For setting dynamic header values for HTTP
requests, allowed sample fetchers are req.hdr and ssl_c_der. Both request and
response dynamic values can use the lower and base64 converters.

92

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

3. Save the file to apply the changes.

9.8.15. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure
1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

I $ oc edit IngressController

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

httpHeaders:

forwardedHeaderPolicy: Append

Example use cases
As a cluster administrator, you can:

e Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

e Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

e Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

93

OpenShift Container Platform 4.15 Networking

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

9.8.16. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners
to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary
streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.

To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a
custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is
necessary to avoid problems from connection coalescing, where the client re-uses a connection for
different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and
not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level
Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-
end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not
with insecure or edge-terminated routes.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client may
connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a
problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the
WebSocket protocol, because the Ingress Controller cannot forward WebSocket to
HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you
have an application that is intended to accept WebSocket connections, it must not allow
negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket
protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

® Toenable HTTP/2 on an Ingress Controller, enter the oc annotate command:

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true

Replace <ingresscontroller_names with the name of the Ingress Controller to annotate.
Enable HTTP/2 on the entire cluster.

® Toenable HTTP/2 for the entire cluster, enter the oc annotate command:

I $ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

94

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

TIP

You can alternatively apply the following YAML to add the annotation:

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
annotations:
ingress.operator.openshift.io/default-enable-http2: "true"

9.8.17. Configuring the PROXY protocol for an Ingress Controller

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the
HostNetwork or NodePortService endpoint publishing strategy types. The PROXY protocol enables
the load balancer to preserve the original client addresses for connections that the Ingress Controller
receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the
default configuration, the connections that the Ingress Controller receives only contain the source
address that is associated with the load balancer.

This feature is not supported in cloud deployments. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an IngressController specifies that a service load
balancer should be used, the Ingress Operator configures the load balancer service and enables the
PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to either use the PROXY protocol or to use TCP.

' WARNING
A The PROXY protocol is unsupported for the default Ingress Controller with

installer-provisioned clusters on non-cloud platforms that use a Keepalived Ingress
VIP.

Prerequisites

® You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource:
I $ oc -n openshift-ingress-operator edit ingresscontroller/default

2. Set the PROXY configuration:

95

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

OpenShift Container Platform 4.15 Networking

e |f your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

spec:
endpointPublishingStrategy:
hostNetwork:
protocol: PROXY
type: HostNetwork

e |f your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY

spec:
endpointPublishingStrategy:
nodePort:
protocol: PROXY
type: NodePortService

9.8.18. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for
OpenShift Container Platform to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites
® You deployed an OpenShift Container Platform cluster.

® You installed the oc command line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:
I $ oc edit ingresses.config/cluster -o yaml
b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

apiVersion: config.openshift.io/v1
kind: Ingress

96

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

metadata:
name: cluster

spec:
domain: apps.example.com ﬂ
appsDomain: <test.example.com> 9

ﬂ Specifies the default domain. You cannot modify the default domain after installation.
9 Optional: Domain for OpenShift Container Platform infrastructure to use for
application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route:

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

Example output:

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

hello-openshift hello_openshift-<my_project>.test.example.com

hello-openshift 8080-tcp None

9.8.19. Converting HTTP header case

HAProxy lowercases HTTP header names by default, for example, changing Host: xyz.com to host:
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments API field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

Because OpenShift Container Platform includes HAProxy 2.6, be sure to add the
necessary configuration by using spec.httpHeaders.headerNameCaseAdjustments
before upgrading.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have access to the cluster as a user with the cluster-admin role.

97

OpenShift Container Platform 4.15 Networking

Procedure

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

e Specify an HTTP header to be capitalized by entering the oc patch command.

1. Enter the oc patch command to change the HTTP host header to Host:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch="{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"|}}}'

2. Annotate the route of the application:

I $ oc annotate routes/my-application haproxy.router.openshift.io/h1-adjust-case=true

The Ingress Controller then adjusts the host request header as specified.

e Specify adjustments using the HeaderNameCaseAdjustments field by configuring the Ingress
Controller YAML file.

1. The following example Ingress Controller YAML adjusts the host header to Host for HTTP/1
requests to appropriately annotated routes:

Example Ingress Controller YAML

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpHeaders:
headerNameCaseAdjustments:
- Host

2. The following example route enables HTTP response header name case adjustments using
the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

apiVersion: route.openshift.io/v1
kind: Route
metadata:
annotations:
haproxy.router.openshift.io/h1-adjust-case: true ﬂ
name: my-application
namespace: my-application
spec:
to:
kind: Service
name: my-application

Q Set haproxy.router.openshift.io/h1-adjust-case to true.

98

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

9.8.20. Using router compression

You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME
types. You can use the mimeTypes variable to define the formats of MIME types to which compression
is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced
by "X-". To see the full notation for MIME types and subtypes, see RFC1341.

NOTE

Memory allocated for compression can affect the max connections. Additionally,
compression of large buffers can cause latency, like heavy regex or long lists of regex.

Not all MIME types benefit from compression, but HAProxy still uses resources to try to
compress if instructed to. Generally, text formats, such as html, css, and s, formats
benefit from compression, but formats that are already compressed, such as image, audio,
and video, benefit little in exchange for the time and resources spent on compression.

Procedure
1. Configure the httpCompression field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

I $ oc edit -n openshift-ingress-operator ingresscontrollers/default

b. Under spec, set the httpCompression policy field to mimeTypes and specify a list of
MIME types that should have compression applied:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpCompression:
mimeTypes:
- "text/html"
- "text/css; charset=utf-8"
- "application/json"

9.8.21. Exposing router metrics

You can expose the HAProxy router metrics by default in Prometheus format on the default stats port,
1936. The external metrics collection and aggregation systems such as Prometheus can access the
HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma
separated values (CSV) format.

Prerequisites

® You configured your firewall to access the default stats port, 1936.

Procedure

99

https://datatracker.ietf.org/doc/html/rfc1341#page-7

OpenShift Container Platform 4.15 Networking

100

1. Get the router pod name by running the following command:

I $ oc get pods -n openshift-ingress

Example output

NAME READY STATUS RESTARTS AGE
router-default-76bfffb66¢c-46qwp 1/1 Running 0 11h

. Get the router’s username and password, which the router pod stores in the

/var/lib/haproxy/conf/metrics-auth/statsUsername and /var/lib/haproxy/conf/metrics-
auth/statsPassword files:

a. Get the username by running the following command:
I $ oc rsh <router_pod_name> cat metrics-auth/statsUsername
b. Get the password by running the following command:

I $ oc rsh <router_pod_name> cat metrics-auth/statsPassword

. Get the router IP and metrics certificates by running the following command:

I $ oc describe pod <router_pod>

. Get the raw statistics in Prometheus format by running the following command:

I $ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

. Access the metrics securely by running the following command:

I $ curl -u user:password https://<router_|IP>:<stats_port>/metrics -k

. Access the default stats port, 1936, by running the following command:

I $ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics
Example 9.1. Example output

HELP haproxy_backend_connections_total Total number of connections.
TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0
HELP haproxy_exporter_server_threshold Number of servers tracked and the current

threshold value.
TYPE haproxy_exporter_server_threshold gauge

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500
HELP haproxy_frontend_bytes_in_total Current total of incoming bytes.

TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070

HELP haproxy_server_bytes_in_total Current total of incoming bytes.

TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service="
ll} 0
haproxy_server_bytes_in_total{namespace="",pod=
0
haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjgx",route="hello-
route",server="10.130.0.90:8080",service="hello-svc-1"} 0

,route="",server="fe_sni",service=""}

7. Launch the stats window by entering the following URL in a browser:

I http://<user>:<password>@-<router_|IP>:<stats_port>

8. Optional: Get the stats in CSV format by entering the following URL in a browser:

I http://<user>:<password>@<router_ip>:1936/metrics;csv

9.8.22. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or
both error pages. The HAProxy router serves a 503 error page when the application pod is not running
or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default OpenShift Container Platform HAProxy router http 503
error code response page. You can use the default content as a template for creating your own custom

page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on OpenShift
Container Platform 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

101

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http

OpenShift Container Platform 4.15 Networking

NOTE

If you use the OpenShift Container Platform default 503 error code page as a template
for your customizations, the headers in the file require an editor that can use CRLF line
endings.

Procedure

102

1. Create a config map named my-custom-error-code-pages in the openshift-config

namespace:

$ oc -n openshift-config create configmap my-custom-error-code-pages \
--from-file=error-page-503.http \
--from-file=error-page-404.http

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by

name:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

The Ingress Operator copies the my-custom-error-code-pages config map from the
openshift-config namespace to the openshift-ingress namespace. The Operator names the
config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the
openshift-ingress namespace.

. Display the copy:

I $ oc get cm default-errorpages -n openshift-ingress
Example output

NAME DATA AGE
default-errorpages 2 25s ﬂ

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router

volume where the config map key is the filename that has the custom HTTP error code
response:

® For503 custom HTTP custom error code response:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

CHAPTER 9. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

® For 404 custom HTTP custom error code response:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

Verification

Verify your custom error code HTTP response:

1. Create a test project and application:

I $ oc new-project test-ingress
I $ oc new-app django-psql-example

2. For 503 custom http error code response:

a. Stop all the pods for the application.

b. Run the following curl command or visit the route hostname in the browser:

I $ curl -vk <route_hostname>

3. For 404 custom http error code response:

a. Visit a non-existent route or an incorrect route.

b. Run the following curl command or visit the route hostname in the browser:

I $ curl -vk <route_hostname>

4. Check if the errorfile attribute is properly in the haproxy.config file:

I $ oc -n openshift-ingress rsh <router> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

9.8.23. Setting the Ingress Controller maximum connections

A cluster administrator can set the maximum number of simultaneous connections for OpenShift router
deployments. You can patch an existing Ingress Controller to increase the maximum number of
connections.

Prerequisites

® The following assumes that you already created an Ingress Controller

Procedure

e Update the Ingress Controller to change the maximum number of connections for HAProxy:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"maxConnections": 7500}}}'

103

OpenShift Container Platform 4.15 Networking

WARNING
A If you set the spec.tuningOptions.maxConnections value greater than

the current operating system limit, the HAProxy process will not start. See
the table in the "Ingress Controller configuration parameters” section for
more information about this parameter.

9.9. ADDITIONAL RESOURCES

e Configuring a custom PKI

104

CHAPTER 10. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORNM

CHAPTER 10. INGRESS SHARDING IN OPENSHIFT CONTAINER
PLATFORM

In OpenShift Container Platform, an Ingress Controller can serve all routes, or it can serve a subset of
routes. By default, the Ingress Controller serves any route created in any namespace in the cluster. You
can add additional Ingress Controllers to your cluster to optimize routing by creating shards, which are
subsets of routes based on selected characteristics. To mark a route as a member of a shard, use labels
in the route or namespace metadata field. The Ingress Controller uses selectors, also known as a
selection expression, to select a subset of routes from the entire pool of routes to serve.

Ingress sharding is useful in cases where you want to load balance incoming traffic across multiple
Ingress Controllers, when you want to isolate traffic to be routed to a specific Ingress Controller, or for a
variety of other reasons described in the next section.

By default, each route uses the default domain of the cluster. However, routes can be configured to use
the domain of the router instead. For more information, see Creating a route for Ingress Controller
Sharding.

10.1. INGRESS CONTROLLER SHARDING
You can use Ingress sharding, also known as router sharding, to distribute a set of routes across multiple
routers by adding labels to routes, namespaces, or both. The Ingress Controller uses a corresponding

set of selectors to admit only the routes that have a specified label. Each Ingress shard comprises the
routes that are filtered using a given selection expression.

As the primary mechanism for traffic to enter the cluster, the demands on the Ingress Controller can be
significant. As a cluster administrator, you can shard the routes to:

® Balance Ingress Controllers, or routers, with several routes to speed up responses to changes.
® Allocate certain routes to have different reliability guarantees than other routes.

® Allow certain Ingress Controllers to have different policies defined.

® Allow only specific routes to use additional features.

® Expose different routes on different addresses so that internal and external users can see
different routes, for example.

e Transfer traffic from one version of an application to another during a blue green deployment.

When Ingress Controllers are sharded, a given route is admitted to zero or more Ingress Controllers in
the group. A route’s status describes whether an Ingress Controller has admitted it or not. An Ingress
Controller will only admit a route if it is unique to its shard.

An Ingress Controller can use three sharding methods:

® Adding only a namespace selector to the Ingress Controller, so that all routes in a namespace
with labels that match the namespace selector are in the Ingress shard.

® Adding only a route selector to the Ingress Controller, so that all routes with labels that match
the route selector are in the Ingress shard.

® Adding both a namespace selector and route selector to the Ingress Controller, so that routes

with labels that match the route selector in a namespace with labels that match the namespace
selector are in the Ingress shard.

105

OpenShift Container Platform 4.15 Networking

With sharding, you can distribute subsets of routes over multiple Ingress Controllers. These subsets can
be non-overlapping, also called traditional sharding, or overlapping, otherwise known as overlapped
sharding.

10.1.1. Traditional sharding example

An Ingress Controller finops-router is configured with the label selector
spec.namespaceSelector.matchLabels.name set to finance and ops:

Example YAML definition for finops-router

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: finops-router
namespace: openshift-ingress-operator
spec:
namespaceSelector:
matchLabels:
name:
- finance
- Ops

A second Ingress Controller dev-router is configured with the label selector
spec.namespaceSelector.matchLabels.name set to dev:

Example YAML definition for dev-router

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: dev-router

namespace: openshift-ingress-operator
spec:

namespaceSelector:

matchLabels:
name: dev

If all application routes are in separate namespaces, each labeled with name:finance, name:ops, and
name:dev respectively, this configuration effectively distributes your routes between the two Ingress
Controllers. OpenShift Container Platform routes for console, authentication, and other purposes
should not be handled.

In the above scenario, sharding becomes a special case of partitioning, with no overlapping subsets.
Routes are divided between router shards.

106

CHAPTER 10. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORNM

' WARNING
A The default Ingress Controller continues to serve all routes unless the

namespaceSelector or routeSelector fields contain routes that are meant for
exclusion. See this Red Hat Knowledgebase solution and the section "Sharding the
default Ingress Controller” for more information on how to exclude routes from the
default Ingress Controller.

10.1.2. Overlapped sharding example

In addition to finops-router and dev-router in the example above, you also have devops-router, which
is configured with the label selector spec.namespaceSelector.matchLabels.name set to dev and ops:

Example YAML definition for devops-router

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: devops-router
namespace: openshift-ingress-operator
spec:
namespaceSelector:
matchLabels:
name:
- dev
- ops

The routes in the namespaces labeled name:dev and name:ops are now serviced by two different
Ingress Controllers. With this configuration, you have overlapping subsets of routes.

With overlapping subsets of routes you can create more complex routing rules. For example, you can
divert higher priority traffic to the dedicated finops-router while sending lower priority traffic to
devops-router.

10.1.3. Sharding the default Ingress Controller

After creating a new Ingress shard, there might be routes that are admitted to your new Ingress shard
that are also admitted by the default Ingress Controller. This is because the default Ingress Controller
has no selectors and admits all routes by default.

You can restrict an Ingress Controller from servicing routes with specific labels using either namespace
selectors or route selectors. The following procedure restricts the default Ingress Controller from
servicing your newly sharded finance, ops, and dev, routes using a namespace selector. This adds
further isolation to Ingress shards.

IMPORTANT

You must keep all of OpenShift Container Platform’s administration routes on the same
Ingress Controller. Therefore, avoid adding additional selectors to the default Ingress
Controller that exclude these essential routes.

107

https://access.redhat.com/solutions/5097511

OpenShift Container Platform 4.15 Networking

Prerequisites

® You installed the OpenShift CLI (o¢).

® You are logged in as a project administrator.

Procedure

1. Modify the default Ingress Controller by running the following command:

I $ oc edit ingresscontroller -n openshift-ingress-operator default

2. Edit the Ingress Controller to contain a namespaceSelector that excludes the routes with any
of the finance, ops, and dev labels:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
namespaceSelector:
matchExpressions:
- key: type
operator: Notln
values:
- finance
- ops
- dev

The default Ingress Controller will no longer serve the namespaces labeled name:finance, name:ops,
and hame:dev.

10.1.4. Ingress sharding and DNS

The cluster administrator is responsible for making a separate DNS entry for each router in a project. A
router will not forward unknown routes to another router.

Consider the following example:
® Router A lives on host 192.168.0.5 and has routes with *.foo.com.
® Router B lives on host 192.168.1.9 and has routes with *.example.com.

Separate DNS entries must resolve *.foo.com to the node hosting Router A and *.example.com to the
node hosting Router B:

e *foo.com A IN 192.168.0.5

e *.example.com A IN 192.168.1.9

10.1.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

108

Figure 10.1. Ingress sharding using route labels

CHAPTER 10. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORNM

Ingress Controller 1

routeSelector: label 1

Interface

Ingress Controller 2

routeSelector: label 2

routeSelector: label 3

!

!

Ingress Controller 3

routeSelector: label 3

!

Namespace 1 Namespace 2 Namespace 3
Route 1 Route 1 Route 1
Label1 Label 2 Label 3
Route 2 Label 3 Route 2
Label1 Label 3

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

cat router-internal.yaml
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: sharded
namespace: openshift-ingress-operator
spec:
domain: <apps-sharded.basedomain.example.net> ﬂ
nodePlacement:
nodeSelector:
matchLabels:
node-role.kubernetes.io/worker: ™"
routeSelector:
matchLabels:
type: sharded

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

109

OpenShift Container Platform 4.15 Networking

2. Apply the Ingress Controller router-internal.yaml file:
I # oc apply -f router-internal.yaml|

The Ingress Controller selects routes in any namespace that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yamil:

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

10.1.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Figure 10.2. Ingress sharding using namespace labels

Interface

Ingress Controller 1 Ingress Controller 2 Ingress Controller 3

namespaceSelector: label 2

namespaceSelector: label 1

.

namespaceSelector: label 3

!

namespaceSelector: label 3

-

Namespace 1 Namespace 2 Namespace 3
Route 1 Route 1 Route 1
Route 2 Label 2 Route 2
Label 1 Label 3 Label 3

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress

Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to

one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

I # cat router-internal.yaml

Example output

110

CHAPTER 10. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORNM

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: sharded
namespace: openshift-ingress-operator
spec:
domain: <apps-sharded.basedomain.example.net> ﬂ
nodePlacement:
nodeSelector:
matchLabels:
node-role.kubernetes.io/worker: "
namespaceSelector:
matchLabels:
type: sharded

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:
I # oc apply -f router-internal.yaml|

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yamil:

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

10.2. CREATING A ROUTE FOR INGRESS CONTROLLER SHARDING

A route allows you to host your application at a URL. In this case, the hostname is not set and the route
uses a subdomain instead. When you specify a subdomain, you automatically use the domain of the
Ingress Controller that exposes the route. For situations where a route is exposed by multiple Ingress
Controllers, the route is hosted at multiple URLs.

The following procedure describes how to create a route for Ingress Controller sharding, using the hello-
openshift application as an example.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress

Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Prerequisites

® You installed the OpenShift CLI (o¢).
® You are logged in as a project administrator.

® You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

m

OpenShift Container Platform 4.15 Networking

® You have configured the Ingress Controller for sharding.

Procedure

1. Create a project called hello-openshift by running the following command:
I $ oc new-project hello-openshift

2. Create a pod in the project by running the following command:

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

3. Create a service called hello-openshift by running the following command:
I $ oc expose pod/hello-openshift

4. Create a route definition called hello-openshift-route.yaml:

YAML definition of the created route for sharding:

apiVersion: route.openshift.io/v1
kind: Route
metadata:
labels:
type: sharded ﬂ
name: hello-openshift-edge
namespace: hello-openshift

spec:
subdomain: hello-openshift g
tls:
termination: edge
to:
kind: Service

name: hello-openshift

ﬂ Both the label key and its corresponding label value must match the ones specified in the
Ingress Controller. In this example, the Ingress Controller has the label key and value type:
sharded.

9 The route will be exposed using the value of the subdomain field. When you specify the
subdomain field, you must leave the hostname unset. If you specify both the host and
subdomain fields, then the route will use the value of the host field, and ignore the
subdomain field.

5. Use hello-openshift-route.yaml to create a route to the hello-openshift application by running
the following command:

I $ oc -n hello-openshift create -f hello-openshift-route.yaml

Verification

12

CHAPTER 10. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORNM

® Get the status of the route with the following command:
I $ oc -n hello-openshift get routes/hello-openshift-edge -o yaml
The resulting Route resource should look similar to the following:

Example output

apiVersion: route.openshift.io/v1

kind: Route
metadata:
labels:
type: sharded
name: hello-openshift-edge
namespace: hello-openshift
spec:
subdomain: hello-openshift
tls:
termination: edge
to:
kind: Service
name: hello-openshift
status:
ingress:

- host: hello-openshift.<apps-sharded.basedomain.example.net> ﬂ
routerCanonicalHostname: router-sharded.<apps-sharded.basedomain.example.net> 9

routerName: sharded 6

ﬂ The hostname the Ingress Controller, or router, uses to expose the route. The value of the

host field is automatically determined by the Ingress Controller, and uses its domain. In this

example, the domain of the Ingress Controller is <apps-
sharded.basedomain.example.net>.

9 The hostname of the Ingress Controller.

9 The name of the Ingress Controller. In this example, the Ingress Controller has the name

sharded.

Additional Resources

® Baseline Ingress Controller (router) performance

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#baseline-router-performance_routing-optimization

OpenShift Container Platform 4.15 Networking

CHAPTER 1. INGRESS NODE FIREWALL OPERATORIN
OPENSHIFT CONTAINER PLATFORM

The Ingress Node Firewall Operator allows administrators to manage firewall configurations at the node
level.

11.1. INGRESS NODE FIREWALL OPERATOR

The Ingress Node Firewall Operator provides ingress firewall rules at a node level by deploying the
daemon set to nodes you specify and manage in the firewall configurations. To deploy the daemon set,
you create an IngressNodeFirewallConfig custom resource (CR). The Operator applies the
IngressNodeFirewallConfig CR to create ingress node firewall daemon set daemon, which run on all
nodes that match the nodeSelector.

You configure rules of the IngressNodeFirewall CR and apply them to clusters using the
nodeSelector and setting values to "true".

IMPORTANT
The Ingress Node Firewall Operator supports only stateless firewall rules.

Network interface controllers (NICs) that do not support native XDP drivers will run at a
lower performance.

For OpenShift Container Platform 4.14 or later, you must run Ingress Node Firewall
Operator on RHEL 9.0 or later.

Ingress Node Firewall Operator is not supported on Amazon Web Services (AWS) with
the default OpenShift installation or on Red Hat OpenShift Service on AWS (ROSA). For
more information on Red Hat OpenShift Service on AWS support and ingress, see
Ingress Operator in Red Hat OpenShift Service on AWS..

11.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR

As a cluster administrator, you can install the Ingress Node Firewall Operator by using the OpenShift
Container Platform CLI or the web console.

11.2.1. Installing the Ingress Node Firewall Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

® You have installed the OpenShift CLI (oc¢).

® You have an account with administrator privileges.

Procedure

1. To create the openshift-ingress-node-firewall namespace, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1

14

https://docs.openshift.com/rosa/networking/ingress-operator.html

CHAPTER 11. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORV

kind: Namespace
metadata:
labels:
pod-security.kubernetes.io/enforce: privileged
pod-security.kubernetes.io/enforce-version: v1.24
name: openshift-ingress-node-firewall
EOF

2. To create an OperatorGroup CR, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: ingress-node-firewall-operators
namespace: openshift-ingress-node-firewall
EOF

3. Subscribe to the Ingress Node Firewall Operator.

a. To create a Subscription CR for the Ingress Node Firewall Operator, enter the following
command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: ingress-node-firewall-sub
namespace: openshift-ingress-node-firewall
spec:
name: ingress-node-firewall
channel: stable
source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

4. To verify that the Operator is installed, enter the following command:
I $ oc get ip -n openshift-ingress-node-firewall
Example output

NAME CSV APPROVAL APPROVED
install-5cvnz ingress-node-firewall.4.15.0-202211122336 Automatic true

5. To verify the version of the Operator, enter the following command:

I $ oc get csv -n openshift-ingress-node-firewall
Example output

NAME DISPLAY VERSION REPLACES
PHASE

115

OpenShift Container Platform 4.15 Networking

ingress-node-firewall.4.15.0-202211122336 Ingress Node Firewall Operator 4.15.0-
202211122336 ingress-node-firewall.4.15.0-202211102047 Succeeded

11.2.2. Installing the Ingress Node Firewall Operator using the web console

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have an account with administrator privileges.

Procedure
1. Install the Ingress Node Firewall Operator:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.

b. Select Ingress Node Firewall Operatorfrom the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.
2. Verify that the Ingress Node Firewall Operator is installed successfully:
a. Navigate to the Operators — Installed Operators page.

b. Ensure that Ingress Node Firewall Operatoris listed in the openshift-ingress-node-
firewall project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not have a Status of InstallSucceeded, troubleshoot using the
following steps:

® |nspect the Operator Subscriptions and Install Plans tabs for any failures or errors
under Status.

e Navigate to the Workloads = Pods page and check the logs for pods in the openshift-
ingress-node-firewall project.

® Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

$ oc annotate ns/openshift-ingress-node-firewall
workload.openshift.io/allowed=management

16

CHAPTER 11. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORV

NOTE
For single-node OpenShift clusters, the openshift-ingress-node-

firewall namespace requires the
workload.openshift.io/allowed=management annotation.

ol

11.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR

Prerequisite

® The Ingress Node Firewall Operator is installed.

Procedure

To deploy the Ingress Node Firewall Operator, create a IngressNodeFirewallConfig custom resource
that will deploy the Operator’s daemon set. You can deploy one or multiple IngressNodeFirewall CRDs
to nodes by applying firewall rules.

1. Create the IngressNodeFirewallConfig inside the openshift-ingress-node-firewall
namespace named ingressnodefirewallconfig.

2. Run the following command to deploy Ingress Node Firewall Operator rules:

I $ oc apply -f rule.yaml

11.3.1. Ingress Node Firewall configuration object

The fields for the Ingress Node Firewall configuration object are described in the following table:

Table 11.1. Ingress Node Firewall Configuration object

Field Type Description

metadata.name string The name of the CR object. The name of the firewall rules object
must be ingressnodefirewallconfig.

metadata.name string Namespace for the Ingress Firewall Operator CR object. The
space IngressNodeFirewallConfig CR must be created inside the
openshift-ingress-node-firewall namespace.

17

OpenShift Container Platform 4.15 Networking

Field Type Description
spec.nodeSelec string A node selection constraint used to target nodes through
tor specified node labels. For example:

spec:

nodeSelector:
node-role.kubernetes.io/worker: "

NOTE

One label used in nodeSelector must match a
label on the nodes in order for the daemon set
to start. For example, if the node labels hode-
role.kubernetes.io/worker and node-
type.kubernetes.io/vm are applied to a node,
then at least one label must be set using
nodeSelector for the daemon set to start.

NOTE

The Operator consumes the CR and creates an ingress node firewall daemon set on all
the nodes that match the nodeSelector.

Ingress Node Firewall Operator example configuration
A complete Ingress Node Firewall Configuration is specified in the following example:

Example Ingress Node Firewall Configuration object

apiVersion: ingressnodefirewall.openshift.io/vialphal
kind: IngressNodeFirewallConfig
metadata:

name: ingressnodefirewallconfig

namespace: openshift-ingress-node-firewall
spec:

nodeSelector:

node-role.kubernetes.io/worker: "

NOTE

The Operator consumes the CR and creates an ingress node firewall daemon set on all
the nodes that match the nodeSelector.

11.3.2. Ingress Node Firewall rules object

18

CHAPTER 11. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORV

The fields for the Ingress Node Firewall rules object are described in the following table:

Table 11.2. Ingress Node Firewall rules object

Field Type Description
metadata.name string The name of the CR object.
interfaces array The fields for this object specify the interfaces to apply the

firewall rules to. For example, - en0 and - en1.

nodeSelector array You can use hodeSelector to select the nodes to apply the
firewall rules to. Set the value of your named hodeselector
labels to true to apply the rule.

ingress object ingress allows you to configure the rules that allow outside
access to the services on your cluster.

Ingress object configuration
The values for the ingress object are defined in the following table:

Table 11.3. ingress object

Field Type Description

sourceCIDRs array Allows you to set the CIDR block. You can configure
multiple CIDRs from different address families.

NOTE

Different CIDRs allow you to use the
same order rule. In the case that
there are multiple
IngressNodeFirewall objects for
the same nodes and interfaces with
overlapping CIDRs, the order field
will specify which rule is applied first.
Rules are applied in ascending order.

19

OpenShift Container Platform 4.15 Networking

Field Type

rules array

Ingress Node Firewall rules object example

Description

Ingress firewall rules.order objects are ordered
starting at 1 for eachsource.CIDR with up to 100
rules per CIDR. Lower order rules are executed first.

rules.protocolConfig.protocol supports the
following protocols: TCP, UDP, SCTP, ICMP and
ICMPV6. ICMP and ICMPV6 rules can match against
ICMP and ICMPV6 types or codes. TCP, UDP, and
SCTP rules can match against a single destination
port or a range of ports using <start : end-1>
format.

Set rules.action to allow to apply the rule ordeny
to disallow the rule.

NOTE

Ingress firewall rules are verified
using a verification webhook that
blocks any invalid configuration. The
verification webhook prevents you
from blocking any critical cluster
services such as the APl server or
SSH.

A complete Ingress Node Firewall configuration is specified in the following example:

Example Ingress Node Firewall configuration

apiVersion: ingressnodefirewall.openshift.io/vialphal

kind: IngressNodeFirewall
metadata:

name: ingressnodefirewall
spec:

interfaces:

- eth0

nodeSelector:

matchLabels:

<ingress_firewall_label_names>: <label_value> 0

ingress:
- sourceCIDRs:
-172.16.0.0/12
rules:
- order: 10
protocolConfig:
protocol: ICMP
icmp:
icmpType: 8 #ICMP Echo request
action: Deny
- order: 20
protocolConfig:
protocol: TCP

120

CHAPTER 11. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORV

tep:
ports: "8000-9000"
action: Deny

- sourceCIDRs:
- fc00:f853:ccd:e793::0/64
rules:
- order: 10
protocolConfig:
protocol: ICMPv6
icmpve:
icmpType: 128 #/ICMPV6 Echo request
action: Deny

ﬂ A<label_name> and a <label_value> must exist on the node and must match the nodeselector label
and value applied to the nodes you want the ingressfirewallconfig CR to run on. The <label_value>
can be true or false. By using nodeSelector labels, you can target separate groups of nodes to
apply different rules to using the ingressfirewallconfig CR.

Zero trust Ingress Node Firewall rules object example

Zero trust Ingress Node Firewall rules can provide additional security to multi-interface clusters. For
example, you can use zero trust Ingress Node Firewall rules to drop all traffic on a specific interface
except for SSH.

A complete configuration of a zero trust Ingress Node Firewall rule set is specified in the following
example:

IMPORTANT

Users need to add all ports their application will use to their allowlist in the following case
to ensure proper functionality.

Example zero trust Ingress Node Firewall rules

apiVersion: ingressnodefirewall.openshift.io/vialphal
kind: IngressNodeFirewall
metadata:
name: ingressnodefirewall-zero-trust
spec:
interfaces:
- eth1 ﬂ
nodeSelector:
matchLabels:
<ingress_firewall_label_name>: <label_value> 9
ingress:
- sourceCIDRs:
-0.0.0.00 €
rules:
- order: 10
protocolConfig:
protocol: TCP
tep:
ports: 22

121

OpenShift Container Platform 4.15 Networking

action: Allow
- order: 20

action: Deny ﬂ

Network-interface cluster

The <label_name> and <label_value> needs to match the nodeSelector label and value applied to
the specific nodes with which you wish to apply the ingressfirewallconfig CR.

0.0.0.0/0 set to match any CIDR

o0® 09

action set to Deny

11.4. VIEWING INGRESS NODE FIREWALL OPERATOR RULES

Procedure

1. Run the following command to view all current rules :
I $ oc get ingressnodefirewall

2. Choose one of the returned <resource> names and run the following command to view the
rules or configs:

I $ oc get <resource> <name> -0 yaml|

11.5. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR

® Run the following command to list installed Ingress Node Firewall custom resource definitions
(CRD):

I $ oc get crds | grep ingressnodefirewall
Example output

NAME READY UP-TO-DATE AVAILABLE AGE
ingressnodefirewallconfigs.ingressnodefirewall.openshift.io 2022-08-25T10:03:01Z
ingressnodefirewallnodestates.ingressnodefirewall.openshift.io 2022-08-25T10:03:00Z
ingressnodefirewalls.ingressnodefirewall.openshift.io 2022-08-25T10:03:00Z

® Run the following command to view the state of the Ingress Node Firewall Operator:
I $ oc get pods -n openshift-ingress-node-firewall
Example output

NAME READY STATUS RESTARTS AGE
ingress-node-firewall-controller-manager 2/2 Running 0 5d21h
ingress-node-firewall-daemon-pgx56 3/3 Running 0 5d21h

122

CHAPTER 11. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORV

The following fields provide information about the status of the Operator: READY, STATUS,
AGE, and RESTARTS. The STATUS field is Running when the Ingress Node Firewall Operator
is deploying a daemon set to the assigned nodes.

Run the following command to collect all ingress firewall node pods' logs:
I $ oc adm must-gather — gather_ingress_node_firewall

The logs are available in the sos node’s report containing eBPF bpftool outputs at
/sos_commands/ebpf. These reports include lookup tables used or updated as the ingress
firewall XDP handles packet processing, updates statistics, and emits events.

123

OpenShift Container Platform 4.15 Networking

CHAPTER 12. CONFIGURING AN INGRESS CONTROLLER FOR
MANUAL DNS MANAGEMENT

As a cluster administrator, when you create an Ingress Controller, the Operator manages the DNS
records automatically. This has some limitations when the required DNS zone is different from the
cluster DNS zone or when the DNS zone is hosted outside the cloud provider.

As a cluster administrator, you can configure an Ingress Controller to stop automatic DNS management
and start manual DNS management. Set dnsManagementPolicy to specify when it should be
automatically or manually managed.

When you change an Ingress Controller from Managed to Unmanaged DNS management policy, the
Operator does not clean up the previous wildcard DNS record provisioned on the cloud. When you
change an Ingress Controller from Unmanaged to Managed DNS management policy, the Operator
attempts to create the DNS record on the cloud provider if it does not exist or updates the DNS record
if it already exists.

IMPORTANT

When you set dnsManagementPolicy to unmanaged, you have to manually manage the
lifecycle of the wildcard DNS record on the cloud provider.

12.1. MANAGED DNS MANAGEMENT POLICY

The Managed DNS management policy for Ingress Controllers ensures that the lifecycle of the wildcard
DNS record on the cloud provider is automatically managed by the Operator.

12.2. UNMANAGED DNS MANAGEMENT POLICY

The Unmanaged DNS management policy for Ingress Controllers ensures that the lifecycle of the
wildcard DNS record on the cloud provider is not automatically managed, instead it becomes the
responsibility of the cluster administrator.

SR NOTE

_ : On the AWS cloud platform, if the domain on the Ingress Controller does not match with
x ’ dnsConfig.Spec.BaseDomain then the DNS management policy is automatically set to
m Unmanaged.

12.3. CREATING A CUSTOM INGRESS CONTROLLER WITH THE
UNMANAGED DNS MANAGEMENT POLICY

As a cluster administrator, you can create a new custom Ingress Controller with the Unmanaged DNS
management policy.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.
Procedure

124

CHAPTER 12. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS MANAGEMENT

1. Create a custom resource (CR) file named sample-ingress.yaml containing the following:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator
name: <name>
spec:
domain: <domain> 9
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:
scope: External 6
dnsManagementPolicy: Unmanaged ﬂ

Specify the <hame> with a name for the IngressController object.

Specify the domain based on the DNS record that was created as a prerequisite.

Specify the scope as External to expose the load balancer externally.
dnsManagementPolicy indicates if the Ingress Controller is managing the lifecycle of the

wildcard DNS record associated with the load balancer. The valid values are Managed and
Unmanaged. The default value is Managed.

0009

2. Save the file to apply the changes.

I oc apply -f <name>.yaml| ﬂ

12.4. MODIFYING AN EXISTING INGRESS CONTROLLER

As a cluster administrator, you can modify an existing Ingress Controller to manually manage the DNS
record lifecycle.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.
Procedure
1. Modify the chosen IngressController to set dnsManagementPolicy:

SCOPE=$(oc -n openshift-ingress-operator get ingresscontroller <name> -o=jsonpath="
{.status.endpointPublishingStrategy.loadBalancer.scope}")

oc -n openshift-ingress-operator patch ingresscontrollers/<name> --type=merge --
patch="{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"dnsManagementPolicy":"Unmanaged", "scope":"${SCOPE}"}}}}'

2. Optional: You can delete the associated DNS record in the cloud provider.

125

OpenShift Container Platform 4.15 Networking

12.5. ADDITIONAL RESOURCES

® Ingress Controller configuration parameters

126

CHAPTER 13. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

CHAPTER 13. CONFIGURING THE INGRESS CONTROLLER
ENDPOINT PUBLISHING STRATEGY

13.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

NodePortService endpoint publishing strategy

The NodePortService endpoint publishing strategy publishes the Ingress Controller using a Kubernetes
NodePort service.

In this configuration, the Ingress Controller deployment uses container networking. A NodePortService
is created to publish the deployment. The specific node ports are dynamically allocated by OpenShift
Container Platform; however, to support static port allocations, your changes to the node port field of
the managed NodePortService are preserved.

Figure 13.1. Diagram of NodePortService

A

Client
Connect
10.0.128.4
10.0.128.5
10.0.128.6

IngressController

www.yourapp.openshift.com

!

=]

NodePort
41000

l

Node 1 Node 2 Node N

Pod Pod Pod

e 10.0.128.5 10.0.128.6

OpenShift Cluster

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress NodePort endpoint publishing strategy:

® All the available nodes in the cluster have their own, externally accessible IP addresses. The
service running in the cluster is bound to the unique NodePort for all the nodes.

® When the client connects to a node that is down, for example, by connecting the 10.0.128.4 |P

127

OpenShift Container Platform 4.15 Networking

address in the graphic, the node port directly connects the client to an available node that is
running the service. In this scenario, no load balancing is required. As the image shows, the
10.0.128.4 address is down and another IP address must be used instead.

NOTE

The Ingress Operator ignores any updates to .spec.ports[].nodePort fields of the
service.

By default, ports are allocated automatically and you can access the port allocations for
integrations. However, sometimes static port allocations are necessary to integrate with
existing infrastructure which may not be easily reconfigured in response to dynamic ports.
To achieve integrations with static node ports, you can update the managed service
resource directly.

For more information, see the Kubernetes Services documentation on NodePort.
HostNetwork endpoint publishing strategy

The HostNetwork endpoint publishing strategy publishes the Ingress Controller on node ports where
the Ingress Controller is deployed.

An Ingress Controller with the HostNetwork endpoint publishing strategy can have only one pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another pod on the same node is using those ports.

13.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External. Cluster administrators can change an
External scoped Ingress Controller to Internal.

Prerequisites

® You installed the oc CLI.
Procedure
® To change an External scoped Ingress Controller to Internal, enter the following command:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch="{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"Internal"}}}}'

® To check the status of the Ingress Controller, enter the following command:
I $ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

o The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

I $ oc -n openshift-ingress delete services/router-default

128

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

CHAPTER 13. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
If you delete the service, the Ingress Operator recreates it as Internal.

13.1.2. Configuring the Ingress Controller endpoint publishing scope to External

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External.

The Ingress Controller's scope can be configured to be Internal during installation or after, and cluster
administrators can change an Internal Ingress Controller to External.

IMPORTANT
On some platforms, it is necessary to delete and recreate the service.

Changing the scope can cause disruption to Ingress traffic, potentially for several
minutes. This applies to platforms where it is necessary to delete and recreate the
service, because the procedure can cause OpenShift Container Platform to deprovision
the existing service load balancer, provision a new one, and update DNS.

Prerequisites

® You installed the oc CLI.

Procedure

® To change an Internal scoped Ingress Controller to External, enter the following command:

$ oc -n openshift-ingress-operator patch ingresscontrollers/private --type=merge --
patch="{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"External"}}}}'

® To check the status of the Ingress Controller, enter the following command:
I $ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

o The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

I $ oc -n openshift-ingress delete services/router-default

If you delete the service, the Ingress Operator recreates it as External.

13.2. ADDITIONAL RESOURCES

® For more information, see Ingress Controller configuration parameters.

129

OpenShift Container Platform 4.15 Networking

CHAPTER 14. VERIFYING CONNECTIVITY TO AN ENDPOINT

The Cluster Network Operator (CNO) runs a controller, the connectivity check controller, that performs
a connection health check between resources within your cluster. By reviewing the results of the health
checks, you can diagnose connection problems or eliminate network connectivity as the cause of an
issue that you are investigating.

14.1. CONNECTION HEALTH CHECKS PERFORMED

To verify that cluster resources are reachable, a TCP connection is made to each of the following cluster
APl services:

® Kubernetes APl server service

® Kubernetes APl server endpoints
® OpenShift APl server service

® OpenShift APl server endpoints
® | oad balancers

To verify that services and service endpoints are reachable on every node in the cluster, a TCP
connection is made to each of the following targets:

® Health check target service

® Health check target endpoints

14.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS

The connectivity check controller orchestrates connection verification checks in your cluster. The results
for the connection tests are stored in PodNetworkConnectivity objects in the openshift-network-
diagnostics namespace. Connection tests are performed every minute in parallel.

The Cluster Network Operator (CNO) deploys several resources to the cluster to send and receive
connectivity health checks:

Health check source

This program deploys in a single pod replica set managed by a Deployment object. The program
consumes PodNetworkConnectivity objects and connects to the spec.targetEndpoint specified in
each object.

Health check target

A pod deployed as part of a daemon set on every node in the cluster. The pod listens for inbound
health checks. The presence of this pod on every node allows for the testing of connectivity to each
node.

14.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

The PodNetworkConnectivityCheck object fields are described in the following tables.

Table 14.1. PodNetworkConnectivityCheck object fields

130

CHAPTER 14. VERIFYING CONNECTIVITY TO AN ENDPOINT

Field Type Description

metadata.name string The name of the object in the following format:
<source>-to-<target>. The destination described
by <target> includes one of following strings:

e load-balancer-api-external

load-balancer-api-internal

e kubernetes-apiserver-endpoint

e kubernetes-apiserver-service-cluster
e network-check-target

e openshift-apiserver-endpoint

e openshift-apiserver-service-cluster

metadata.namespace string The namespace that the object is associated with.
This value is always openshift-network-
diagnostics.

spec.sourcePod string The name of the pod where the connection check

originates, such as hetwork-check-source-
596b4c6566-rgh92.

spec.targetEndpoint string The target of the connection check, such as
api.devcluster.example.com:6443.

spec.tisClientCert object Configuration for the TLS certificate to use.

spec.tisClientCert.name string The name of the TLS certificate used, if any. The
default value is an empty string.

status object An object representing the condition of the
connection test and logs of recent connection
successes and failures.

status.conditions array The latest status of the connection check and any
previous statuses.

status.failures array Connection test logs from unsuccessful attempts.

status.outages array Connect test logs covering the time periods of any
outages.

status.successes array Connection test logs from successful attempts.

The following table describes the fields for objects in the status.conditions array:

131

OpenShift Container Platform 4.15 Networking

Table 14.2. status.conditions

Field Type Description

lastTransitionTime string The time that the condition of the connection
transitioned from one status to another.

message string The details about last transition in a human readable
format.

reason string The last status of the transition in a machine readable
format.

status string The status of the condition.

type string The type of the condition.

The following table describes the fields for objects in the status.conditions array:

Table 14.3. status.outages

Field Type Description

end string The timestamp from when the connection failure is
resolved.

endLogs array Connection log entries, including the log entry

related to the successful end of the outage.

message string A summary of outage details in a human readable
format.
start string The timestamp from when the connection failure is

first detected.

startLogs array Connection log entries, including the original failure.

Connection log fields
The fields for a connection log entry are described in the following table. The object is used in the
following fields:

o status.failures[]

e status.successes|]

e status.outagesl].startLogs|]

e status.outages[].endLogs[]

Table 14.4. Connection log object

132

Field

latency

message

reason

success

time

14.4. VE

CHAPTER 14. VERIFYING CONNECTIVITY TO AN ENDPOINT

Type Description

string Records the duration of the action.

string Provides the status in a human readable format.
string Provides the reason for status in a machine readable

format. The value is one of TCPConnect,
TCPConnectError, DNSResolve, DNSError.

boolean Indicates if the log entry is a success or failure.

string The start time of connection check.

RIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

As a cluster administrator, you can verify the connectivity of an endpoint, such as an APl server, load
balancer, service, or pod.

Prerequisites

e Install the OpenShift CLI (oc).

® Access to the cluster as a user with the cluster-admin role.

Procedure

1. To

list the current PodNetworkConnectivityCheck objects, enter the following command:

$ oc get podnetworkconnectivitycheck -n openshift-network-diagnostics

Example output

NAME AGE
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-0 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-1 73m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-2 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
service-cluster 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-default-
service-cluster 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
external 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
internal 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-

133

OpenShift Container Platform 4.15 Networking

134

In-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-master-2 75m

network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh ~ 74m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-worker-c-n8mbf ~ 74m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-worker-d-4hnrz~ 74m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-
service-cluster 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-0 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-1 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-2 74m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
service-cluster 75m

2. View the connection test logs:

a. From the output of the previous command, identify the endpoint that you want to review
the connectivity logs for.

b. To view the object, enter the following command:

$ oc get podnetworkconnectivitycheck <name> \
-n openshift-network-diagnostics -o yaml

where <names specifies the name of the PodNetworkConnectivityCheck object.

Example output

apiVersion: controlplane.operator.openshift.io/vialphai
kind: PodNetworkConnectivityCheck
metadata:
name: network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-
apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0
namespace: openshift-network-diagnostics

spec:
sourcePod: network-check-source-7¢88f6d9f-hmg2f
targetEndpoint: 10.0.0.4:6443
tisClientCert:
name: "
status:
conditions:
- lastTransitionTime: "2021-01-13T20:11:34Z"
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: tcp
connection to 10.0.0.4:6443 succeeded'
reason: TCPConnectSuccess
status: "True"
type: Reachable
failures:
- latency: 2.241775ms

CHAPTER 14. VERIFYING CONNECTIVITY TO AN ENDPOINT

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: failed
to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:10:34Z2"
- latency: 2.582129ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: failed
to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T720:09:34Z"
- latency: 3.483578ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: failed
to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T720:08:34Z2"
outages:
- end: "2021-01-13T20:11:34Z2"
endLogs:
- latency: 2.032018ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
tcp connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T20:11:34Z"
- latency: 2.241775ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
connect: connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:10:34Z2"
- latency: 2.582129ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
connect: connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:09:34Z2"
- latency: 3.483578ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
connect: connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:08:34Z2"
message: Connectivity restored after 2m59.9997891865s
start: "2021-01-13T20:08:342"
startLogs:
- latency: 3.483578ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:

135

OpenShift Container Platform 4.15 Networking

136

connect: connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:08:342"
successes:
- latency: 2.845865ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:14:342"
latency: 2.926345ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:13:342"
latency: 2.895796ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:12:342"
latency: 2.696844ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:11:342"
latency: 1.502064ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:10:342"
latency: 1.388857ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:09:342"
latency: 1.906383ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T721:08:342"
latency: 2.089073ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:07:34Z2"
- latency: 2.156994ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'

tcp

tcp

tcp

tcp

tcp

tcp

tcp

tcp

tcp

CHAPTER 14. VERIFYING CONNECTIVITY TO AN ENDPOINT

reason: TCPConnect
success: true
time: "2021-01-13T21:06:34Z"
- latency: 1.777043ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: tcp
connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:05:34Z"

137

OpenShift Container Platform 4.15 Networking

CHAPTER 15. CHANGING THE MTU FOR THE CLUSTER
NETWORK

As a cluster administrator, you can change the MTU for the cluster network after cluster installation.
This change is disruptive as cluster nodes must be rebooted to finalize the MTU change. You can
change the MTU only for clusters using the OVN-Kubernetes or OpenShift SDN network plugins.

15.1. ABOUT THE CLUSTER MTU

During installation the maximum transmission unit (MTU) for the cluster network is detected
automatically based on the MTU of the primary network interface of nodes in the cluster. You do not
usually need to override the detected MTU.

You might want to change the MTU of the cluster network for several reasons:
® The MTU detected during cluster installation is not correct for your infrastructure.

® Your cluster infrastructure now requires a different MTU, such as from the addition of nodes
that need a different MTU for optimal performance.

Only the OVN-Kubernetes cluster network plugin supports changing the MTU value.

15.1.1. Service interruption considerations

When you initiate an MTU change on your cluster the following effects might impact service availability:

® Atleast two rolling reboots are required to complete the migration to a new MTU. During this
time, some nodes are not available as they restart.

® Specific applications deployed to the cluster with shorter timeout intervals than the absolute
TCP timeout interval might experience disruption during the MTU change.

15.1.2. MTU value selection

When planning your MTU migration there are two related but distinct MTU values to consider.
e Hardware MTU: This MTU value is set based on the specifics of your network infrastructure.

® Cluster network MTU: This MTU value is always less than your hardware MTU to account for
the cluster network overlay overhead. The specific overhead is determined by your network
plugin. For OVN-Kubernetes, the overhead is 100 bytes.

If your cluster requires different MTU values for different nodes, you must subtract the overhead value
for your network plugin from the lowest MTU value that is used by any node in your cluster. For example,
if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this
value to 1400.

IMPORTANT

To avoid selecting an MTU value that is not acceptable by a node, verify the maximum
MTU value (maxmtu) that is accepted by the network interface by using the ip -d link
command.

15.1.3. How the migration process works

138

CHAPTER 15. CHANGING THE MTU FOR THE CLUSTER NETWORK

The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 15.1. Live migration of the cluster MTU

User-initiated steps OpenShift Container Platform activity
Set the following values in the Cluster Network Cluster Network Operator (CNOY Confirms that
Operator configuration: each field is set to a valid value.
e spec.migration.mtu.machine.to e The mtu.machine.to must be set to either
the new hardware MTU or to the current
e spec.migration.mtu.network.from hardware MTU if the MTU for the hardware
is not changing. This value is transient and is
e spec.migration.mtu.network.to used as part of the migration process.

Separately, if you specify a hardware MTU
that is different from your existing hardware
MTU value, you must manually configure
the MTU to persist by other means, such as
with a machine config, DHCP setting, or a
Linux kernel command line.

o The mtu.network.from field must equal
the
network.status.clusterNetworkMTU
field, which is the current MTU of the cluster
network.

o The mtu.network.to field must be set to
the target cluster network MTU and must
be lower than the hardware MTU to allow for
the overlay overhead of the network plugin.
For OVN-Kubernetes, the overhead is 100
bytes.

If the values provided are valid, the CNO writes out a
new temporary configuration with the MTU for the
cluster network set to the value of the
mtu.network.to field.

Machine Config Operator (MCO) Performs a
rolling reboot of each node in the cluster.

Reconfigure the MTU of the primary network N/A
interface for the nodes on the cluster. You can use a
variety of methods to accomplish this, including:

® Deploying a new NetworkManager
connection profile with the MTU change

e Changing the MTU through a DHCP server
setting

e Changing the MTU through boot

parameters
Set the mtu value in the CNO configuration for the Machine Config Operator (MCO) Performs a
network plugin and set spec.migration to null. rolling reboot of each node in the cluster with the

new MTU configuration.

139

OpenShift Container Platform 4.15 Networking

15.2. CHANGING THE CLUSTER NETWORK MTU

As a cluster administrator, you can increase or decrease the maximum transmission unit (MTU) for your
cluster.

IMPORTANT

The migration is disruptive and nodes in your cluster might be temporarily unavailable as
the MTU update takes effect.

The following procedure describes how to change the cluster network MTU by using either machine
configs, Dynamic Host Configuration Protocol (DHCP), or an ISO image. If you use either the DHCP or
ISO approaches, you must refer to configuration artifacts that you kept after installing your cluster to
complete the procedure.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have access to the cluster using an account with cluster-admin permissions.

® You have identified the target MTU for your cluster. The MTU for the OVN-Kubernetes network
plugin must be set to 100 less than the lowest hardware MTU value in your cluster.

Procedure

1. To obtain the current MTU for the cluster network, enter the following command:

I $ oc describe network.config cluster

Example output

Status:

Cluster Network:
Cidr: 10.217.0.0/22

Host Prefix: 23
Cluster Network MTU: 1400
Network Type: OVNKubernetes
Service Network:

10.217.4.0/23

2. Prepare your configuration for the hardware MTU:

e |f your hardware MTU is specified with DHCP, update your DHCP configuration such as with
the following dnsmasq configuration:

I dhcp-option-force=26,<mtu>

where:

<mtu>

140

CHAPTER 15. CHANGING THE MTU FOR THE CLUSTER NETWORK

Specifies the hardware MTU for the DHCP server to advertise.

If your hardware MTU is specified with a kernel command line with PXE, update that
configuration accordingly.

If your hardware MTU is specified in a NetworkManager connection configuration, complete
the following steps. This approach is the default for OpenShift Container Platform if you do
not explicitly specify your network configuration with DHCP, a kernel command line, or some
other method. Your cluster nodes must all use the same underlying network configuration
for the following procedure to work unmodified.

i. Find the primary network interface:

o If you are using the OpenShift SDN network plugin, enter the following command:

$ oc debug node/<node_name> -- chroot /host ip route list match 0.0.0.0/0 | awk
{print $5 }'
where:

<hode_name>

Specifies the name of a node in your cluster.

o If you are using the OVN-Kubernetes network plugin, enter the following command:

$ oc debug node/<node_name> -- chroot /host nmcli -g connection.interface-
name ¢ show ovs-if-phys0

where:

<hode_name>

Specifies the name of a node in your cluster.
ii. Create the following NetworkManager configuration in the <interface>-mtu.conf file:

Example NetworkManager connection configuration

[connection-<interface>-mtu]
match-device=interface-name:<interface>
ethernet.mtu=<mtu>

where:

<mtu>
Specifies the new hardware MTU value.
<interface>

Specifies the primary network interface name.

ii. Create two MachineConfig objects, one for the control plane nodes and another for
the worker nodes in your cluster:

A. Create the following Butane config in the control-plane-interface.bu file:

I variant: openshift

141

OpenShift Container Platform 4.15 Networking

version: 4.15.0
metadata:
name: 01-control-plane-interface
labels:
machineconfiguration.openshift.io/role: master
storage:
files:
- path: /etc/NetworkManager/conf.d/99-<interface>-mtu.conf ﬂ
contents:
local: <interface>-mtu.conf 9
mode: 0600

mSpecify the NetworkManager connection name for the primary network
interface.

Specify the local filename for the updated NetworkManager configuration file
from the previous step.

B. Create the following Butane config in the worker-interface.bu file:

variant: openshift
version: 4.15.0
metadata:
name: 01-worker-interface
labels:
machineconfiguration.openshift.io/role: worker
storage:
files:
- path: /etc/NetworkManager/conf.d/99-<interface>-mtu.conf ﬂ
contents:
local: <interface>-mtu.conf 9
mode: 0600

ﬂ Specify the NetworkManager connection name for the primary network
interface.

Specify the local filename for the updated NetworkManager configuration file
from the previous step.

C. Create MachineConfig objects from the Butane configs by running the following
command:

$ for manifest in control-plane-interface worker-interface; do

butane --files-dir . $manifest.bu > $manifest.yaml
done

142

CHAPTER 15. CHANGING THE MTU FOR THE CLUSTER NETWORK

' WARNING
A Do not apply these machine configs until explicitly instructed

later in this procedure. Applying these machine configs now
causes a loss of stability for the cluster.

3. To begin the MTU migration, specify the migration configuration by entering the following
command. The Machine Config Operator performs a rolling reboot of the nodes in the cluster in
preparation for the MTU change.

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
{"spec": { "migration”: { "mtu": { "network": { "from": <overlay_from>, "to": <overlay_to>},
"machine": { "to" : <machine_to>}}}}}

where:

<overlay_from>
Specifies the current cluster network MTU value.
<overlay_to>

Specifies the target MTU for the cluster network. This value is set relative to the value of
<machine_to>. For OVN-Kubernetes, this value must be 100 less than the value of
<machine_to>.

<machine_to>

Specifies the MTU for the primary network interface on the underlying host network.

Example that increases the cluster MTU

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
{"spec": { "migration”: { "mtu": { "network": { "from": 1400, "to": 9000 } , "machine": { "to" :
9100} } } } V'

4. As the Machine Config Operator updates machines in each machine config pool, it reboots each
node one by one. You must wait until all the nodes are updated. Check the machine config pool
status by entering the following command:

I $ oc get machineconfigpools

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the Machine Config Operator updates one machine per pool at a
time, causing the total time the migration takes to increase with the size of the
cluster.

5. Confirm the status of the new machine configuration on the hosts:

143

OpenShift Container Platform 4.15 Networking

a. Tolist the machine configuration state and the name of the applied machine configuration,
enter the following command:

I $ oc describe node | egrep "hostname|machineconfig"
Example output

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

b. Verify that the following statements are true:

® The value of machineconfiguration.openshift.io/state field is Done.

® The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

c. To confirm that the machine config is correct, enter the following command:
I $ oc get machineconfig <config_name> -o yaml | grep ExecStart

where <config_names is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:
I ExecStart=/usr/local/bin/mtu-migration.sh

6. Update the underlying network interface MTU value:

® |f you are specifying the new MTU with a NetworkManager connection configuration, enter
the following command. The MachineConfig Operator automatically performs a rolling
reboot of the nodes in your cluster.

$ for manifest in control-plane-interface worker-interface; do
oc create -f $manifest.yaml
done

e |f you are specifying the new MTU with a DHCP server option or a kernel command line and
PXE, make the necessary changes for your infrastructure.

7. As the Machine Config Operator updates machines in each machine config pool, it reboots each

node one by one. You must wait until all the nodes are updated. Check the machine config pool
status by entering the following command:

I $ oc get machineconfigpools

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED-=false.

144

CHAPTER 15. CHANGING THE MTU FOR THE CLUSTER NETWORK

NOTE
By default, the Machine Config Operator updates one machine per pool at a

time, causing the total time the migration takes to increase with the size of the
cluster.

8. Confirm the status of the new machine configuration on the hosts:

a. Tolist the machine configuration state and the name of the applied machine configuration,
enter the following command:

I $ oc describe node | egrep "hostname|machineconfig"
Example output

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

Verify that the following statements are true:
® The value of machineconfiguration.openshift.io/state field is Done.

e The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:
I $ oc get machineconfig <config_name> -o yaml | grep path:

where <config_names is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

If the machine config is successfully deployed, the previous output contains the
/etc/NetworkManager/system-connections/<connection_names file path.

The machine config must not contain the ExecStart=/usr/local/bin/mtu-migration.sh line.

9. To finalize the MTU migration, enter the following command for the OVN-Kubernetes network
plugin:

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
{"spec": { "migration”: null, "defaultNetwork":{ "ovnKubernetesConfig": { "mtu": <mtu> }}}}'

where:

<mtu>

Specifies the new cluster network MTU that you specified with <overlay_to>.

145

OpenShift Container Platform 4.15 Networking

10. After finalizing the MTU migration, each machine config pool node is rebooted one by one. You
must wait until all the nodes are updated. Check the machine config pool status by entering the
following command:

I $ oc get machineconfigpools

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED-=false.

Verification

1. To get the current MTU for the cluster network, enter the following command:
I $ oc describe network.config cluster
2. Get the current MTU for the primary network interface of a node:
a. Tolist the nodes in your cluster, enter the following command:

I $ oc get nodes

b. To obtain the current MTU setting for the primary network interface on a node, enter the
following command:

I $ oc debug node/<node> -- chroot /host ip address show <interface>

where:

<node>
Specifies a node from the output from the previous step.

<interface>

Specifies the primary network interface name for the node.

Example output

I ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 8051

15.3. ADDITIONAL RESOURCES
® Using advanced networking options for PXE and ISO installations
® Manually creating NetworkManager profiles in key file format

® Configuring a dynamic Ethernet connection using nmcli

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-user-infra-machines-advanced_network_installing-bare-metal
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index#proc_manually-creating-a-networkmanager-profile-in-keyfile-format_assembly_networkmanager-connection-profiles-in-keyfile-format
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index#configuring-a-dynamic-ethernet-connection-using-nmcli_configuring-an-ethernet-connection

CHAPTER 16. CONFIGURING THE NODE PORT SERVICE RANGE

CHAPTER 16. CONFIGURING THE NODE PORT SERVICE
RANGE

As a cluster administrator, you can expand the available node port range. If your cluster uses of a large
number of node ports, you might need to increase the number of available ports.

The default port range is 30000-32767. You can never reduce the port range, even if you first expand it
beyond the default range.

16.1. PREREQUISITES

® Your cluster infrastructure must allow access to the ports that you specify within the expanded
range. For example, if you expand the node port range to 30000-32900, the inclusive port range
of 32768-32900 must be allowed by your firewall or packet filtering configuration.

16.2. EXPANDING THE NODE PORT RANGE

You can expand the node port range for the cluster.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin to the cluster with a user with cluster-admin privileges.

Procedure

1. To expand the node port range, enter the following command. Replace <port> with the largest
port number in the new range.

$ oc patch network.config.openshift.io cluster --type=merge -p \
{

"spec":
{ "serviceNodePortRange": "30000-<port>" }

}l

TIP

You can alternatively apply the following YAML to update the node port range:

apiVersion: config.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
serviceNodePortRange: "30000-<port>"

Example output

I network.config.openshift.io/cluster patched

147

OpenShift Container Platform 4.15 Networking

2. To confirm that the configuration is active, enter the following command. It can take several
minutes for the update to apply.

$ oc get configmaps -n openshift-kube-apiserver config \
-0 jsonpath="{.data['config\.yamI]}" | \
grep -Eo "service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

Example output

I "service-node-port-range":["30000-33000"]

16.3. ADDITIONAL RESOURCES

® Configuring ingress cluster traffic using a NodePort
® Network [config.openshift.io/v1]

® Service [core/V]

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/api_reference/#network-config-openshift-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/api_reference/#service-v1

CHAPTER 17. CONFIGURING THE CLUSTER NETWORK RANGE

CHAPTER 17. CONFIGURING THE CLUSTER NETWORK RANGE

As a cluster administrator, you can expand the cluster network range after cluster installation. You might
want to expand the cluster network range if you need more IP addresses for additional nodes.

For example, if you deployed a cluster and specified 10.128.0.0/19 as the cluster network range and a
host prefix of 23, you are limited to 16 nodes. You can expand that to 510 nodes by changing the CIDR

mask on a cluster to /14.

When expanding the cluster network address range, your cluster must use the OVN-Kubernetes
network plugin. Other network plugins are not supported.

The following limitations apply when modifying the cluster network IP address range:

® The CIDR mask size specified must always be smaller than the currently configured CIDR mask
size, because you can only increase IP space by adding more nodes to an installed cluster

® The host prefix cannot be modified

® Pods that are configured with an overridden default gateway must be recreated after the
cluster network expands

17.1. EXPANDING THE CLUSTER NETWORK IP ADDRESS RANGE

You can expand the IP address range for the cluster network. Because this change requires rolling out a
new Operator configuration across the cluster, it can take up to 30 minutes to take effect.

Prerequisites

® [nstall the OpenShift CLI (oc).
® | ogin to the cluster with a user with cluster-admin privileges.

® Ensure that the cluster uses the OVN-Kubernetes network plugin.

Procedure

1. To obtain the cluster network range and host prefix for your cluster, enter the following
command:

$ oc get network.operator.openshift.io \
-0 jsonpath="{.items[0].spec.clusterNetwork}"

Example output
I [{"cidr":"10.217.0.0/22","hostPrefix":23}]

2. To expand the cluster network IP address range, enter the following command. Use the CIDR IP
address range and host prefix returned from the output of the previous command.

$ oc patch Network.config.openshift.io cluster --type="merge' --patch \
{
"spec":{
"clusterNetwork": [{"cidr":"<network>/<cidr>","hostPrefix":<prefix>}],

149

OpenShift Container Platform 4.15 Networking

"networkType": "OVNKubernetes"

}
p

where:

<network>

Specifies the network part of the cidr field that you obtained from the previous step. You
cannot change this value.

<cidr>

Specifies the network prefix length. For example, 14. Change this value to a smaller number
than the value from the output in the previous step to expand the cluster network range.

<prefix>

Specifies the current host prefix for your cluster. This value must be the same value for the
hostPrefix field that you obtained from the previous step.

Example command

$ oc patch Network.config.openshift.io cluster --type="merge' --patch \
{
"spec":{
"clusterNetwork": [{"cidr":"10.217.0.0/14","hostPrefix": 23}],
"networkType": "OVNKubernetes"

}
p

Example output

I network.config.openshift.io/cluster patched

. To confirm that the configuration is active, enter the following command. It can take up to 30

minutes for this change to take effect.

$ oc get network.operator.openshift.io \
-0 jsonpath="{.items[0].spec.clusterNetwork}"

Example output

I [{"cidr":"10.217.0.0/14","hostPrefix":23}]

17.2. ADDITIONAL RESOURCES

150

® Red Hat OpenShift Network Calculator

® About the OVN-Kubernetes network plugin

https://access.redhat.com/labs/ocpnc/

CHAPTER 18. CONFIGURING IP FAILOVER

CHAPTER 18. CONFIGURING IP FAILOVER

This topic describes configuring IP failover for pods and services on your OpenShift Container Platform
cluster.

IP failover manages a pool of Virtual IP (VIP) addresses on a set of nodes. Every VIP in the set is
serviced by a node selected from the set. As long a single node is available, the VIPs are served. There is
no way to explicitly distribute the VIPs over the nodes, so there can be nodes with no VIPs and other
nodes with many VIPs. If there is only one node, all VIPs are on it.

NOTE

The VIPs must be routable from outside the cluster.

IP failover monitors a port on each VIP to determine whether the port is reachable on the node. If the
port is not reachable, the VIP is not assigned to the node. If the port is set to 0, this check is suppressed.
The check script does the needed testing.

IP failover uses Keepalived to host a set of externally accessible VIP addresses on a set of hosts. Each
VIP is only serviced by a single host at a time. Keepalived uses the Virtual Router Redundancy Protocol
(VRRP) to determine which host, from the set of hosts, services which VIP. If a host becomes
unavailable, or if the service that Keepalived is watching does not respond, the VIP is switched to
another host from the set. This means a VIP is always serviced as long as a host is available.

When a node running Keepalived passes the check script, the VIP on that node can enter the master
state based on its priority and the priority of the current master and as determined by the preemption
strategy.

A cluster administrator can provide a script through the OPENSHIFT_HA_NOTIFY_SCRIPT variable,
and this script is called whenever the state of the VIP on the node changes. Keepalived uses the master
state when it is servicing the VIP, the backup state when another node is servicing the VIP, or in the
fault state when the check script fails. The notify script is called with the new state whenever the state
changes.

You can create an IP failover deployment configuration on OpenShift Container Platform. The IP
failover deployment configuration specifies the set of VIP addresses, and the set of nodes on which to
service them. A cluster can have multiple IP failover deployment configurations, with each managing its
own set of unique VIP addresses. Each node in the IP failover configuration runs an IP failover pod, and
this pod runs Keepalived.

When using VIPs to access a pod with host networking, the application pod runs on all nodes that are
running the IP failover pods. This enables any of the IP failover nodes to become the master and service
the VIPs when needed. If application pods are not running on all nodes with IP failover, either some IP
failover nodes never service the VIPs or some application pods never receive any traffic. Use the same
selector and replication count, for both IP failover and the application pods, to avoid this mismatch.

While using VIPs to access a service, any of the nodes can be in the IP failover set of nodes, since the
service is reachable on all nodes, no matter where the application pod is running. Any of the IP failover
nodes can become master at any time. The service can either use external IPs and a service port or it can
use a NodePort.

When using external IPs in the service definition, the VIPs are set to the external IPs, and the IP failover
monitoring port is set to the service port. When using a node port, the port is open on every node in the
cluster, and the service load-balances traffic from whatever node currently services the VIP. In this case,
the IP failover monitoring port is set to the NodePort in the service definition.

151

http://www.keepalived.org/

OpenShift Container Platform 4.15 Networking

IMPORTANT

Setting up a NodePort is a privileged operation.

IMPORTANT

Even though a service VIP is highly available, performance can still be affected.
Keepalived makes sure that each of the VIPs is serviced by some node in the
configuration, and several VIPs can end up on the same node even when other nodes
have none. Strategies that externally load-balance across a set of VIPs can be thwarted
when IP failover puts multiple VIPs on the same node.

When you use ingressIP, you can set up IP failover to have the same VIP range as the ingressIP range.
You can also disable the monitoring port. In this case, all the VIPs appear on same node in the cluster.
Any user can set up a service with an ingressIP and have it highly available.

IMPORTANT

There are a maximum of 254 VIPs in the cluster.

18.1. IP FAILOVER ENVIRONMENT VARIABLES
The following table contains the variables used to configure IP failover.

Table 18.1. IP failover environment variables

Variable Name Default Description
OPENSHIFT_HA_MONITOR_POR 80 The IP failover pod tries to open a TCP connection
T to this port on each Virtual IP (VIP). If connection is

established, the service is considered to be running.
If this port is set to 0, the test always passes.

OPENSHIFT_HA_NETWORK_INT The interface name that IP failover uses to send
ERFACE Virtual Router Redundancy Protocol (VRRP) traffic.
The default value is eth0.

OPENSHIFT_HA_REPLICA_COU 2 The number of replicas to create. This must match
NT spec.replicas value in IP failover deployment
configuration.

OPENSHIFT_HA_VIRTUAL_IPS The list of IP address ranges to replicate. This must
be provided. For example, 1.2.3.4-6,1.2.3.9.

OPENSHIFT_HA_VRRP_ID OFFS 0 The offset value used to set the virtual router IDs.

ET Using different offset values allows multiple IP
failover configurations to exist within the same
cluster. The default offset is 0, and the allowed range
is 0 through 255.

152

CHAPTER 18. CONFIGURING IP FAILOVER

Variable Name Default Description

OPENSHIFT_HA_VIP_GROUPS The number of groups to create for VRRP. If not set,
a group is created for each virtual IP range specified
with the OPENSHIFT_HA_VIP_GROUPS

variable.
OPENSHIFT_HA_IPTABLES_CHA INPUT The name of the iptables chain, to automatically add
IN an iptables rule to allow the VRRP traffic on. If the

value is not set, an iptables rule is not added. If the
chain does not exist, it is not created.

OPENSHIFT_HA CHECK_SCRIP The full path name in the pod file system of a script

T that is periodically run to verify the application is
operating.

OPENSHIFT_HA_CHECK_INTER 2 The period, in seconds, that the check script is run.

VAL

OPENSHIFT_HA_NOTIFY_SCRIP The full path name in the pod file system of a script

T that is run whenever the state changes.

OPENSHIFT_HA_ PREEMPTION preempt The strategy for handling a new higher priority host.
_nhodelay The nopreempt strategy does not move master
300 from the lower priority host to the higher priority
host.

18.2. CONFIGURING IP FAILOVER

As a cluster administrator, you can configure IP failover on an entire cluster, or on a subset of nodes, as
defined by the label selector. You can also configure multiple IP failover deployment configurations in
your cluster, where each one is independent of the others.

The IP failover deployment configuration ensures that a failover pod runs on each of the nodes
matching the constraints or the label used.

This pod runs Keepalived, which can monitor an endpoint and use Virtual Router Redundancy Protocol
(VRRP) to fail over the virtual IP (VIP) from one node to another if the first node cannot reach the

service or endpoint.

For production use, set a selector that selects at least two nodes, and set replicas equal to the number
of selected nodes.

Prerequisites
® You are logged in to the cluster with a user with cluster-admin privileges.

® You created a pull secret.

PDunmnmnadiiva

153

OpenShift Container Platform 4.15 Networking

rioccuuic

1. Create an IP failover service account:
I $ oc create sa ipfailover
2. Update security context constraints (SCC) for hostNetwork:

$ oc adm policy add-scc-to-user privileged -z ipfailover
$ oc adm policy add-scc-to-user hostnetwork -z ipfailover

3. Create a deployment YAML file to configure IP failover:

Example deployment YAML for IP failover configuration

apiVersion: apps/v1
kind: Deployment
metadata:
name: ipfailover-keepalived 0
labels:
ipfailover: hello-openshift
spec:
strategy:
type: Recreate
replicas: 2
selector:
matchLabels:
ipfailover: hello-openshift
template:
metadata:

labels:
ipfailover: hello-openshift

spec:

serviceAccountName: ipfailover

privileged: true

hostNetwork: true

nodeSelector:
node-role.kubernetes.io/worker: "

containers:

- name: openshift-ipfailover
image: quay.io/openshift/origin-keepalived-ipfailover
ports:

- containerPort: 63000
hostPort: 63000

imagePullPolicy: IfNotPresent

securityContext:
privileged: true
volumeMounts:

- name: lib-modules
mountPath: /lib/modules
readOnly: true

- name: host-slash
mountPath: /host
readOnly: true
mountPropagation: HostToContainer

- name: etc-sysconfig

154

CHAPTER 18. CONFIGURING IP FAILOVER

mountPath: /etc/sysconfig
readOnly: true
- name: config-volume
mountPath: /etc/keepalive
env:
- name: OPENSHIFT_HA_CONFIG_NAME
value: "ipfailover"
- name: OPENSHIFT_HA_VIRTUAL_IPS e
value: "1.1.1.1-2"
- name: OPENSHIFT_HA_VIP_GROUPS 9
value: "10"
- name: OPENSHIFT_HA_NETWORK_INTERFACE ﬂ
value: "ens3" #The host interface to assign the VIPs
- name: OPENSHIFT_HA_MONITOR_PORT 6
value: "30060"
- name: OPENSHIFT_HA_VRRP_ID_OFFSET G
value: "0"
- name: OPENSHIFT_HA_REPLICA_COUNT ﬂ
value: "2" #Must match the number of replicas in the deployment
- name: OPENSHIFT_HA_USE_UNICAST
value: "false"
#- name: OPENSHIFT_HA UNICAST_PEERS
#value: "10.0.148.40,10.0.160.234,10.0.199.110"
- name: OPENSHIFT_HA_IPTABLES_CHAIN 6
value: "INPUT"
#- name: OPENSHIFT_HA _NOTIFY_SCRIPT 9
value: /etc/keepalive/mynotifyscript.sh
- name: OPENSHIFT_HA_CHECK_SCRIPT@
value: "/etc/keepalive/mycheckscript.sh”
- name: OPENSHIFT_HA_PREEMPTION m
value: "preempt_delay 300"
- name: OPENSHIFT_HA_CHECK_INTERVAL @
value: "2"
livenessProbe:
initialDelaySeconds: 10
exec:
command:
- pgrep
- keepalived
volumes:
- name: lib-modules
hostPath:
path: /lib/modules
- name: host-slash
hostPath:
path: /
- name: etc-sysconfig
hostPath:
path: /etc/sysconfig
config-volume contains the check script
created with “oc create configmap keepalived-checkscript --from-file=mycheckscript.sh
- configMap:
defaultMode: 0755
name: keepalived-checkscript

155

OpenShift Container Platform 4.15 Networking

name: config-volume
imagePullSecrets:
- name: openshift-pull-secret @

The name of the IP failover deployment.

The list of IP address ranges to replicate. This must be provided. For example, 1.2.3.4-
6,1.2.3.9.

The number of groups to create for VRRP. If not set, a group is created for each virtual IP
range specified with the OPENSHIFT_HA_VIP_GROUPS variable.

The interface name that IP failover uses to send VRRP traffic. By default, eth0 is used.

The IP failover pod tries to open a TCP connection to this port on each VIP. If connection is
established, the service is considered to be running. If this port is set to 0, the test always
passes. The default value is 80.

The offset value used to set the virtual router IDs. Using different offset values allows
multiple IP failover configurations to exist within the same cluster. The default offset is 0,
and the allowed range is 0 through 255.

The number of replicas to create. This must match spec.replicas value in IP failover
deployment configuration. The default value is 2.

The name of the iptables chain to automatically add an iptables rule to allow the VRRP
traffic on. If the value is not set, an iptables rule is not added. If the chain does not exist, it
is not created, and Keepalived operates in unicast mode. The default is INPUT.

The full path name in the pod file system of a script that is run whenever the state
changes.

The full path name in the pod file system of a script that is periodically run to verify the
application is operating.

The strategy for handling a new higher priority host. The default value is preempt_delay
300, which causes a Keepalived instance to take over a VIP after 5 minutes if a lower-
priority master is holding the VIP.

The period, in seconds, that the check script is run. The default value is 2.

Create the pull secret before creating the deployment, otherwise you will get an error when
creating the deployment.

o0 O 9 6 9 9 O O®©5 o0 o9

18.3. ABOUT VIRTUAL IP ADDRESSES

Keepalived manages a set of virtual IP addresses (VIP). The administrator must make sure that all of
these addresses:

® Are accessible on the configured hosts from outside the cluster.

® Are not used for any other purpose within the cluster.

156

CHAPTER 18. CONFIGURING IP FAILOVER

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported
and Keepalived participates in the negotiation to determine which node serves the VIP. For a node to
participate, the service must be listening on the watch port on a VIP or the check must be disabled.

NOTE

Each VIP in the set may end up being served by a different node.

18.4. CONFIGURING CHECK AND NOTIFY SCRIPTS

Keepalived monitors the health of the application by periodically running an optional user supplied check
script. For example, the script can test a web server by issuing a request and verifying the response.

When a check script is not provided, a simple default script is run that tests the TCP connection. This
default test is suppressed when the monitor portis 0.

Each IP failover pod manages a Keepalived daemon that manages one or more virtual IPs (VIP) on the
node where the pod is running. The Keepalived daemon keeps the state of each VIP for that node. A
particular VIP on a particular node may be in master, backup, or fault state.

When the check script for that VIP on the node that is in master state fails, the VIP on that node enters
the fault state, which triggers a renegotiation. During renegotiation, all VIPs on a node that are not in the
fault state participate in deciding which node takes over the VIP. Ultimately, the VIP enters the master
state on some node, and the VIP stays in the backup state on the other nodes.

When a node with a VIP in backup state fails, the VIP on that node enters the fault state. When the
check script passes again for a VIP on a node in the fault state, the VIP on that node exits the fault

state and negotiates to enter the master state. The VIP on that node may then enter either the master
or the backup state.

As cluster administrator, you can provide an optional notify script, which is called whenever the state
changes. Keepalived passes the following three parameters to the script:

e $1 - group or instance

e $2 - Name of the group or instance

e $3 - The new state: master, backup, or fault
The check and notify scripts run in the IP failover pod and use the pod file system, not the host file
system. However, the IP failover pod makes the host file system available under the /hosts mount path.
When configuring a check or notify script, you must provide the full path to the script. The
recommended approach for providing the scripts is to use a config map.
The full path names of the check and notify scripts are added to the Keepalived configuration file,

_letc/keepalived/keepalived.conf, which is loaded every time Keepalived starts. The scripts can be
added to the pod with a config map as follows.

Prerequisites

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

157

OpenShift Container Platform 4.15 Networking

1. Create the desired script and create a config map to hold it. The script has no input arguments
and must return 0 for OK and 1 for fail.
The check script, mycheckscript.sh:

#!/bin/bash

Whatever tests are needed

E.g., send request and verify response
exit 0

2. Create the config map:

I $ oc create configmap mycustomcheck --from-file=mycheckscript.sh

3. Add the script to the pod. The defaultMode for the mounted config map files must able to run
by using oc commands or by editing the deployment configuration. A value of 0755, 493
decimal, is typical:

$ oc set env deploy/ipfailover-keepalived \
OPENSHIFT_HA_CHECK_SCRIPT=/etc/keepalive/mycheckscript.sh

$ oc set volume deploy/ipfailover-keepalived --add --overwrite \
--name=config-volume \
--mount-path=/etc/keepalive \
--source='{"configMap": { "name": "mycustomcheck", "defaultMode": 493}}'

NOTE

The oc set env command is whitespace sensitive. There must be no whitespace
on either side of the =sign.

158

CHAPTER 18. CONFIGURING IP FAILOVER

TIP

You can alternatively edit the ipfailover-keepalived deployment configuration:

I $ oc edit deploy ipfailover-keepalived

spec:
containers:
-env:
- name: OPENSHIFT_HA_CHECK_SCRIPT ﬂ
value: /etc/keepalive/mycheckscript.sh

volumeMounts: 9
- mountPath: /etc/keepalive
name: config-volume
dnsPolicy: ClusterFirst

volumes: 6

- configMap:
defaultMode: 0755 @)
name: customrouter

name: config-volume

ﬂ In the spec.container.env field, add the OPENSHIFT_HA_CHECK_SCRIPT environment
variable to point to the mounted script file.
Add the spec.container.volumeMounts field to create the mount point.

Add a new spec.volumes field to mention the config map.
This sets run permission on the files. When read back, it is displayed in decimal, 493.

Save the changes and exit the editor. This restarts ipfailover-keepalived.

18.5. CONFIGURING VRRP PREEMPTION

When a Virtual IP (VIP) on a node leaves the fault state by passing the check script, the VIP on the node
enters the backup state if it has lower priority than the VIP on the node that is currently in the master
state. However, if the VIP on the node that is leaving fault state has a higher priority, the preemption
strategy determines its role in the cluster.

The nopreempt strategy does not move master from the lower priority VIP on the host to the higher

priority VIP on the host. With preempt_delay 300, the default, Keepalived waits the specified 300
seconds and moves master to the higher priority VIP on the host.

Prerequisites

® You installed the OpenShift CLI (o¢).

Procedure

® To specify preemption enter oc edit deploy ipfailover-keepalived to edit the router
deployment configuration:

I $ oc edit deploy ipfailover-keepalived

159

OpenShift Container Platform 4.15 Networking

spec:
containers:
- env:
- name: OPENSHIFT_HA_PREEMPTION ﬂ
value: preempt_delay 300

€@ Setthe OPENSHIFT_HA_PREEMPTION value:

o preempt_delay 300: Keepalived waits the specified 300 seconds and moves master
to the higher priority VIP on the host. This is the default value.

o nopreempt: does not move master from the lower priority VIP on the host to the
higher priority VIP on the host.

18.6. ABOUT VRRP ID OFFSET

Each IP failover pod managed by the IP failover deployment configuration, 1 pod per node or replica,
runs a Keepalived daemon. As more IP failover deployment configurations are configured, more pods are
created and more daemons join into the common Virtual Router Redundancy Protocol (VRRP)
negotiation. This negotiation is done by all the Keepalived daemons and it determines which nodes
service which virtual IPs (VIP).

Internally, Keepalived assigns a unique vrrp-id to each VIP. The negotiation uses this set of vrrp-ids,
when a decision is made, the VIP corresponding to the winning vrrp-id is serviced on the winning node.

Therefore, for every VIP defined in the IP failover deployment configuration, the IP failover pod must
assign a corresponding vrrp-id. This is done by starting at OPENSHIFT_HA_VRRP_ID_OFFSET and
sequentially assigning the vrrp-ids to the list of VIPs. The vrrp-ids can have values in the range 1..255.

When there are multiple IP failover deployment configurations, you must specify
OPENSHIFT_HA_VRRP_ID_OFFSET so that there is room to increase the number of VIPs in the
deployment configuration and none of the vrrp-id ranges overlap.

18.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES

IP failover management is limited to 254 groups of Virtual IP (VIP) addresses. By default OpenShift
Container Platform assigns one IP address to each group. You can use the
OPENSHIFT_HA_VIP_GROUPS variable to change this so multiple IP addresses are in each group and
define the number of VIP groups available for each Virtual Router Redundancy Protocol (VRRP)
instance when configuring IP failover.

Grouping VIPs creates a wider range of allocation of VIPs per VRRP in the case of VRRP failover events,
and is useful when all hosts in the cluster have access to a service locally. For example, when a service is
being exposed with an ExternallP.

NOTE

As a rule for failover, do not limit services, such as the router, to one specific host. Instead,
services should be replicated to each host so that in the case of IP failover, the services
do not have to be recreated on the new host.

160

CHAPTER 18. CONFIGURING IP FAILOVER

NOTE

If you are using OpenShift Container Platform health checks, the nature of IP failover and
groups means that all instances in the group are not checked. For that reason, the
Kubernetes health checks must be used to ensure that services are live.

Prerequisites

® You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

® To change the number of IP addresses assigned to each group, change the value for the
OPENSHIFT_HA_VIP_GROUPS variable, for example:

Example Deployment YAML for IP failover configuration

spec:
env:
- name: OPENSHIFT_HA_VIP_GROUPS ﬂ
value: "3"

If OPENSHIFT_HA_VIP_GROUPS is set to 3 in an environment with seven VIPs, it creates
three groups, assigning three VIPs to the first group, and two VIPs to the two remaining
groups.

NOTE

If the number of groups set by OPENSHIFT_HA_VIP_GROUPS is fewer than the number
of IP addresses set to fail over, the group contains more than one IP address, and all of
the addresses move as a single unit.

18.8. HIGH AVAILABILITY FOR INGRESSIP

In non-cloud clusters, IP failover and ingressIP to a service can be combined. The result is high
availability services for users that create services using ingressIP.

The approach is to specify an ingressIPNetworkCIDR range and then use the same range in creating
the IP failover configuration.

Because IP failover can support up to a maximum of 255 VIPs for the entire cluster, the
ingressIPNetworkCIDR must be /24 or smaller.

18.9. REMOVING IP FAILOVER

When IP failover is initially configured, the worker nodes in the cluster are modified with an iptables rule
that explicitly allows multicast packets on 224.0.0.18 for Keepalived. Because of the change to the
nodes, removing IP failover requires running a job to remove the iptables rule and removing the virtual
IP addresses used by Keepalived.

161

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

OpenShift Container Platform 4.15 Networking

Procedure
1. Optional: Identify and delete any check and notify scripts that are stored as config maps:

a. ldentify whether any pods for IP failover use a config map as a volume:

$ oc get pod - ipfailover \
-0 jsonpath="\

{range .items[?(@.spec.volumes[*].configMap)]}

{'Namespace: "}{.metadata.namespace}

{'Pod: "{.metadata.name}

{'Volumes that use config maps:"}

{range .spec.volumes[?(@.configMap)]} {'volume: 'H.name}
{'configMap: "{.configMap.name}{"\n'}{end}

{end}"

Example output

Namespace: default
Pod: keepalived-worker-59df45db9c-2x9mn
Volumes that use config maps:

volume: config-volume

configMap: mycustomcheck

b. If the preceding step provided the names of config maps that are used as volumes, delete
the config maps:

I $ oc delete configmap <configmap_name>
2. ldentify an existing deployment for IP failover:
I $ oc get deployment -l ipfailover
Example output
I NAMESPACE NAME READY UP-TO-DATE AVAILABLE AGE
default ipfailover 2/2 2 2 105d
3. Delete the deployment:
I $ oc delete deployment <ipfailover_deployment_name>
4. Remove the ipfailover service account:

I $ oc delete sa ipfailover

5. Run ajob that removes the IP tables rule that was added when IP failover was initially
configured:

a. Create a file such as remove-ipfailover-job.yaml with contents that are similar to the
following example:

I apiVersion: batch/v1

162

CHAPTER 18. CONFIGURING IP FAILOVER

kind: Job
metadata:
generateName: remove-ipfailover-
labels:
app: remove-ipfailover
spec:
template:
metadata:
name: remove-ipfailover
spec:
containers:
- name: remove-ipfailover
image: quay.io/openshift/origin-keepalived-ipfailover:4.15
command: ["/var/lib/ipfailover/keepalived/remove-failover.sh"]
nodeSelector:
kubernetes.io/hostname: <host_name> <.>
restartPolicy: Never

<.> Run the job for each node in your cluster that was configured for IP failover and replace
the hostname each time.

b. Run the job:

I $ oc create -f remove-ipfailover-job.yaml
Example output

I job.batch/remove-ipfailover-2h8dm created

Verification

® Confirm that the job removed the initial configuration for IP failover.
I $ oc logs job/remove-ipfailover-2h8dm
Example output

remove-failover.sh: OpenShift IP Failover service terminating.
- Removing ip_vs module ...
- Cleaning up ...
- Releasing VIPs (interface eth0) ...

163

OpenShift Container Platform 4.15 Networking

CHAPTER 19. CONFIGURING SYSTEM CONTROLS AND
INTERFACE ATTRIBUTES USING THE TUNING PLUGIN

In Linux, sysctl allows an administrator to modify kernel parameters at runtime. You can modify
interface-level network sysctls using the tuning Container Network Interface (CNI) meta plugin. The
tuning CNI meta plugin operates in a chain with a main CNI plugin as illustrated.

Network

v

Main CNI plug-in Handover Tuning plug-in Namespace

(Interface creation) > (Adgjl::ggilr;rﬁggace
Container

The main CNI plugin assigns the interface and passes this interface to the tuning CNI meta plugin at
runtime. You can change some sysctls and several interface attributes such as promiscuous mode, all-
multicast mode, MTU, and MAC address in the network namespace by using the tuning CNI meta plugin.

19.1. CONFIGURING SYSTEM CONTROLS BY USING THE TUNING CNI

The following procedure configures the tuning CNI to change the interface-level network
net.ipv4.conf.lIFNAME.accept_redirects sysctl. This example enables accepting and sending ICMP-
redirected packets. In the tuning CNI meta plugin configuration, the interface name is represented by
the IFNAME token and is replaced with the actual name of the interface at runtime.

Procedure

1. Create a network attachment definition, such as tuning-example.yaml, with the following
content:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: <name> 0
namespace: default 9
spec:
config: '{
"cniVersion": "0.4.0", e
"name": "<name>",
"plugins": [{
"type": "<main_CNI_plugin>" e
2
{
"type": "tuning", G
"sysctl": {
"net.ipv4.conf.IFNAME.accept_redirects": "1" ﬂ
}

164

CHAPTER 19. CONFIGURING SYSTEM CONTROLS AND INTERFACE ATTRIBUTES USING THE TUNING PLUGIN

Specifies the name for the additional network attachment to create. The name must be
unique within the specified namespace.

Specifies the namespace that the object is associated with.
Specifies the CNI specification version.

Specifies the name for the configuration. It is recommended to match the configuration
name to the name value of the network attachment definition.

Specifies the name of the main CNI plugin to configure.
Specifies the name of the CNI meta plugin.

Specifies the sysctl to set. The interface name is represented by the IFNAME token and is
replaced with the actual name of the interface at runtime.

OS99 00600 9

An example YAML file is shown here:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: tuningnad
namespace: default
spec:
config: {
"cniVersion": "0.4.0",
"name": "tuningnad”,
"plugins": [{
"type": "bridge"
b
{
"type": "tuning",
"sysctl": {
"net.ipv4.conf.IFNAME.accept_redirects™: "1"
}
}
]
y

2. Apply the YAML by running the following command:
I $ oc apply -f tuning-example.yaml
Example output
I networkattachmentdefinition.k8.cni.cncf.io/tuningnad created

3. Create a pod such as examplepod.yaml with the network attachment definition similar to the
following:

165

OpenShift Container Platform 4.15 Networking

@ ® 0009

7]

apiVersion: vi
kind: Pod
metadata:
name: tunepod
namespace: default
annotations:
k8s.v1.cni.cncf.io/networks: tuningnad 0
spec:
containers:
- name: podexample
image: centos
command: ["/bin/bash", "-c", "sleep INF"]
securityContext:
runAsUser: 2000 9
runAsGroup: 3000 6
allowPrivilegeEscalation: false ﬂ
capabilities: 6
drop: ["ALL"]
securityContext:
runAsNonRoot: true G
seccompProfile: ﬂ
type: RuntimeDefault

Specify the name of the configured NetworkAttachmentDefinition.

runAsUser controls which user ID the container is run with.

runAsGroup controls which primary group ID the containers is run with.
allowPrivilegeEscalation determines if a pod can request to allow privilege escalation. If
unspecified, it defaults to true. This boolean directly controls whether the no_new_privs

flag gets set on the container process.

capabilities permit privileged actions without giving full root access. This policy ensures all
capabilities are dropped from the pod.

runAsNonRoot: true requires that the container will run with a user with any UID other
than O.

RuntimeDefault enables the default seccomp profile for a pod or container workload.

4. Apply the yaml by running the following command:

$ oc apply -f examplepod.yami

5. Verify that the pod is created by running the following command:

$ oc get pod

Example output

166

NAME READY STATUS RESTARTS AGE
tunepod 1/1 Running 0 47s

CHAPTER 19. CONFIGURING SYSTEM CONTROLS AND INTERFACE ATTRIBUTES USING THE TUNING PLUGIN

6. Login to the pod by running the following command:
I $ oc rsh tunepod

7. Verify the values of the configured sysctl flags. For example, find the value
net.ipv4.conf.net1.accept_redirects by running the following command:

I sh-4.4# sysctl net.ipv4.conf.net1.accept_redirects

Expected output

I net.ipv4.conf.net1.accept_redirects = 1

19.2. ENABLING ALL-MULTICAST MODE BY USING THE TUNING CNI
You can enable all-multicast mode by using the tuning Container Network Interface (CNI) meta plugin.

The following procedure describes how to configure the tuning CNI to enable the all-multicast mode.

Procedure

1. Create a network attachment definition, such as tuning-example.yaml, with the following
content:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: <name> 0
namespace: default 9
spec:
config: '{
"cniVersion": "0.4.0", 9
"name": "<name>", °
"plugins": [{
"type": "<main_CNI_plugin>" 6
b

"type": "tuning", G
"allmulti": true

}
}
]

Specifies the name for the additional network attachment to create. The name must be
unique within the specified namespace.

Specifies the namespace that the object is associated with.
Specifies the CNI specification version.

Specifies the name for the configuration. Match the configuration name to the name value
of the network attachment definition.

O00® 9O

167

OpenShift Container Platform 4.15 Networking

a Specifies the name of the main CNI plugin to configure.
G Specifies the name of the CNI meta plugin.

Q Changes the all-multicast mode of interface. If enabled, all multicast packets on the
network will be received by the interface.

An example YAML file is shown here:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: setallmulti
namespace: default
spec:
config: '{
"cniVersion": "0.4.0",
"name": "setallmulti",
"plugins": [
{
"type": "bridge"
13
{
"type": "tuning",
"allmulti": true
}
]
y

2. Apply the settings specified in the YAML file by running the following command:

I $ oc apply -f tuning-allmulti.yaml
Example output
I networkattachmentdefinition.k8s.cni.cncf.io/setallmulti created

3. Create a pod with a network attachment definition similar to that specified in the following
examplepod.yaml sample file:

apiVersion: vi
kind: Pod
metadata:
name: allmultipod
namespace: default
annotations:
k8s.v1.cni.cncf.io/networks: setallmulti ﬂ
spec:
containers:
- name: podexample
image: centos
command: ["/bin/bash", "-c", "sleep INF"]
securityContext:
runAsUser: 2000 @)

168

CHAPTER 19. CONFIGURING SYSTEM CONTROLS AND INTERFACE ATTRIBUTES USING THE TUNING PLUGIN

runAsGroup: 3000 €)
allowPrivilegeEscalation: false ﬂ
capabilities:
drop: ["ALL"]
securityContext:
runAsNonRoot: true G
seccompProfile: ﬂ
type: RuntimeDefault

Specifies the name of the configured NetworkAttachmentDefinition.

Specifies the user ID the container is run with.

Specifies which primary group ID the containers is run with.

Specifies if a pod can request privilege escalation. If unspecified, it defaults to true. This
boolean directly controls whether the no_new_privs flag gets set on the container

process.

Specifies the container capabilities. The drop: ["ALL"] statement indicates that all Linux
capabilities are dropped from the pod, providing a more restrictive security profile.

Specifies that the container will run with a user with any UID other than O.
Specifies the container’s seccomp profile. In this case, the type is set to RuntimeDefault.

Seccomp is a Linux kernel feature that restricts the system calls available to a process,
enhancing security by minimizing the attack surface.

O ® 0000

4. Apply the settings specified in the YAML file by running the following command:
I $ oc apply -f examplepod.yaml

5. Verify that the pod is created by running the following command:
I $ oc get pod
Example output

NAME READY STATUS RESTARTS AGE
allmultipod 1/1 Running 0 23s

6. Login to the pod by running the following command:
I $ oc rsh allmultipod

7. List all the interfaces associated with the pod by running the following command:
I sh-4.44# ip link
Example output

I 1:10: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode

169

OpenShift Container Platform 4.15 Networking

DEFAULT group default glen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0@if22: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 8901 qdisc noqueue state
UP mode DEFAULT group default

link/ether 0a:58:0a:83:00:10 brd ff:ff:ff:ff:ff:ff link-netnsid 0 ﬂ
3: net1@if24: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UP mode DEFAULT group default

link/ether ee:9b:66:a4:ec:1d brd ff:ff:ff:ff:ff:ff link-netnsid 0 g

ﬂ eth0@if22 is the primary interface

net1@if24 is the secondary interface configured with the network-attachment-definition
that supports the all-multicast mode (ALLMULTI flag)

19.3. ADDITIONAL RESOURCES

® Using sysctls in containers
® SR-IOV network node configuration object

® Configuring interface-level network sysctl settings and all-multicast mode for SR-IOV networks

170

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-containers-sysctls

HAPTER 20. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTEF

CHAPTER 20. USING THE STREAM CONTROL TRANSMISSION
PROTOCOL (SCTP) ON A BARE METAL CLUSTER

As a cluster administrator, you can use the Stream Control Transmission Protocol (SCTP) on a cluster.

20.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) ON OPENSHIFT CONTAINER PLATFORM

As a cluster administrator, you can enable SCTP on the hosts in the cluster. On Red Hat Enterprise Linux
CoreOS (RHCOS), the SCTP module is disabled by default.

SCTP is a reliable message based protocol that runs on top of an IP network.

When enabled, you can use SCTP as a protocol with pods, services, and network policy. A Service object
must be defined with the type parameter set to either the ClusterlP or NodePort value.

20.1.1. Example configurations using SCTP protocol

You can configure a pod or service to use SCTP by setting the protocol parameter to the SCTP value in
the pod or service object.

In the following example, a pod is configured to use SCTP:

apiVersion: vi
kind: Pod
metadata:
namespace: projecti
name: example-pod
spec:
containers:
- hame: example-pod

ports:
- containerPort: 30100
name: sctpserver
protocol: SCTP

In the following example, a service is configured to use SCTP:

apiVersion: vi

kind: Service

metadata:
namespace: projecti
name: sctpserver

spec:

ports:

- name: sctpserver
protocol: SCTP
port: 30100
targetPort: 30100

type: ClusterIP

171

OpenShift Container Platform 4.15 Networking

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port
80 from any pods with a specific label:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-sctp-on-http
spec:
podSelector:
matchLabels:
role: web
ingress:
- ports:
- protocol: SCTP
port: 80

20.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP)

As a cluster administrator, you can load and enable the blacklisted SCTP kernel module on worker nodes
in your cluster.

Prerequisites

e Install the OpenShift CLI (oc).

® Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file named load-sctp-module.yaml that contains the following YAML definition:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
name: load-sctp-module
labels:
machineconfiguration.openshift.io/role: worker
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- path: /etc/modprobe.d/sctp-blacklist.conf
mode: 0644
overwrite: true
contents:
source: data:,
- path: /etc/modules-load.d/sctp-load.conf
mode: 0644
overwrite: true
contents:
source: data:,sctp

172

HAPTER 20. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTEF

2. To create the MachineConfig object, enter the following command:

I $ oc create -f load-sctp-module.yaml

3. Optional: To watch the status of the nodes while the MachineConfig Operator applies the
configuration change, enter the following command. When the status of a node transitions to
Ready, the configuration update is applied.

I $ oc get nodes

20.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) IS ENABLED

You can verify that SCTP is working on a cluster by creating a pod with an application that listens for
SCTP traffic, associating it with a service, and then connecting to the exposed service.

Prerequisites
® Access to the internet from the cluster to install the nc package.

e Install the OpenShift CLI (oc).

® Access to the cluster as a user with the cluster-admin role.

Procedure
1. Create a pod starts an SCTP listener:

a. Create a file named sctp-server.yaml that defines a pod with the following YAML.:

apiVersion: vi
kind: Pod
metadata:
name: sctpserver
labels:
app: sctpserver
spec:
containers:
- name: sctpserver
image: registry.access.redhat.com/ubi9/ubi
command: ["/bin/sh", "-c"]
args:
['dnf install -y nc && sleep inf"]
ports:
- containerPort: 30102
name: sctpserver
protocol: SCTP

b. Create the pod by entering the following command:

I $ oc create -f sctp-server.yaml

2. Create a service for the SCTP listener pod.

173

OpenShift Container Platform 4.15 Networking

a. Create a file named sctp-service.yaml that defines a service with the following YAML.:

apiVersion: vi
kind: Service
metadata:
name: sctpservice
labels:
app: sctpserver
spec:
type: NodePort
selector:

app: sctpserver

ports:

- name: sctpserver
protocol: SCTP
port: 30102
targetPort: 30102

b. To create the service, enter the following command:
I $ oc create -f sctp-service.yaml

3. Create a pod for the SCTP client.

a. Create a file named sctp-client.yaml with the following YAML:

apiVersion: vi
kind: Pod
metadata:
name: sctpclient
labels:
app: sctpclient
spec:
containers:
- name: sctpclient
image: registry.access.redhat.com/ubi9/ubi
command: ["/bin/sh", "-c"]
args:
['dnf install -y nc && sleep inf"]

b. To create the Pod object, enter the following command:
I $ oc apply -f sctp-client.yaml

4. Run an SCTP listener on the server.

a. To connect to the server pod, enter the following command:

I $ oc rsh sctpserver

b. To start the SCTP listener, enter the following command:

I $ nc -1 30102 --sctp

174

HAPTER 20. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTEF

5. Connect to the SCTP listener on the server.

a. Open a new terminal window or tab in your terminal program.

b. Obtain the IP address of the sctpservice service. Enter the following command:
I $ oc get services sctpservice -0 go-template="{{.spec.cluster|P}}{{"\n"}}'

c. To connect to the client pod, enter the following command:
I $ oc rsh sctpclient

d. To start the SCTP client, enter the following command. Replace <cluster_IP> with the
cluster IP address of the sctpservice service.

I # nc <cluster_IP> 30102 --sctp

175

OpenShift Container Platform 4.15 Networking

CHAPTER 21. USING PTP HARDWARE

21.1. ABOUT PTP IN OPENSHIFT CONTAINER PLATFORM CLUSTER
NODES

Precision Time Protocol (PTP) is used to synchronize clocks in a network. When used in conjunction with
hardware support, PTP is capable of sub-microsecond accuracy, and is more accurate than Network
Time Protocol (NTP).

You can configure linuxptp services and use PTP-capable hardware in OpenShift Container Platform
cluster nodes.

Use the OpenShift Container Platform web console or OpenShift CLI (o¢) to install PTP by deploying
the PTP Operator. The PTP Operator creates and manages the linuxptp services and provides the
following features:

® Discovery of the PTP-capable devices in the cluster.
® Management of the configuration of linuxptp services.

e Notification of PTP clock events that negatively affect the performance and reliability of your
application with the PTP Operator cloud-event-proxy sidecar.

NOTE

The PTP Operator works with PTP-capable devices on clusters provisioned only on bare-
metal infrastructure.

21.1.1. Elements of a PTP domain

PTP is used to synchronize multiple nodes connected in a network, with clocks for each node. The clocks
synchronized by PTP are organized in a leader-follower hierarchy. The hierarchy is created and updated
automatically by the best master clock (BMC) algorithm, which runs on every clock. Follower clocks are
synchronized to leader clocks, and follower clocks can themselves be the source for other downstream
clocks.

176

CHAPTER 21. USING PTP HARDWARE

Figure 21.1. PTP nodes in the network

Leader Follower

Node 1 - Grandmaster clock (T-GM)

GPS
satellite o ' gNss PHC gpsd ts2phc ptpdl phc2sys
System clock

L Adjusting offset 4’ L Setting time J

Node 2 — Boundary clock (T-BC)

> NIC Linuxptp daemon -1

PHC tp4l hc2sys
i i 4 System clock

L Adjusting offset J \— Setting time J

Node 3 — Ordinary clock (OC)

-» NIC Linuxptp daemon @

PHC tp4l hc2sys
i i 4 System clock

L Adjusting offset J \— Setting time J

'“. NIC Linuxptp daemon @

The three primary types of PTP clocks are described below.

Grandmaster clock

The grandmaster clock provides standard time information to other clocks across the network and
ensures accurate and stable synchronisation. It writes time stamps and responds to time requests
from other clocks. Grandmaster clocks synchronize to a Global Navigation Satellite System (GNSS)
time source. The Grandmaster clock is the authoritative source of time in the network and is
responsible for providing time synchronization to all other devices.

Boundary clock

The boundary clock has ports in two or more communication paths and can be a source and a
destination to other destination clocks at the same time. The boundary clock works as a destination
clock upstream. The destination clock receives the timing message, adjusts for delay, and then
creates a new source time signal to pass down the network. The boundary clock produces a new
timing packet that is still correctly synced with the source clock and can reduce the number of
connected devices reporting directly to the source clock.

Ordinary clock

The ordinary clock has a single port connection that can play the role of source or destination clock,
depending on its position in the network. The ordinary clock can read and write timestamps.

Advantages of PTP over NTP
One of the main advantages that PTP has over NTP is the hardware support present in various network
interface controllers (NIC) and network switches. The specialized hardware allows PTP to account for

177

OpenShift Container Platform 4.15 Networking

delays in message transfer and improves the accuracy of time synchronization. To achieve the best
possible accuracy, it is recommended that all networking components between PTP clocks are PTP
hardware enabled.

Hardware-based PTP provides optimal accuracy, since the NIC can timestamp the PTP packets at the
exact moment they are sent and received. Compare this to software-based PTP, which requires
additional processing of the PTP packets by the operating system.

IMPORTANT

Before enabling PTP, ensure that NTP is disabled for the required nodes. You can disable
the chrony time service (chronyd) using a MachineConfig custom resource. For more
information, see Disabling chrony time service.

21.1.2. Using PTP with dual NIC hardware

OpenShift Container Platform supports single and dual NIC hardware for precision PTP timing in the
cluster.

For 5G telco networks that deliver mid-band spectrum coverage, each virtual distributed unit (vDU)
requires connections to 6 radio units (RUs). To make these connections, each vDU host requires 2 NICs
configured as boundary clocks.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate
ptp4l instances for each NIC feeding the downstream clocks.

21.1.3. Overview of linuxptp and gpsd in OpenShift Container Platform nodes

OpenShift Container Platform uses the PTP Operator with linuxptp and gpsd packages for high
precision network synchronization. The linuxptp package provides tools and daemons for PTP timing in
networks. Cluster hosts with Global Navigation Satellite System (GNSS) capable NICs use gpsd to
interface with GNSS clock sources.

The linuxptp package includes the ts2phc, pmc, ptp4l, and phe2sys programs for system clock
synchronization.

ts2phc

ts2phc synchronizes the PTP hardware clock (PHC) across PTP devices with a high degree of
precision. ts2phc is used in grandmaster clock configurations. It receives the precision timing signal a
high precision clock source such as Global Navigation Satellite System (GNSS). GNSS provides an
accurate and reliable source of synchronized time for use in large distributed networks. GNSS clocks
typically provide time information with a precision of a few nanoseconds.

The ts2phc system daemon sends timing information from the grandmaster clock to other PTP
devices in the network by reading time information from the grandmaster clock and converting it to
PHC format. PHC time is used by other devices in the network to synchronize their clocks with the
grandmaster clock.

pmc

pmc implements a PTP management client (pmc¢) according to IEEE standard 1588.1588. pmc
provides basic management access for the ptp4l system daemon. pme¢ reads from standard input
and sends the output over the selected transport, printing any replies it receives.

ptp4l

ptp4l implements the PTP boundary clock and ordinary clock and runs as a system daemon. ptp4l
does the following:

178

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/postinstallation_configuration/#cnf-disable-chronyd_post-install-machine-configuration-tasks

CHAPTER 21. USING PTP HARDWARE

® Synchronizes the PHC to the source clock with hardware time stamping

® Synchronizes the system clock to the source clock with software time stamping

phc2sys

phc2sys synchronizes the system clock to the PHC on the network interface controller (NIC). The
phc2sys system daemon continuously monitors the PHC for timing information. When it detects a
timing error, the PHC corrects the system clock.

The gpsd package includes the ubxtool, gspipe, gpsd, programs for GNSS clock synchronization with
the host clock.

ubxtool

ubxtool CLI allows you to communicate with a u-blox GPS system. The ubxtool CLI uses the u-blox
binary protocol to communicate with the GPS.

gpspipe
gpspipe connects to gpsd output and pipes it to stdout.

gpsd
gpsd is a service daemon that monitors one or more GPS or AIS receivers connected to the host.
21.1.4. Overview of GNSS timing for PTP grandmaster clocks

OpenShift Container Platform supports receiving precision PTP timing from Global Navigation Satellite
System (GNSS) sources and grandmaster clocks (T-GM) in the cluster.

IMPORTANT

OpenShift Container Platform supports PTP timing from GNSS sources with Intel E810
Westport Channel NICs only.

179

OpenShift Container Platform 4.15 Networking

Figure 21.2. Overview of Synchronization with GNSS and T-GM

gpsd LinuxPTP Linux kernel

Linuxptp container as T-GM

User space 1 -
ubxtool phc2sys 4—> Q-
i i Realtime clock

Kernel generic
GNSS

Interface driver

E gpsd ts2phc ptp4l pmc
E Network Stack PTP Clock DPLL Interface

Network
interface GNSS NIC ol &
hardware -\

Physical hardware clock

1PPS_Out —Pp DPLLs —» 1PPS_In 1PPS_Out

GNSS antenna

Global Navigation Satellite System (GNSS)

GNSS is a satellite-based system used to provide positioning, navigation, and timing information to
receivers around the globe. In PTP, GNSS receivers are often used as a highly accurate and stable
reference clock source. These receivers receive signals from multiple GNSS satellites, allowing them
to calculate precise time information. The timing information obtained from GNSS is used as a
reference by the PTP grandmaster clock.

By using GNSS as a reference, the grandmaster clock in the PTP network can provide highly accurate
timestamps to other devices, enabling precise synchronization across the entire network.

Digital Phase-Locked Loop (DPLL)

DPLL provides clock synchronization between different PTP nodes in the network. DPLL compares
the phase of the local system clock signal with the phase of the incoming synchronization signal, for
example, PTP messages from the PTP grandmaster clock. The DPLL continuously adjusts the local
clock frequency and phase to minimize the phase difference between the local clock and the
reference clock.

21.2. CONFIGURING PTP DEVICES

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform.

180

CHAPTER 21. USING PTP HARDWARE

When installed, the PTP Operator searches your cluster for PTP-capable network devices on each node.
It creates and updates a NodePtpDevice custom resource (CR) object for each node that provides a
compatible PTP-capable network device.

21.2.1. Installing the PTP Operator using the CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites
® A clusterinstalled on bare-metal hardware with nodes that have hardware that supports PTP.
® |nstall the OpenShift CLI (o¢).

® | ogin as a user with cluster-admin privileges.

Procedure
1. Create a namespace for the PTP Operator.

a. Save the following YAML in the ptp-namespace.yaml file:

apiVersion: vi
kind: Namespace
metadata:
name: openshift-ptp
annotations:
workload.openshift.io/allowed: management
labels:
name: openshift-ptp
openshift.io/cluster-monitoring: "true"

b. Create the Namespace CR:
I $ oc create -f ptp-namespace.yaml

2. Create an Operator group for the PTP Operator.

a. Save the following YAML in the ptp-operatorgroup.yaml file:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: ptp-operators
namespace: openshift-ptp
spec:
targetNamespaces:
- openshift-ptp

b. Create the OperatorGroup CR:
I $ oc create -f ptp-operatorgroup.yami

3. Subscribe to the PTP Operator.

181

OpenShift Container Platform 4.15 Networking

a. Save the following YAML in the ptp-sub.yaml file:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: ptp-operator-subscription
namespace: openshift-ptp
spec:
channel: "stable"
name: ptp-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

b. Create the Subscription CR:
I $ oc create -f ptp-sub.yaml

4. To verify that the Operator is installed, enter the following command:

$ oc get csv -n openshift-ptp -0 custom-
columns=Name:.metadata.name,Phase:.status.phase

Example output

Name Phase
4.15.0-202301261535 Succeeded

21.2.2. Installing the PTP Operator by using the web console

As a cluster administrator, you can install the PTP Operator by using the web console.

o NOTE
You have to create the namespace and Operator group as mentioned in the previous
section.
Procedure

1. Install the PTP Operator using the OpenShift Container Platform web console:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.

b. Choose PTP Operator from the list of available Operators, and then click Install.

c. On the Install Operator page, under A specific namespace on the clusterselect

openshift-ptp. Then, click Install.

2. Optional: Verify that the PTP Operator installed successfully:

a. Switch to the Operators — Installed Operators page.

b. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of

InstallSucceeded.

182

CHAPTER 21. USING PTP HARDWARE

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

® Go to the Operators — Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

® (o to the Workloads = Pods page and check the logs for pods in the openshift-ptp
project.

21.2.3. Discovering PTP capable network devices in your cluster

® Toreturn a complete list of PTP capable network devices in your cluster, run the following

command:

I $ oc get NodePtpDevice -n openshift-ptp -0 yaml

Example output

apiVersion: v1

items:

- apiVersion: ptp.openshift.io/v1

kind: NodePtpDevice

metadata:
creationTimestamp: "2022-01-27T15:16:28Z"
generation: 1
name: dev-worker-0 0
namespace: openshift-ptp
resourceVersion: "6538103"
uid: d42fc9ad-bcbf-4590-b6d8-b676c642781a

spec: {}
status:

devices: g

- name

- hame:
- hame:
- hame:
- name:
- hame:

enoi
eno2
eno3
eno4
enp5s0f0
enp5s0f1

ﬂ The value for the name parameter is the same as the name of the parent node.

The devices collection includes a list of the PTP capable devices that the PTP Operator
discovers for the node.

21.2.4. Using hardware-specific NIC features with the PTP Operator

NIC hardware with built-in PTP capabilities sometimes require device-specific configuration. You can

183

OpenShift Container Platform 4.15 Networking

use hardware-specific NIC features for supported hardware with the PTP Operator by configuring a
plugin in the PtpConfig custom resource (CR). The linuxptp-daemon service uses the named
parameters in the plugin stanza to start linuxptp processes (ptp4l and phe2sys) based on the specific
hardware configuration.

IMPORTANT

In OpenShift Container Platform 4.15, the Intel E810 NIC is supported with a PtpConfig
plugin.

21.2.5. Configuring linuxptp services as a grandmaster clock

You can configure the linuxptp services (ptp4l, phc2sys, ts2phc) as grandmaster clock (T-GM) by
creating a PtpConfig custom resource (CR) that configures the host NIC.

The ts2phc utility allows you to synchronize the system clock with the PTP grandmaster clock so that
the node can stream precision clock signal to downstream PTP ordinary clocks and boundary clocks.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
T-GM for an Intel Westport Channel ES10-XXVDA4T network interface.

To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4IConf, and
ptpClockThreshold. ptpClockThreshold is used only when events are enabled. See
"Configuring the PTP fast event notifications publisher" for more information.

Prerequisites

® For T-GM clocks in production environments, install an Intel ES10 Westport Channel NIC in the
bare-metal cluster host.

® [nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |[nstall the PTP Operator.

Procedure
1. Create the PtpConfig CR. For example:

a. Depending on your requirements, use one of the following T-GM configurations for your
deployment. Save the YAML in the grandmaster-clock-ptp-config.yaml file:

‘ Example 21.1. Example PTP grandmaster clock configuration

kind: PtpConfig
metadata:
name: grandmaster
namespace: openshift-ptp
spec:
profile:
- name: "grandmaster”

apiVersion: ptp.openshift.io/v1
ptp4lOpts: "-2 --summary_interval -4"

184

CHAPTER 21. USING PTP HARDWARE

phc2sysOpts: -r -u 0 -m -O -37 -N 8 -R 16 -s $iface_master -n 24
ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10
ptpSettings:
logReduce: "true"
plugins:
e810:
enableDefaultConfig: false
settings:
LocalMaxHoldoverOffSet: 1500
LocalHoldoverTimeout: 14400
MaxInSpecOffset: 100
pins: $e810_pins
"$iface_master":
"U.FL2":"0 2"
"U.FL1":"0 1"
"SMA2": "0 2"
"SMA1": "0 1"
ublxCmds:
- args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
-"p"
-"29.20"
- "-z"
- "CFG-HW-ANT_CFG_VOLTCTRL,1"
reportOutput: false
- args: #ubxtool -P 29.20 -e GPS
-"p"
-"29.20"
- "-e"
-"GPS"
reportOutput: false
- args: #ubxtool -P 29.20 -d Galileo
-"p"
-"29.20"
-g"
- "Galileo"
reportOutput: false
- args: #ubxtool -P 29.20 -d GLONASS
-"p"
-"29.20"
-g"
- "GLONASS"
reportOutput: false
- args: #ubxtool -P 29.20 -d BeiDou
-"p"
-"29.20"
-ng"
- "BeiDou"
reportOutput: false
- args: #ubxtool -P 29.20 -d SBAS
-"p"
-"29.20"
-g"
- "SBAS"
reportOutput: false
- args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000

BHH R R

185

OpenShift Container Platform 4.15 Networking
-p"
- "29.20"
-t
- "-W"
-"g"
- "-V"
-
- "-e"
- "SURVEYIN,600,50000"
reportOutput: true
- args: #ubxtool -P 29.20 -p MON-HW
-p"
-"29.20"
- "-p"
- "MON-HW"
reportOutput: true
ts2phcOpts: " "
ts2phcConf: |
[nmea]
ts2phc.master 1
[global]
use_syslog 0
verbose 1
logging_level 7
ts2phc.pulsewidth 100000000
ts2phc.nmea_serialport $gnss_serialport
leapfile /usr/share/zoneinfo/leap-seconds.list
[$iface_master]
ts2phc.extts_polarity rising
ts2phc.extts_correction 0
ptp4IConf: |
[$iface_master]
masterOnly 1
[$iface_master_1]
masterOnly 1
[$iface_master_2]
masterOnly 1
[$iface_master_3]
masterOnly 1
[global]
#
Default Data Set
#
twoStepFlag 1
priority1 128
priority2 128
domainNumber 24
#utc_offset 37
clockClass 6
clockAccuracy 0x27
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0
dscp_general 0
dataset_comparison G.8275.x

186

(G.8275.defaultDS.localPriority 128
#

Port Data Set

#

logAnnouncelnterval -3
logSyncinterval -4
logMinDelayReqlnterval -4
logMinPdelayReqlInterval 0
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info O

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval -4
kernel_leap 1
check_fup_sync 0
clock_class_threshold 7

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0

CHAPTER 21. USING PTP HARDWARE

187

OpenShift Container Platform 4.15 Networking

ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1
udp6_scope 0xOE
uds_address /var/run/ptpél
#
Default interface options
#
clock_type BC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0
#
Clock description
#
productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;
timeSource 0x20
recommend:
- profile: "grandmaster”

priority: 4

match:

- nodelLabel: "node-role.kubernetes.io/$mcp"

NOTE

The example PTP grandmaster clock configuration is for test purposes
only and is not intended for production.

metadata:
name: grandmaster
namespace: openshift-ptp
spec:
profile:
- name: "grandmaster”
ptp4IOpts: "-2 --summary_interval -4"
phc2sysOpts: -r -u 0 -m -O -37 -N 8 -R 16 -s $iface_master -n 24
ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10
ptpSettings:

Example 21.2. PTP grandmaster clock configuration for E810 NIC
logReduce: "true"

apiVersion: ptp.openshift.io/v1
kind: PtpConfig

188

CHAPTER 21. USING PTP HARDWARE

plugins:
e810:
enableDefaultConfig: false
settings:
LocalMaxHoldoverOffSet: 1500
LocalHoldoverTimeout: 14400
MaxInSpecOffset: 100
pins: $e810_pins
"$iface_master":
"U.FL2": "0 2"
"U.FL1":"0 1"
"SMA2": "0 2"
"SMA1":"0 1"
ubIxCmds:
- args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
P
-"29.20"
- "-Z"
-"CFG-HW-ANT_CFG_VOLTCTRL,1"
reportOutput: false
- args: #ubxtool -P 29.20 -e GPS
-"p"
-"29.20"
- "-e"
-"GPS"
reportOutput: false
- args: #ubxtool -P 29.20 -d Galileo
-"p"
-"29.20"
-ng"
- "Galileo"
reportOutput: false
- args: #ubxtool -P 29.20 -d GLONASS
-"p"
-"29.20"
-g"
- "GLONASS"
reportOutput: false
- args: #ubxtool -P 29.20 -d BeiDou
-"p"
-"29.20"
-g"
- "BeiDou"
reportOutput: false
- args: #ubxtool -P 29.20 -d SBAS
-"p"
-"29.20"
-ng"
- "SBAS"
reportOutput: false
- args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000
-"p"
-"29.20"
-t
-"-w
-"g"

TH R KR R

189

leapfile /usr/share/zoneinfo/leap-seconds.list
[$iface_master]

ts2phc.extts_polarity rising
ts2phc.extts_correction 0

masterOnly 1

[$iface_master_2]
masterOnly 1
[$iface_master_3]

OpenShift Container Platform 4.15 Networking
ptp4IConf: |
[$iface_master]
masterOnly 1
[global]

gt
-
"_g
- "SURVEYIN,600,50000"
reportOutput: true
- args: #ubxtool -P 29.20 -p MON-HW
-p"
-"29.20"
- "-p"
- "MON-HW"
reportOutput: true
ts2phcOpts: " "
ts2phcConf: |
[nmea]
ts2phc.master 1
[global]
use_syslog 0
verbose 1
logging_level 7
ts2phc.pulsewidth 100000000
masterOnly 1
#

ts2phc.nmea_serialport $gnss_serialport
[$iface_master_1]
Default Data Set

#

twoStepFlag 1

priority1 128

priority2 128

domainNumber 24

#utc_offset 37

clockClass 6

clockAccuracy 0x27
offsetScaledLogVariance OxFFFF
free_running 0

freq_est_interval 1

dscp_event 0

dscp_general 0
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
#

Port Data Set

#

logAnnouncelnterval -3

190

logSynclnterval -4
logMinDelayReqlnterval -4
logMinPdelayReqlInterval 0
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O

fault_reset interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info O

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval -4
kernel_leap 1
check_fup_sync 0
clock_class_threshold 7

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1

udp6_scope 0xOE
uds_address /var/run/ptpél

CHAPTER 21. USING PTP HARDWARE

191

OpenShift Container Platform 4.15 Networking

#
Default interface options
#
clock_type BC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0
#
Clock description
#
productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;
timeSource 0x20
recommend:
- profile: "grandmaster”

priority: 4

match:

- nodelLabel: "node-role.kubernetes.io/$mcp"

NOTE

For E810 Westport Channel NICs, set the value for ts2phc.nmea_serialport
to /dev/gnss0.

b. Create the CR by running the following command:

I $ oc create -f grandmaster-clock-ptp-config.yaml

Verification

192

1. Check that the PtpConfig profile is applied to the node.

a. Getthe list of pods in the openshift-ptp namespace by running the following command:
I $ oc get pods -n openshift-ptp -0 wide
Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-74m2g 3/3 Running 3 4d15h 10.16.230.7 compute-
1.example.com

ptp-operator-5f4f48d7c-x7zkf 1/1 Running 1 4d15h 10.128.1.145 compute-
1.example.com

CHAPTER 21. USING PTP HARDWARE

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

I $ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container
Example output

ts2phc[94980.334]: [ts2phc.0.config] nmea delay: 98690975 ns

ts2phc[94980.334]: [ts2phc.0.config] ens3f0 extts index 0 at 1676577329.999999999 corr
0 src 1676577330.901342528 diff -1

ts2phc[94980.334]: [ts2phc.0.config] ens3f0 master offset -1s2freq -1
ts2phc[94980.441]: [ts2phc.0.config] nmea sentence:
GNRMC,195453.00,A,4233.24427,N,07126.64420,W,0.008,,160223,,,A,V
phc2sys[94980.450]: [ptp4l.0.config] CLOCK_REALTIME phc offset 943 s2 freq -
89604 delay 504

phc2sys[94980.512]: [ptp4l.0.config] CLOCK_REALTIME phc offset 1000 s2 freq -
89264 delay 474

Additional resources

® Configuring the PTP fast event notifications publisher

21.2.5.1. Grandmaster clock PtpConfig configuration reference

The following reference information describes the configuration options for the PtpConfig custom
resource (CR) that configures the linuxptp services (ptp4l, phc2sys, ts2phc) as a grandmaster clock.

Table 21.1. PtpConfig configuration options for PTP Grandmaster clock

PtpConfig CR field Description

lugins Specify an array of .exec.cmdline options that configure the NIC for

plug 9
grandmaster clock operation. Grandmaster clock configuration requires certain
PTP pins to be disabled.

The plugin mechanism allows the PTP Operator to do automated hardware
configuration. For the Intel Westport Channel NIC, when enableDefaultConfig
is true, The PTP Operator runs a hard-coded script to do the required
configuration for the NIC.

ptp4lOpts Specify system configuration options for the ptp4l service. The options should
not include the network interface name -i <interfaces and service config file-f
/etc/ptp4l.conf because the network interface name and the service config file
are automatically appended.

ptp4lConf Specify the required configuration to start ptp4l as a grandmaster clock. For
example, the ens2f1 interface synchronizes downstream connected devices. For
grandmaster clocks, set clockClass to 6 and set clockAccuracy to 0x27. Set
timeSource to 0x20 for when receiving the timing signal from a Global
navigation satellite system (GNSS).

193

OpenShift Container Platform 4.15 Networking

PtpConfig CR field Description

tx_timestamp_timeo Specify the maximum amount of time to wait for the transmit (TX) timestamp
ut from the sender before discarding the data.

boundary_clock_jbo Specify the JBOD boundary clock time delay value. This value is used to correct
d the time values that are passed between the network time devices.

phc2sysOpts Specify system config options for the phc2sys service. If this field is empty the
PTP Operator does not start the phc2sys service.

NOTE

N

Ensure that the network interface listed here is configured as
grandmaster and is referenced as required in the ts2phcConf
and ptp4IConf fields.

ptpSchedulingPolicy Configure the scheduling policy for ptp4l and phc2sys processes. Default value
is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

ptpSchedulingPriorit Set aninteger value from 1-65 to configure FIFO priority for ptp4l and phc2sys

y processes when ptpSchedulingPolicy is set to SCHED_FIFO. The
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is set to
SCHED_OTHER.

ptpClockThreshold Optional. If ptpClockThreshold stanza is not present, default values are used
for ptpClockThreshold fields. Stanza shows defaultptpClockThreshold
values. ptpClockThreshold values configure how long after the PTP master
clock is disconnected before PTP events are triggered. holdOverTimeout is the
time value in seconds before the PTP clock event state changes to FREERUN
when the PTP master clock is disconnected. The maxOffsetThreshold and
minOffsetThreshold settings configure offset values in nanoseconds that
compare against the values for CLOCK_REALTIME (phc2sys) or master
offset (ptp4l). When the ptp4l or phc2sys offset value is outside this range, the
PTP clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

ts2phcConf Sets the configuration for the ts2phc command.

leapfile is the default path to the current leap seconds definition file in the PTP
Operator container image.

ts2phc.nmea_serialport is the serial port device that is connected to the
NMEA GPS clock source. When configured, the GNSS receiver is accessible on
/dev/gnss<ids. If the host has multiple GNSS receivers, you can find the correct
device by enumerating either of the following devices:

e /sys/class/net/<eth_port>/device/gnss/

e /sys/class/gnhss/gnss<id>/device/

194

CHAPTER 21. USING PTP HARDWARE

PtpConfig CR field Description

ts2phcOpts Set options for the ts2phc command.

recommend Specify an array of one or more recommend objects that define rules on how
the profile should be applied to nodes.

.recommend.profile Specify the .recommend.profile object name that is defined in theprofile
section.

.recommend.priority Specify the priority with an integer value between0 and 99. A larger number
gets lower priority, so a priority of 99 is lower than a priority of10. If a node can be
matched with multiple profiles according to rules defined in the match field, the
profile with the higher priority is applied to that node.

.recommend.match Specify .recommend.match rules withnodeLabel ornodeName values.
.recommend.match. Set nodeLabel with thekey of thenode.Labels field from the node object by
nodeLabel using the oc get nodes --show-labels command. For example, node-

role.kubernetes.io/worker.

.recommend.match. Set nodeName with the value of thenode.Name field from the node object by
nodeName using the oc get nodes command. For example, compute-1.example.com.

21.2.5.2. Grandmaster clock class sync state reference

The following table describes the PTP grandmaster clock (T-GM) gm.ClockClass states. Clock class
states categorize T-GM clocks based on their accuracy and stability with regard to the Primary
Reference Time Clock (PRTC) or other timing source.

Holdover specification is the amount of time a PTP clock can maintain synchronization without receiving
updates from the primary time source.

Table 21.2. T-GM clock class states

Clock class state Description

gm.ClockClass 6 T-GM clock is connected to a PRTC in LOCKED mode. For example, the PRTC is
traceable to a GNSS time source.

gm.ClockClass 7 T-GM clock is in HOLDOVER mode, and within holdover specification. The clock
source might not be traceable to a category 1frequency source.

gm.ClockClass 140 T-GM clock is in HOLDOVER mode, is out of holdover specification, but it is still
traceable to the category 1 frequency source.

gm.ClockClass 248 T-GM clock is in FREERUN mode.

For more information, see "Phase/time traceability information”, ITU-T G.8275.1/Y.1369.1
Recommendations.

195

https://www.itu.int/rec/T-REC-G.8275.1-202211-I/en

OpenShift Container Platform 4.15 Networking

21.2.5.3. Intel Westport Channel E810 hardware configuration reference

Use this information to understand how to use the Intel E810-XXVDAA4T hardware plugin to configure
the E810 network interface as PTP grandmaster clock. Hardware pin configuration determines how the
network interface interacts with other components and devices in the system. The E810-XXVDA4T NIC
has four connectors for external IPPS signals: SMA1, SMA2, U.FL1, and U.FL2.

Table 21.3. Intel E810 NIC hardware connectors configuration

Hardware pin Recommended setting Description

U.FL1 01 Disables the U.FL1 connector
input. The U.FL1 connector is
output-only.

U.FL2 02 Disables the U.FL2 connector
output. The U.FL2 connector is
input-only.

SMA1 01 Disables the SMA1 connector
input. The SMA1 connector is
bidirectional.

SMA2 02 Disables the SMA2 connector
output. The SMA2 connector is
bidirectional.

NOTE

SMA1 and U.FL1 connectors share channel one. SMA2 and U.FL2 connectors share
channel two.

Set spec.profile.plugins.e810.ublxCmds parameters to configure the GNSS clock in the PtpConfig
custom resource (CR). Each of these ubIxCmds stanzas correspond to a configuration that is applied to
the host NIC by using ubxtool commands. For example:

ublxCmds:
- args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
-"p"
- "29.20"
- "-z"
- "CFG-HW-ANT_CFG_VOLTCTRL,1"
reportOutput: false

The following table describes the equivalent ubxtool commands:

Table 21.4. Intel E810 ublxCmds configuration

ubxtool command Description

196

https://github.com/openshift/linuxptp-daemon/blob/release-4.15/addons/intel/e810.go

CHAPTER 21. USING PTP HARDWARE

ubxtool command Description

ubxtool -P 29.20 -z CFG-HW-
ANT_CFG_VOLTCTRL,1

ubxtool -P 29.20 -e GPS

ubxtool -P 29.20 -d Galileo

ubxtool -P 29.20 -d GLONASS

ubxtool -P 29.20 -d BeiDou

ubxtool -P 29.20 -d SBAS

ubxtool -P 29.20 -t-w 5 -v 1 -e
SURVEYIN,600,50000

ubxtool -P 29.20 -p MON-HW

The E810 plugin implements the following interfaces:

Table 21.5. E810 plugin interfaces

Enables antenna voltage control. Enables antenna
status to be reported in the UBX-MON-RF and
UBX-INF-NOTICE log messages.

Enables the antenna to receive GPS signals.

Configures the antenna to receive signal from the
Galileo GPS satellite.

Disables the antenna from receiving signal from the
GLONASS GPS satellite.

Disables the antenna from receiving signal from the
BeiDou GPS satellite.

Disables the antenna from receiving signal from the
SBAS GPS satellite.

Configures the GNSS receiver survey-in process to
improve its initial position estimate. This can take up
to 24 hours to achieve an optimal result.

Runs a single automated scan of the hardware and
reports on the NIC state and configuration settings.

Interface Description

OnPTPConfigChang Runs whenever you update the PtpConfig CR. The function parses the plugin
eE810 options and applies the required configurations to the network device pins based

on the configuration data.

AfterRunPTPComma Runs after launching the PTP processes and running the gpspipe PTP command.
ndE810 The function processes the plugin options and runs ubxtool commands, storing
the output in the plugin-specific data.

PopulateHwConfigE Populates the NodePtpDevice CR based on hardware-specific data in the

810 PtpConfig CR.

The E810 plugin has the following structs and variables:

Table 21.6. E810 plugin structs and variables

197

OpenShift Container Platform 4.15 Networking

Struct Description

E8100pts Represents options for the E810 plugin, including boolean flags and a map of
network device pins.

E810UbIxCmds Represents configurations for ubxtool commands with a boolean flag and a slice
of strings for command arguments.

E810PluginData Holds plugin-specific data used during plugin execution.

21.2.6. Configuring linuxptp services as a boundary clock

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clock by creating a PtpConfig
custom resource (CR) object.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
the boundary clock for your particular hardware and environment. This example CR does
not configure PTP fast events. To configure PTP fast events, set appropriate values for
ptp4l0pts, ptp4iConf, and ptpClockThreshold. ptpClockThreshold is used only when
events are enabled. See "Configuring the PTP fast event notifications publisher" for
more information.

Prerequisites

® [nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the boundary-clock-ptp-
config.yaml file.

Example PTP boundary clock configuration

apiVersion: ptp.openshift.io/v1

kind: PtpConfig

metadata:
name: boundary-clock
namespace: openshift-ptp
annotations: {}

spec:
profile:
- name: boundary-clock
ptp4lOpts: "-2"

phc2sysOpts: "-a -r -n 24"
ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10

198

ptpSettings:
logReduce: "true"
ptp4IConf: |

The interface name is hardware-specific

[$iface_slave]

masterOnly 0
[$iface_master 1]
masterOnly 1
[$iface_master 2]
masterOnly 1
[$iface_master_3]
masterOnly 1

[global]

#

Default Data Set

#

twoStepFlag 1

slaveOnly 0

priority1 128

priority2 128
domainNumber 24
#utc_offset 37

clockClass 248
clockAccuracy OXFE
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0

dscp_general 0
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
#

Port Data Set

#

logAnnouncelnterval -3
logSynclinterval -4
logMinDelayReqlnterval -4
logMinPdelayReqlnterval -4
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry 0
fault_reset_interval -4

neighborPropDelayThresh 20000000

masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info 0
hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0

CHAPTER 21. USING PTP HARDWARE

199

OpenShift Container Platform 4.15 Networking

200

tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval 0
kernel_leap 1
check_fup_sync 0
clock_class_threshold 135
#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
max_frequency 900000000
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1

udp6_scope 0x0E
uds_address /var/run/ptp4l
#

Default interface options

#

clock_type BC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0

#

Clock description

#

productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;

CHAPTER 21. USING PTP HARDWARE

timeSource 0xAO
recommend:
- profile: boundary-clock
priority: 4
match:
- nodeLabel: "node-role.kubernetes.io/$mcp"

Table 21.7. PTP boundary clock CR configuration options

CR field Description

name The name of the PtpConfig CR.

profile Specify an array of one or more profile objects.

hame Specify the name of a profile object which uniquely identifies a profile
object.

ptp4lOpts Specify system config options for the ptp4l service. The options should

not include the network interface name -i <interfaces and service config
file -f /etc/ptp4l.conf because the network interface name and the
service config file are automatically appended.

ptp4lConf Specify the required configuration to start ptp4l as boundary clock. For
example, ens1f0 synchronizes from a grandmaster clock andens1f3
synchronizes connected devices.

<interface_1> The interface that receives the synchronization clock.

<interface_2> The interface that sends the synchronization clock.

tx_timestamp_time For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to
out 50.

boundary_clock_jb ForIntel Columbiaville 800 Series NICs, ensure boundary_clock_jbod
od is set to 0. For Intel Fortville X710 Series NICs, ensure
boundary_clock_jbod issetto 1.

phc2sysOpts Specify system config options for the phc2sys service. If this field is
empty, the PTP Operator does not start the phc2sys service.

ptpSchedulingPoli Scheduling policy for ptp4l and phc2sys processes. Default value is
cy SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

ptpSchedulingPrio Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys

rity processes when ptpSchedulingPolicy is set to SCHED_FIFO. The
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is
set to SCHED_OTHER.

201

OpenShift Container Platform 4.15 Networking

CR field Description

ptpClockThreshold Optional. If ptpClockThreshold is not present, default values are used
for the ptpClockThreshold fields. ptpClockThreshold configures how
long after the PTP master clock is disconnected before PTP events are
triggered. holdOverTimeout is the time value in seconds before the PTP
clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the
values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l).
When the ptp4l or phc2sys offset value is outside this range, the PTP
clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

recommend Specify an array of one or more recommend objects that define rules on
how the profile should be applied to nodes.

.recommend.profil Specify the .recommend.profile object name defined in theprofile
e section.

.recommend.priorit Specify the priority with an integer value between0 and 99. A larger

y number gets lower priority, so a priority of 99 is lower than a priority of10.
If a node can be matched with multiple profiles according to rules defined
in the match field, the profile with the higher priority is applied to that
node.

.recommend.matc Specify .recommend.match rules withnodeLabel ornodeName
h values.

.recommend.matc Set nodeLabel with thekey of the node.Labels field from the node
h.nodeLabel object by using the oc get nodes --show-labels command. For
example, node-role.kubernetes.io/worker.

.recommend.matc Set nodeName with the value of thenode.Name field from the node
h.nodeName object by using the oc get nodes command. For example, compute-
1.example.com.

2. Create the CR by running the following command:

I $ oc create -f boundary-clock-ptp-config.yami

Verification
1. Check that the PtpConfig profile is applied to the node.

a. Getthe list of pods in the openshift-ptp namespace by running the following command:

I $ oc get pods -n openshift-ptp -0 wide

202

CHAPTER 21. USING PTP HARDWARE

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-
0.example.com

linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-

1.example.com
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-
plane-1.example.com

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

I $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

Example output

1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
1115 09:41:17.117607 4143292 daemon.go:110]
1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
1115 09:41:17.117616 4143292 daemon.go:102] Interface:

11115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2

1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
1115 09:41:17.117626 4143292 daemon.go:116]

Additional resources

® Configuring FIFO priority scheduling for PTP hardware

® Configuring the PTP fast event notifications publisher

21.2.6.1. Configuring linuxptp services as boundary clocks for dual NIC hardware

IMPORTANT

Precision Time Protocol (PTP) hardware with dual NIC configured as boundary clocks is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clocks for dual NIC hardware by
creating a PtpConfig custom resource (CR) object for each NIC.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate
ptp4l instances for each NIC feeding the downstream clocks.

203

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.15 Networking

Prerequisites
® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator.

Procedure

1. Create two separate PtpConfig CRs, one for each NIC, using the reference CR in "Configuring
linuxptp services as a boundary clock" as the basis for each CR. For example:

a. Create boundary-clock-ptp-config-nic1.yaml, specifying values for phc2sysOpts:

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: boundary-clock-ptp-config-nic1
namespace: openshift-ptp
spec:
profile:
- name: "profile1"
ptp4lOpts: "-2 --summary_interval -4"
ptp4iCont: | €)
[ens5f1]
masterOnly 1
[ens5f0]
masterOnly 0

phc2sysOpts: "-a -r-m -n 24 -N 8 -R 16" g

ﬂ Specify the required interfaces to start ptp4l as a boundary clock. For example, ens5f0
synchronizes from a grandmaster clock and ens5f1 synchronizes connected devices.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

b. Create boundary-clock-ptp-config-nic2.yaml, removing the phc2sysOpts field
altogether to disable the phec2sys service for the second NIC:

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: boundary-clock-ptp-config-nic2
namespace: openshift-ptp
spec:
profile:
- name: "profile2"
ptp4IOpts: "-2 --summary_interval -4"
ptp4iCont: | €)
[ens7f1]
masterOnly 1

204

CHAPTER 21. USING PTP HARDWARE

[ens7f0]
masterOnly 0

ﬂ Specify the required interfaces to start ptp4l as a boundary clock on the second NIC.

NOTE

You must completely remove the phc2sysOpts field from the second
PtpConfig CR to disable the phc2sys service on the second NIC.

2. Create the dual NIC PtpConfig CRs by running the following commands:

a. Create the CR that configures PTP for the first NIC:
I $ oc create -f boundary-clock-ptp-config-nic1.yaml
b. Create the CR that configures PTP for the second NIC:

I $ oc create -f boundary-clock-ptp-config-nic2.yaml

Verification

® Check that the PTP Operator has applied the PtpConfig CRs for both NICs. Examine the logs
for the linuxptp daemon corresponding to the node that has the dual NIC hardware installed.
For example, run the following command:

I $ oc logs linuxptp-daemon-cvgré -n openshift-ptp -c linuxptp-daemon-container
Example output

ptp41[80828.335]: [ptp4l.1.config] master offset 5s2freq -5727 path delay 519
ptp41[80828.343]: [ptp4l.0.config] master offset -5 82 freq -10607 path delay 533
phc2sys[80828.390]: [ptp4l.0.config] CLOCK_REALTIME phc offset 1 82 freq -87239
delay 539

21.2.7. Configuring linuxptp services as an ordinary clock

You can configure linuxptp services (ptp4l, phc2sys) as ordinary clock by creating a PtpConfig custom
resource (CR) object.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
an ordinary clock for your particular hardware and environment. This example CR does
not configure PTP fast events. To configure PTP fast events, set appropriate values for
ptp4l0pts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is required only
when events are enabled. See "Configuring the PTP fast event notifications publisher"
for more information.

Prerequisites

205

OpenShift Container Platform 4.15 Networking

® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the ordinary-clock-ptp-
config.yaml file.

Example PTP ordinary clock configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: ordinary-clock
namespace: openshift-ptp
annotations: {}
spec:
profile:
- name: ordinary-clock
The interface name is hardware-specific
interface: $interface
ptp4lOpts: "-2 -s"
phc2sysOpts: "-a -r -n 24"
ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10
ptpSettings:
logReduce: "true"
ptp4IConf: |
[global]
#
Default Data Set
#
twoStepFlag 1
slaveOnly 1
priority1 128
priority2 128
domainNumber 24
#utc_offset 37
clockClass 255
clockAccuracy OXFE
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0
dscp_general 0
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
#
Port Data Set
#
logAnnouncelnterval -3
logSynclinterval -4
logMinDelayReqlnterval -4

206

logMinPdelayReqlnterval -4
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset_interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info 0

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval 0
kernel_leap 1
check_fup_sync 0
clock_class_threshold 7

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
max_frequency 900000000
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1

udp6_scope 0x0E
uds_address /var/run/ptp4l

#

CHAPTER 21. USING PTP HARDWARE

207

OpenShift Container Platform 4.15 Networking

Default interface options
#

clock_type OC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0

#

Clock description

#

productDescription ;;
revisionData ;;

manufacturerldentity 00:00:00

userDescription ;
timeSource 0xAO

recommend:

- profile: ordinary-clock
priority: 4

match:

- nodeLabel: "node-role.kubernetes.io/$mcp"

Table 21.8. PTP ordinary clock CR configuration options

CR field Description

name

profile

interface

ptp4lOpts

phc2sysOpts

208

The name of the PtpConfig CR.

Specify an array of one or more profile objects. Each profile must be
uniquely named.

Specify the network interface to be used by the ptp4l service, for example
ens787f1.

Specify system config options for the ptp4l service, for example -2 to
select the IEEE 802.3 network transport. The options should not include
the network interface name =i <interface> and service config file=f
/etc/ptp4l.conf because the network interface name and the service
config file are automatically appended. Append --summary_interval -4
to use PTP fast events with this interface.

Specify system config options for the phc2sys service. If this field is
empty, the PTP Operator does not start the phc2sys service. For Intel
Columbiaville 800 Series NICs, set phc2sysOpts options to-a - -m -n
24 -N 8 -R 16.-m prints messages tostdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

CHAPTER 21. USING PTP HARDWARE

CR field Description

ptp4lConf Specify a string that contains the configuration to replace the default
/etc/ptpdl.conf file. To use the default configuration, leave the field
empty.

tx_timestamp_time For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to
out 50.

boundary_clock_jb ForIntel Columbiaville 800 Series NICs, set boundary_clock_jbod to 0.
od

ptpSchedulingPoli Scheduling policy for ptp4l and phc2sys processes. Default value is
cy SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

ptpSchedulingPrio Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys

rity processes when ptpSchedulingPolicy is set to SCHED_FIFO. The
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is
setto SCHED_OTHER.

ptpClockThreshold Optional. If ptpClockThreshold is not present, default values are used
for the ptpClockThreshold fields. ptpClockThreshold configures how
long after the PTP master clock is disconnected before PTP events are
triggered. holdOverTimeout is the time value in seconds before the PTP
clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the
values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l).
When the ptp4l or phc2sys offset value is outside this range, the PTP
clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

recommend Specify an array of one or more recommend objects that define rules on
how the profile should be applied to nodes.

.recommend.profil Specify the .recommend.profile object name defined in theprofile
e section.

.recommend.priorit Set.recommend.priority to 0 for ordinary clock.
y

.recommend.matc Specify .recommend.match rules withnodeLabel ornodeName
h values.

.recommend.matc Set hodeLabel with thekey of the node.Labels field from the node
h.nodeLabel object by using the oc get nodes --show-labels command. For
example, node-role.kubernetes.io/worker.

209

OpenShift Container Platform 4.15 Networking

CR field Description

.recommend.matc Set nodeName with the value of thenode.Name field from the node
h.nodeName object by using the oc get nodes command. For example, compute-
1.example.com.

2. Create the PtpConfig CR by running the following command:

I $ oc create -f ordinary-clock-ptp-config.yaml
Verification

1. Check that the PtpConfig profile is applied to the node.

a. Getthe list of pods in the openshift-ptp namespace by running the following command:
I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-
0.example.com

linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-

1.example.com
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-
plane-1.example.com

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

I $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container
Example output

1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
1115 09:41:17.117607 4143292 daemon.go:110]
11115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 -s

1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
1115 09:41:17.117626 4143292 daemon.go:116]

Additional resources
® Configuring FIFO priority scheduling for PTP hardware

® Configuring the PTP fast event notifications publisher

210

CHAPTER 21. USING PTP HARDWARE

21.2.7.1. Intel Columbiaville ESOO series NIC as PTP ordinary clock reference

The following table describes the changes that you must make to the reference PTP configuration to
use Intel Columbiaville ESOO0 series NICs as ordinary clocks. Make the changes in a PtpConfig custom
resource (CR) that you apply to the cluster.

Table 21.9. Recommended PTP settings for Intel Columbiaville NIC

PTP configuration Recommended setting

phc2sysOpts -a-r-m-n24-N8-R16
tx_timestamp_timeout 50
boundary_clock_jbod 0

NOTE

For phc2sysOpts, -m prints messages to stdout. The linuxptp-daemon DaemonSet
parses the logs and generates Prometheus metrics.

Additional resources
® Foracomplete example CR that configures linuxptp services as an ordinary clock with PTP fast
events, see Configuring linuxptp services as ordinary clock.
21.2.8. Configuring FIFO priority scheduling for PTP hardware

In telco or other deployment types that require low latency performance, PTP daemon threads runin a
constrained CPU footprint alongside the rest of the infrastructure components. By default, PTP threads
run with the SCHED_OTHER policy. Under high load, these threads might not get the scheduling
latency they require for error-free operation.

To mitigate against potential scheduling latency errors, you can configure the PTP Operator linuxptp
services to allow threads to run with a SCHED_FIFO policy. If SCHED_FIFO is set for a PtpConfig CR,

then ptp4l and phc2sys will run in the parent container under chrt with a priority set by the
ptpSchedulingPriority field of the PtpConfig CR.

NOTE

Setting ptpSchedulingPolicy is optional, and is only required if you are experiencing
latency errors.

Procedure

1. Edit the PtpConfig CR profile:
I $ oc edit PtpConfig -n openshift-ptp
2. Change the ptpSchedulingPolicy and ptpSchedulingPriority fields:

I apiVersion: ptp.openshift.io/v1

21

OpenShift Container Platform 4.15 Networking

kind: PtpConfig

metadata:
name: <ptp_config_name>
namespace: openshift-ptp

spec:
profile:
- name: "profile1"

ptpSchedulingPolicy: SCHED_FIFO €))
ptpSchedulingPriority: 10 9

ﬂ Scheduling policy for ptp4l and phc2sys processes. Use SCHED_FIFO on systems that
support FIFO scheduling.

9 Required. Sets the integer value 1-65 used to configure FIFO priority for ptp4l and
phc2sys processes.

3. Save and exit to apply the changes to the PtpConfig CR.

Verification

1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR
has been applied:

I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-gmv2n 3/3 Running 0 1d17h 10.1.196.24 compute-
0.example.com

linuxptp-daemon-lgm55 3/3 Running 0 1d17h 10.1.196.25 compute-
1.example.com

ptp-operator-3r4dcvi7f4-zndk7 1/1 Running 0 1d7h 10.129.0.61 control-plane-

1.example.com
2. Check that the ptp4l process is running with the updated chrt FIFO priority:
I $ oc -n openshift-ptp logs linuxptp-daemon-Igm55 -c linuxptp-daemon-container|grep chrt
Example output

1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f
/var/run/ptp4l.0.config -2 --summary_interval -4 -m

21.2.9. Configuring log filtering for linuxptp services

The linuxptp daemon generates logs that you can use for debugging purposes. In telco or other
deployment types that feature a limited storage capacity, these logs can add to the storage demand.

212

CHAPTER 21. USING PTP HARDWARE

To reduce the number log messages, you can configure the PtpConfig custom resource (CR) to
exclude log messages that report the master offset value. The master offset log message reports the
difference between the current node’s clock and the master clock in nanoseconds.

Prerequisites
® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator.

Procedure

1. Edit the PtpConfig CR:
I $ oc edit PtpConfig -n openshift-ptp

2. In spec.profile, add the ptpSettings.logReduce specification and set the value to true:
apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:

name: <ptp_config_name>
namespace: openshift-ptp
spec:
profile:
- name: "profile1"
ptpSettings:
logReduce: "true"

NOTE

For debugging purposes, you can revert this specification to False to include the
master offset messages.

3. Save and exit to apply the changes to the PtpConfig CR.

Verification

1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR
has been applied:

I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-gmv2n 3/3 Running 0 1d17h 10.1.196.24 compute-
0.example.com

linuxptp-daemon-lgm55 3/3 Running 0 1d17h 10.1.196.25 compute-

213

OpenShift Container Platform 4.15 Networking

1.example.com

ptp-operator-3r4dcvi7f4-zndk7 1/1 Running 0 1d7h 10.129.0.61 control-plane-

1.example.com

2. Verify that master offset messages are excluded from the logs by running the following

command:

$ oc -n openshift-ptp logs <linux_daemon_container> -c linuxptp-daemon-container | grep

"master offset"

<linux_daemon_container> is the name of the linuxptp-daemon pod, for example

linuxptp-daemon-gmv2n.

When you configure the logReduce specification, this command does not report any instances

of master offset in the logs of the linuxptp daemon.

21.2.10. Troubleshooting common PTP Operator issues

Troubleshoot common problems with the PTP Operator by performing the following steps.

Prerequisites

® |nstall the OpenShift Container Platform CLI (oc¢).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure

1. Check the Operator and operands are successfully deployed in the cluster for the configured

nodes.
I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-Imvgn 3/3 Running 0 4d17h 10.1.196.24 compute-

0.example.com

linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-

1.example.com

ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-plane-

1.example.com

NOTE

When the PTP fast event bus is enabled, the number of ready linuxptp-daemon

pods is 3/3. If the PTP fast event bus is not enabled, 2/2is displayed.

2. Check that supported hardware is found in the cluster.

214

CHAPTER 21. USING PTP HARDWARE

I $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io

Example output

NAME AGE
control-plane-0.example.com 10d
control-plane-1.example.com 10d
compute-0.example.com 10d
compute-1.example.com 10d
compute-2.example.com 10d

3. Check the available PTP network interfaces for a node:
I $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io <node_name> -o yaml

where:

<node_name>

Specifies the node you want to query, for example, compute-0.example.com.

Example output

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
creationTimestamp: "2021-09-14T16:52:33Z2"
generation: 1
name: compute-0.example.com
namespace: openshift-ptp
resourceVersion: "177400"
uid: 30413db0-4d8d-46da-9bef-737bacd548fd
spec: {}
status:
devices:
- name: enof
- hame: eno2
- name: eno3
- name: eno4
- name: enp5s0f0
- name: enp5s0f1

4. Check that the PTP interface is successfully synchronized to the primary clock by accessing the
linuxptp-daemon pod for the corresponding node.

a. Get the name of the linuxptp-daemon pod and corresponding node you want to
troubleshoot by running the following command:

I $ oc get pods -n openshift-ptp -0 wide
Example output

I NAME READY STATUS RESTARTS AGE IP NODE

215

OpenShift Container Platform 4.15 Networking

linuxptp-daemon-Imvgn 3/3 Running 0 4d17h 10.1.196.24 compute-
0.example.com
linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-

1.example.com
ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-
plane-1.example.com

b. Remote shell into the required linuxptp-daemon container:
I $ oc rsh -n openshift-ptp -c linuxptp-daemon-container <linux_daemon_container>

where:

<linux_daemon_container>

is the container you want to diagnose, for example linuxptp-daemon-Imvgn.

c. In the remote shell connection to the linuxptp-daemon container, use the PTP
Management Client (pmc) tool to diagnose the network interface. Run the following pme
command to check the sync status of the PTP device, for example ptp4l.

I # pmc -u -f /var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'
Example output when the node is successfully synced to the primary clock

sending: GET PORT_DATA_SET
40a6b7.fffe.166ef0-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET

portldentity 40a6b7.fffe.166ef0-1
portState SLAVE
logMinDelayReqInterval -4
peerMeanPathDelay 0
logAnnouncelnterval -3
announceReceiptTimeout 3

logSyncinterval -4
delayMechanism 1
logMinPdelayReqlnterval -4
versionNumber 2

5. For GNSS-sourced grandmaster clocks, verify that the in-tree NIC ice driver is correct by
running the following command, for example:

I $ oc rsh -n openshift-ptp -c linuxptp-daemon-container linuxptp-daemon-74m2g ethtool -i
ens7f0

Example output

driver: ice
version: 5.14.0-356.bz2232515.e19.x86_64
firmware-version: 4.20 0x8001778b 1.3346.0

6. For GNSS-sourced grandmaster clocks, verify that the linuxptp-daemon container is receiving
signal from the GNSS antenna. If the container is not receiving the GNSS signal, the /dev/gnss0
file is not populated. To verify, run the following command:

216

CHAPTER 21. USING PTP HARDWARE

I $ oc rsh -n openshift-ptp -c linuxptp-daemon-container linuxptp-daemon-jnz6r cat /dev/gnss0
Example output

$GNRMC,125223.00,A,4233.24463,N,07126.64561,W,0.000,,300823,,,A,V*0A
$GNVTG,,T,,M,0.000,N,0.000,K,A*3D
$GNGGA,125223.00,4233.24463,N,07126.64561,W,1,12,99.99,98.6,M,-33.1,M,,*7E
$GNGSA,A,3,25,17,19,11,12,06,05,04,09,20,,,99.99,99.99,99.99,1*37
$GPGSV,3,1,10,04,12,039,41,05,31,222,46,06,50,064,48,09,28,064,42,1*62

21.2.11. Collecting PTP Operator data

You can use the oc adm must-gather command to collect information about your cluster, including
features and objects associated with PTP Operator.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.
® You have installed the OpenShift CLI (oc).

® You have installed the PTP Operator.

Procedure

® To collect PTP Operator data with must-gather, you must specify the PTP Operator must-
gather image.

I $ oc adm must-gather --image=registry.redhat.io/openshift4/ptp-must-gather-rhel8:v4.15

21.3. USING THE PTP HARDWARE FAST EVENT NOTIFICATIONS
FRAMEWORK

Cloud native applications such as virtual RAN (vVRAN) require access to notifications about hardware
timing events that are critical to the functioning of the overall network. PTP clock synchronization errors
can negatively affect the performance and reliability of your low-latency application, for example, a
VRAN application running in a distributed unit (DU).

21.3.1. About PTP and clock synchronization error events

Loss of PTP synchronization is a critical error for a RAN network. If synchronization is lost on a node, the
radio might be shut down and the network Over the Air (OTA) traffic might be shifted to another node
in the wireless network. Fast event notifications mitigate against workload errors by allowing cluster
nodes to communicate PTP clock sync status to the vRAN application running in the DU.

Event notifications are available to VRAN applications running on the same DU node. A
publish/subscribe REST API passes events notifications to the messaging bus. Publish/subscribe
messaging, or pub-sub messaging, is an asynchronous service-to-service communication architecture
where any message published to a topic is immediately received by all of the subscribers to the topic.

The PTP Operator generates fast event notifications for every PTP-capable network interface. You can

access the events by using a cloud-event-proxy sidecar container over an HTTP or Advanced Message
Queuing Protocol (AMQP) message bus.

217

OpenShift Container Platform 4.15 Networking

NOTE

PTP fast event notifications are available for network interfaces configured to use PTP
ordinary clocks, PTP grandmaster clocks, or PTP boundary clocks.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

21.3.2. About the PTP fast event notifications framework

Use the Precision Time Protocol (PTP) fast event notifications framework to subscribe cluster
applications to PTP events that the bare-metal cluster node generates.

-

NOTE

The fast events notifications framework uses a REST API for communication. The REST
APl is based on the O-RAN O-Cloud Notification API Specification for Event Consumers
3.0 that is available from O-RAN ALLIANCE Specifications.

The framework consists of a publisher, subscriber, and an AMQ or HTTP messaging protocol to handle
communications between the publisher and subscriber applications. Applications run the cloud-event-
proxy container in a sidecar pattern to subscribe to PTP events. The cloud-event-proxy sidecar
container can access the same resources as the primary application container without using any of the
resources of the primary application and with no significant latency.

:

218

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect
https://orandownloadsweb.azurewebsites.net/specifications
https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

CHAPTER 21. USING PTP HARDWARE

Figure 21.3. Overview of PTP fast events

Node
PTP Operator-managed pod Message Application pod
transporter
o (HTTPor
linuxptp-daemon Sidecar: cloud AMQP 1.0 QPID) Sidecar: cloud Consumer
event proxy event proxy application

htt|

p http
PTP4L PHC25YS (REST API) ﬁ (REST API)

TS2PHC
E J

Cloud native CNCF CNCF Cloud native
event CloudEvents CloudEvent event
PTP plug-in

UNIX domain socket

T

o Event is generated on the cluster host

linuxptp-daemon in the PTP Operator-managed pod runs as a Kubernetes DaemonSet and
manages the various linuxptp processes (ptp4l, phc2sys, and optionally for grandmaster clocks,
ts2phc). The linuxptp-daemon passes the event to the UNIX domain socket.

e Event is passed to the cloud-event-proxy sidecar

The PTP plugin reads the event from the UNIX domain socket and passes it to the cloud-event-
proxy sidecar in the PTP Operator-managed pod. cloud-event-proxy delivers the event from the
Kubernetes infrastructure to Cloud-Native Network Functions (CNFs) with low latency.

e Event is persisted
The cloud-event-proxy sidecar in the PTP Operator-managed pod processes the event and
publishes the cloud-native event by using a REST API.

o Message is transported
The message transporter transports the event to the cloud-event-proxy sidecar in the application
pod over HTTP or AMQP 1.0 QPID.

e Event is available from the REST API
The cloud-event-proxy sidecar in the Application pod processes the event and makes it available by
using the REST API.

e Consumer application requests a subscription and receives the subscribed event

The consumer application sends an API request to the cloud-event-proxy sidecar in the application
pod to create a PTP events subscription. The cloud-event-proxy sidecar creates an AMQ or HTTP
messaging listener protocol for the resource specified in the subscription.

219

OpenShift Container Platform 4.15 Networking

The cloud-event-proxy sidecar in the application pod receives the event from the PTP Operator-
managed pod, unwraps the cloud events object to retrieve the data, and posts the event to the
consumer application. The consumer application listens to the address specified in the resource qualifier
and receives and processes the PTP event.

21.3.3. Configuring the PTP fast event notifications publisher

To start using PTP fast event notifications for a network interface in your cluster, you must enable the
fast event publisher in the PTP Operator PtpOperatorConfig custom resource (CR) and configure
ptpClockThreshold values in a PtpConfig CR that you create.

Prerequisites

® You have installed the OpenShift Container Platform CLI (o¢).
® You have logged in as a user with cluster-admin privileges.

® You have installed the PTP Operator.

Procedure
1. Modify the default PTP Operator config to enable PTP fast events.

a. Save the following YAML in the ptp-operatorconfig.yaml file:

apiVersion: ptp.openshift.io/v1
kind: PtpOperatorConfig
metadata:
name: default
namespace: openshift-ptp
spec:
daemonNodeSelector:
node-role.kubernetes.io/worker: ""
ptpEventConfig:
enableEventPublisher: true 0

ﬂ Set enableEventPublisher to true to enable PTP fast event notifications.

NOTE

In OpenShift Container Platform 4.13 or later, you do not need to set the
spec.ptpEventConfig.transportHost field in the PtpOperatorConfig resource
when you use HTTP transport for PTP events. Set transportHost only when you
use AMQP transport for PTP events.

a. Update the PtpOperatorConfig CR:
I $ oc apply -f ptp-operatorconfig.yaml

2. Create a PtpConfig custom resource (CR) for the PTP enabled interface, and set the required
values for ptpClockThreshold and ptp4lOpts. The following YAML illustrates the required
values that you must set in the PtpConfig CR:

220

CHAPTER 21. USING PTP HARDWARE

spec:
profile:
- name: "profile1"
interface: "enp5s0f0"
ptp4IOpts: "-2 -s --summary_interval -4" ﬂ
phc2sysOpts: "-a -r-m -n 24 -N 8 -R 16" 9
ptp4iCont: " €)
ptpClockThreshold:)
holdOverTimeout: 5
maxOffsetThreshold: 100
minOffsetThreshold: -100

Append --summary_interval -4 to use PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file.
To use the default configuration, leave the field empty.

o ® 90

Optional. If the ptpClockThreshold stanza is not present, default values are used for the
ptpClockThreshold fields. The stanza shows default ptpClockThreshold values. The
ptpClockThreshold values configure how long after the PTP master clock is disconnected
before PTP events are triggered. holdOverTimeout is the time value in seconds before
the PTP clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure
offset values in nanoseconds that compare against the values for CLOCK_REALTIME
(phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this
range, the PTP clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

Additional resources

® Foracomplete example CR that configures linuxptp services as an ordinary clock with PTP fast
events, see Configuring linuxptp services as ordinary clock.

21.3.4. Migrating consumer applications to use HTTP transport for PTP or bare-
metal events

If you have previously deployed PTP or bare-metal events consumer applications, you need to update
the applications to use HTTP message transport.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have updated the PTP Operator or Bare Metal Event Relay to version 4.13+ which uses
HTTP transport by default.

Procedure

221

OpenShift Container Platform 4.15 Networking

1. Update your events consumer application to use HTTP transport. Set the http-event-
publishers variable for the cloud event sidecar deployment.
For example, in a cluster with PTP events configured, the following YAML snippet illustrates a
cloud event sidecar deployment:

containers:
- name: cloud-event-sidecar
image: cloud-event-sidecar
args:
- "--metrics-addr=127.0.0.1:9091"
- "--store-path=/store"
- "--transport-host=consumer-events-subscription-service.cloud-
events.svc.cluster.local:9043"
- "--http-event-publishers=ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043"
- "--api-port=8089"

The PTP Operator automatically resolves NODE_NAME to the host that is generating the
PTP events. For example, compute-1.example.com.

In a cluster with bare-metal events configured, set the http-event-publishers field to hw-
event-publisher-service.openshift-bare-metal-events.svc.cluster.local:9043 in the cloud
event sidecar deployment CR.

2. Deploy the consumer-events-subscription-service service alongside the events consumer
application. For example:

apiVersion: vi
kind: Service
metadata:
annotations:
prometheus.io/scrape: "true"
service.alpha.openshift.io/serving-cert-secret-name: sidecar-consumer-secret
name: consumer-events-subscription-service
namespace: cloud-events
labels:
app: consumer-service
spec:
ports:
- name: sub-port
port: 9043
selector:
app: consumer
clusterlP: None
sessionAffinity: None
type: ClusterlP

21.3.5. Installing the AMQ messaging bus

To pass PTP fast event notifications between publisher and subscriber on a node, you can install and
configure an AMQ messaging bus to run locally on the node. To use AMQ messaging, you must install
the AMQ Interconnect Operator.

222

CHAPTER 21. USING PTP HARDWARE

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ

Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites
® |nstall the OpenShift Container Platform CLI (oc¢).

® | ogin as a user with cluster-admin privileges.

Procedure

® |[nstall the AMQ Interconnect Operator to its own amg-interconnect namespace. See Adding
the Red Hat Integration - AMQ Interconnect Operator.

Verification

1. Check that the AMQ Interconnect Operator is available and the required pods are running:

I $ oc get pods -n amg-interconnect

Example output

NAME READY STATUS RESTARTS AGE
amg-interconnect-645db76c76-k8ghs 1/1 Running 0 23h
interconnect-operator-5¢cb5fc7cc-4v7gm 1/1 Running 0 23h

2. Check that the required linuxptp-daemon PTP event producer pods are running in the
openshift-ptp namespace.

I $ oc get pods -n openshift-ptp

Example output

NAME READY STATUS RESTARTS AGE
linuxptp-daemon-2t78p 3/3 Running 0 12h
linuxptp-daemon-k8n88 3/3 Running 0 12h

21.3.6. Subscribing DU applications to PTP events with the REST API

Subscribe applications to PTP events by using the resource address /cluster/node/<node_name>/ptp,
where <node_names is the cluster node running the DU application.

Deploy your cloud-event-consumer DU application container and cloud-event-proxy sidecar container

in a separate DU application pod. The cloud-event-consumer DU application subscribes to the cloud-
event-proxy container in the application pod.

223

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q1/html/deploying_amq_interconnect_on_openshift/adding-operator-router-ocp

OpenShift Container Platform 4.15 Networking

Use the following APl endpoints to subscribe the cloud-event-consumer DU application to PTP events
posted by the cloud-event-proxy container at http://localhost:8089/api/ocloudNotifications/v1/ in
the DU application pod:

e /api/ocloudNotifications/v1/subscriptions

o POST: Creates a new subscription
o GET: Retrieves a list of subscriptions

e /api/ocloudNotifications/v1/subscriptions/<subscription_id>

o GET: Returns details for the specified subscription ID

e /api/ocloudNotifications/v1i/health

o GET: Returns the health status of ocloudNotifications API

e api/ocloudNotifications/v1/publishers

o GET: Returns an array of os-clock-sync-state, ptp-clock-class-change, lock-state, and
gnss-sync-status messages for the cluster node

e /api/ocloudnotifications/vi/<resource_address>/CurrentState

o GET: Returns the current state of one the following event types: os-clock-sync-state, ptp-
clock-class-change, lock-state, or gnss-state-change events

NOTE

9089 is the default port for the cloud-event-consumer container deployed in the
application pod. You can configure a different port for your DU application as required.

-

21.3.6.1. PTP events REST API reference

Use the PTP event notifications REST API to subscribe a cluster application to the PTP events that are
generated on the parent node.

21.3.6.1.1. api/ocloudNotifications/v1/subscriptions

HTTP method
GET api/ocloudNotifications/v1/subscriptions

Description
Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list
of subscriptions.

Example API response

[

{
"id": "75b1ad8f-c807-4c23-act5-56f4b7ee3826",

"endpointUri": "http://localhost:9089/event",
"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/75b1ad8f-c807-4c23-
acf5-56f4b7ee3826",

224

CHAPTER 21. USING PTP HARDWARE

"resource": "/cluster/node/compute-1.example.com/ptp"

}
]

HTTP method
POST api/ocloudNotifications/vi/subscriptions

Description
Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created

status code is returned.

Table 21.10. Query parameters

Parameter Type

subscription data

Example payload

{

"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions”,
"resource": "/cluster/node/compute-1.example.com/ptp"

}

21.3.6.1.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>

HTTP method
GET api/ocloudNotifications/v1/subscriptions/<subscription_id>

Description
Returns details for the subscription with ID <subscription_id>

Table 21.11. Query parameters

Parameter Type

<subscription_id> string

Example API response

{
"id":"48210fb3-45be-4ce0-aa9b-41a0e58730ab",

"endpointUri": "http://localhost:9089/event",

"uriLocation":"http://localhost:8089/api/ocloudNotifications/vi1/subscriptions/48210fb3-45be-4ce0-
aa9b-41a0e58730ab",

"resource":"/cluster/node/compute-1.example.com/ptp"

}

21.3.6.1.3. api/ocloudNotifications/v1/health

HTTP method

225

OpenShift Container Platform 4.15 Networking

GET api/ocloudNotifications/v1/health/

Description
Returns the health status for the ocloudNotifications REST API.

Example API response

| ox

21.3.6.1.4. api/ocloudNotifications/v1/publishers

HTTP method
GET api/ocloudNotifications/v1/publishers

Description

Returns an array of os-clock-sync-state, ptp-clock-class-change, lock-state, and gnss-sync-status
details for the cluster node. The system generates notifications when the relevant equipment state
changes.

e os-clock-sync-state notifications describe the host operating system clock synchronization
state. Can be in LOCKED or FREERUN state.

e ptp-clock-class-change notifications describe the current state of the PTP clock class.

® Jock-state notifications describe the current status of the PTP equipment lock state. Can be in
LOCKED, HOLDOVER or FREERUN state.

® gnss-sync-status notifications describe the GPS synchronization state with regard to the
external GNSS clock signal. Can be in LOCKED or FREERUN state.

You can use equipment synchronization status subscriptions together to deliver a detailed view of the
overall synchronization health of the system.

Example API response

[

{
"id": "0Ofa415ae-a3cf-4299-876a-589438bacf75",

"endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy”,
"uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/0fa415ae-a3cf-4299-
876a-589438bacf75",
"resource": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state”
b

{
"id": "28cd82df-8436-4150-bbd9-7a9742828a71",

"endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy”,
"uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/28cd82df-8436-4f50-
bbd9-7a9742828a71",
"resource": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change”
b

{
"id": "44aa480d-7347-48b0-a5b0-e0af01fa9677",

"endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy”,
"uriLocation": "http://localhost:9085/api/ocloudNotifications/vi/publishers/44aa480d-7347-48b0-
abb0-e0af01fa9677",

226

CHAPTER 21. USING PTP HARDWARE

"resource": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state"

b

{
"id": "778da345d-4567-67b0-a43f0-rty885a456",

"endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy”,

"uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/778da345d-4567-67b0-
a43f0-rty885a456",

"resource": "/cluster/node/compute-1.example.com/sync/gnss-status/gnss-sync-status”

}
]

You can find os-clock-sync-state, ptp-clock-class-change, lock-state, and gnss-sync-status events
in the logs for the cloud-event-proxy container. For example:

I $ oc logs -f linuxptp-daemon-cvgré -n openshift-ptp -c¢ cloud-event-proxy

Example os-clock-sync-state event

"id":"c8a784d1-5f4a-4c16-9a81-a3b4313affeb",
"type":"event.sync.sync-status.os-clock-sync-state-change”,
"source":"/cluster/compute-1.example.com/ptp/CLOCK_REALTIME",
"dataContentType":"application/json",
"time":"2022-05-06T15:31:23.906277159Z",
"data":{
"version":"v1",
"values" [
{
"resource":"/sync/sync-status/os-clock-sync-state”,
"dataType":"notification”,
"valueType":"enumeration”,
"value":"LOCKED"
b
{

"resource":"/sync/sync-status/os-clock-sync-state”,
"dataType":"metric",

"valueType":"decimal64.3",

"value":"-53"

Example ptp-clock-class-change event

"id":"69eddb52-1650-4e56-b325-86d44688d02b",
"type":"event.sync.ptp-status.ptp-clock-class-change”,
"source":"/cluster/compute-1.example.com/ptp/ens2fx/master”,
"dataContentType":"application/json",
"time":"2022-05-06T15:31:23.147100033Z",
"data":{

"version":"v1",

"values" [

227

OpenShift Container Platform 4.15 Networking

"resource":"/sync/ptp-status/ptp-clock-class-change",
"dataType":"metric",

"valueType":"decimal64.3",

"value":"135"

Example lock-state event

"id":"305ec18b-1472-47b3-aadd-8f37933249a9",
"type":"event.sync.ptp-status.ptp-state-change",
"source":"/cluster/compute-1.example.com/ptp/ens2fx/master”,
"dataContentType":"application/json",
"time":"2022-05-06T15:31:23.467684081Z",
"data":{
"version":"v1",
"values" [
{
"resource":"/sync/ptp-status/lock-state",
"dataType":"notification”,
"valueType":"enumeration”,
"value":"LOCKED"
b
{

"resource":"/sync/ptp-status/lock-state",
"dataType":"metric",
"valueType":"decimal64.3",

"value":"62"

}
]
}
}

Example gnss-sync-status event

"id": "435e1f2a-6854-4555-8520-767325¢c087d7",
"type": "event.sync.gnss-status.gnss-state-change”,
"source": "/cluster/node/compute-1.example.com/sync/gnss-status/gnss-sync-status”,
"dataContentType": "application/json",
"time": "2023-09-27T19:35:33.42347206Z",
"data": {
"version": "v1",
"values": [
{
"resource": "/cluster/node/compute-1.example.com/ens2fx/master",
"dataType": "notification”,
"valueType": "enumeration”,
"value": "LOCKED"

228

CHAPTER 21. USING PTP HARDWARE

"resource": "/cluster/node/compute-1.example.com/ens2fx/master”,
"dataType": "metric",
"valueType": "decimal64.3",
"value": "5"
}
]
}
}

21.3.6.1.5. api/ocloudNotifications/vl/<resource_address>/CurrentState

HTTP method
GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/lock-
state/CurrentState

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/sync-status/os-clock-sync-
state/CurrentState

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-
change/CurrentState

Description
Configure the CurrentState AP| endpoint to return the current state of the os-clock-sync-state, ptp-
clock-class-change, lock-state events for the cluster node.

e os-clock-sync-state notifications describe the host operating system clock synchronization
state. Can be in LOCKED or FREERUN state.

e ptp-clock-class-change notifications describe the current state of the PTP clock class.

® Jock-state notifications describe the current status of the PTP equipment lock state. Can be in
LOCKED, HOLDOVER or FREERUN state.

Table 21.12. Query parameters

Parameter Type

<resource_address> string

Example lock-state APl response

"id": "c1ac3aa5-1195-4786-84f8-da0ead4462921",
"type": "event.sync.ptp-status.ptp-state-change",
"source": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state”,
"dataContentType": "application/json",
"time": "2023-01-10T02:41:57.094981478Z",
"data": {
"version": "v1",
"values": [
{
"resource": "/cluster/node/compute-1.example.com/ens5fx/master”,
"dataType": "notification”,
"valueType": "enumeration”,

229

OpenShift Container Platform 4.15 Networking

"value": "LOCKED"

}
{

"resource": "/cluster/node/compute-1.example.com/ens5fx/master”,
"dataType": "metric",

"valueType": "decimal64.3",

"value": "29"

Example os-clock-sync-state APl response

"specversion™: "0.3",
"id": "4f51fe99-feaa-4e66-9112-66¢c5c9b9afch”,
"source": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state”,

"type": "event.sync.sync-status.os-clock-sync-state-change”,

"subject": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state”,
"datacontenttype": "application/json",
"time": "2022-11-29T17:44:22.202Z",
"data™: {
"version": "v1",
"values": [

{

"resource": "/cluster/node/compute-1.example.com/CLOCK_REALTIME",
"dataType": "notification”,

"valueType": "enumeration”,

"value": "LOCKED"

"resource": "/cluster/node/compute-1.example.com/CLOCK_REALTIME",
"dataType": "metric",

"valueType": "decimal64.3",

"value": "27"

Example ptp-clock-class-change API response

"id": "064c9e67-5ad4-4afb-98ff-189c6aa9c205",
"type": "event.sync.ptp-status.ptp-clock-class-change”,
"source": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change”,
"dataContentType": "application/json",
"time": "2023-01-10T02:41:56.785673989Z",
"data": {
"version": "v1",
"values": [

{

"resource": "/cluster/node/compute-1.example.com/ens5fx/master”,
"dataType": "metric",

230

CHAPTER 21. USING PTP HARDWARE

"valueType": "decimal64.3",
"value": "165"

}
]
}
}

21.3.7. Monitoring PTP fast event metrics
You can monitor PTP fast events metrics from cluster nodes where the linuxptp-daemon is running.

You can also monitor PTP fast event metrics in the OpenShift Container Platform web console by using
the preconfigured and self-updating Prometheus monitoring stack.

Prerequisites

® |nstall the OpenShift Container Platform CLI oc.
® | ogin as a user with cluster-admin privileges.

® |nstall and configure the PTP Operator on a node with PTP-capable hardware.

Procedure

1. Start a debug pod for the node by running the following command:

I $ oc debug node/<node_name>

2. Check for PTP metrics exposed by the linuxptp-daemon container. For example, run the
following command:

I sh-4.4# curl http://localhost:9091/metrics
Example output

HELP cne_api_events_published Metric to get number of events published by the rest api
TYPE cne_api_events_published gauge
cne_api_events_published{address="/cluster/node/compute-1.example.com/sync/gnss-
status/gnss-sync-status",status="success"} 1
cne_api_events_published{address="/cluster/node/compute-1.example.com/sync/ptp-
status/lock-state",status="success"} 94
cne_api_events_published{address="/cluster/node/compute-1.example.com/sync/ptp-
status/ptp-clock-class-change",status="success"} 18
cne_api_events_published{address="/cluster/node/compute-1.example.com/sync/sync-
status/os-clock-sync-state",status="success"} 27

3. Toview the PTP event in the OpenShift Container Platform web console, copy the name of the
PTP metric you want to query, for example, openshift_ptp_offset_ns.

4. In the OpenShift Container Platform web console, click Observe - Metrics.

5. Paste the PTP metric name into the Expression field, and click Run queries.

Additional resources

231

OpenShift Container Platform 4.15 Networking

® Managing metrics

21.3.8. PTP fast event metrics reference

The following table describes the PTP fast events metrics that are available from cluster nodes where
the linuxptp-daemon service is running.

NOTE

Some of the following metrics are applicable for PTP grandmaster clocks (T-GM) only.

Table 21.13. PTP fast event metrics

Metric

openshift

_ptp_clo
ck_class

openshift

_ptp_clo
ck_state

openshift
_ptp_del
ay_ns

openshift
_ptp_fre
quency_
adjustme
nt_ns

openshift
_ptp_inte
rface_rol
e

openshift
_ptp_ma
x_offset_
ns

232

Description

Returns the PTP clock class for the interface.
Possible values for PTP clock class are 6
(LOCKED), 7 (HOLDOVER within specification),
140 (HOLDOVER outside specification), and 248
(FREERUN). Applicable to T-GM clocks only.

Returns the current PTP clock state for the
interface. Possible values for PTP clock state are
FREERUN, LOCKED, orHOLDOVER.

Returns the delay in nanoseconds between the
primary clock sending the timing packet and the
secondary clock receiving the timing packet.

Returns the frequency adjustment in nanoseconds
between 2 PTP clocks. For example, between the
upstream clock and the NIC, between the system
clock and the NIC, or between the PTP hardware
clock (phc) and the NIC. Applicable to T-GM clocks
only.

Describes the configured PTP clock role for the
interface. Possible values are O (PASSIVE), 1
(SLAVE), 2 MASTER), 3 (FAULTY), 4
(UNKNOWN), or 5 (LISTENING).

Returns the maximum offset in nanoseconds
between 2 clocks or interfaces. For example,
between the upstream GNSS clock and the NIC
(ts2phc), or between the PTP hardware clock
(phc) and the system clock (phc2sys). Applicable
to T-GM clocks only.

Example

openshift_ptp_clock_class
{node="compute-
1.example.com”,
process="ptp4l"} 6

openshift_ptp_clock_state
{iface="CLOCK_REALTIME",
node="compute-1.example.com",
process="phc2sys"} 1

openshift_ptp_delay_ns
{from="master", iface="ens2fx",
node="compute-1.example.com",
process="ts2phc"} 0

openshift_ptp_frequency_adjust
ment_ns {from="phc",
iface="CLOCK_REALTIME",
node="compute-1.example.com",
process="phc2sys"} -6768

openshift_ptp_interface_role
{iface="ens2f0", node="compute-
1.example.com”,
process="ptp4l"} 2

openshift_ptp_max_offset_ns
{from="master", iface="ens2fx",
node="compute-1.example.com",
process="ts2phc"}
1.038099569e+09

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#managing-metrics

Metric

openshift
_ptp_offs
et_ns

openshift
_ptp_pro
cess_res
tart_cou
nt

openshift
_ptp_pro
cess_sta
tus

openshift
_ptp_thr
eshold

CHAPTER 21. USING PTP HARDWARE

Description Example

Returns the offset in nanoseconds between the openshift_ptp_offset_ns
DPLL clock or the GNSS clock source and the NIC {from="phc",

hardware clock. Applicable to T-GM clocks only. iface="CLOCK_REALTIME",

node="compute-1.example.com",
process="phc2sys"} -9

Returns a count of the number of times the ptp4l openshift_ptp_process_restart_c

process was restarted. ount {config="ptp4l.0.config",
node="compute-
1.example.com",process="phc2s

ys"}1
Returns a status code that shows whether the PTP openshift_ptp_process_status
process is running or not. {config="ptp4l.0.config",

node="compute-
1.example.com",process="phc2s

ys"} 1
Returns values for HoldOverTimeout, openshift_ptp_threshold
MaxOffsetThreshold, and {node="compute-
MinOffsetThreshold. 1.example.com",
profile="grandmaster”,
e holdOverTimeout is the time value in threshold="HoldOverTimeout"} 5

seconds before the PTP clock event state
changes to FREERUN when the PTP
master clock is disconnected.

e maxOffsetThreshold and
minOffsetThreshold are offset values in
nanoseconds that compare against the
values for CLOCK_REALTIME
(phc2sys) or master offset (pPtp4l) values
that you configure in the PtpConfig CR
for the NIC.

21.4. DEVELOPING PTP EVENTS CONSUMER APPLICATIONS

When developing consumer applications that make use of Precision Time Protocol (PTP) events on a
bare-metal cluster node, you need to deploy your consumer application and a cloud-event-proxy
container in a separate application pod. The cloud-event-proxy container receives the events from the
PTP Operator pod and passes it to the consumer application. The consumer application subscribes to
the events posted in the cloud-event-proxy container by using a REST API.

For more information about deploying PTP events applications, see About the PTP fast event
notifications framework.

-

NOTE

The following information provides general guidance for developing consumer
applications that use PTP events. A complete events consumer application example is
outside the scope of this information.

233

OpenShift Container Platform 4.15 Networking

21.4.1. PTP events consumer application reference

PTP event consumer applications require the following features:

1. A web service running with a POST handler to receive the cloud native PTP events JSON
payload

2. A createSubscription function to subscribe to the PTP events producer
3. A getCurrentState function to poll the current state of the PTP events producer
The following example Go snippets illustrate these requirements:

Example PTP events consumer server function in Go

func server() {
http.HandleFunc("/event", getEvent)
http.ListenAndServe("localhost:8989", nil)

}

func getEvent(w http.ResponseWriter, req *http.Request) {
defer req.Body.Close()
bodyBytes, err := io.ReadAll(req.Body)
if err 1= nil {
log.Errorf("error reading event %v", err)
}
e = string(bodyBytes)
ifel=""{
processEvent(bodyBytes)
log.Infof("received event %s", string(bodyBytes))
} else {
w.WriteHeader(http.StatusNoContent)
}
}

Example PTP events createSubscription function in Go

import (

"github.com/redhat-cne/sdk-go/pkg/pubsub”
"github.com/redhat-cne/sdk-go/pkg/types”

v1pubsub "github.com/redhat-cne/sdk-go/v1/pubsub”

)

// Subscribe to PTP events using REST API
s1,_:=createsubscription("/cluster/node/<node_namex>/sync/sync-status/os-clock-sync-state") 0
s2, :=createsubscription("/cluster/node/<node_namex>/sync/ptp-status/ptp-clock-class-change")
s3,_:=createsubscription("/cluster/node/<node_namex>/sync/ptp-status/lock-state")

// Create PTP event subscriptions POST
func createSubscription(resourceAddress string) (sub pubsub.PubSub, err error) {
var status int
apiPath:= "/api/ocloudNotifications/v1/"
localAPIAddr:=localhost:8989 // vDU service APl address
apiAddr:= "localhost:8089" // event framework APl address

234

CHAPTER 21. USING PTP HARDWARE

subURL := &types.URI{URL: url.URL{Scheme: "http",
Host: apiAddr
Path: fmt.Sprintf("%s%s", apiPath, "subscriptions")}}
endpointURL := &types.URI{URL: url.URL{Scheme: "http",
Host: localAPIAddr,
Path: "event"}}

sub = v1pubsub.NewPubSub(endpointURL, resourceAddress)
var subB [Joyte

if subB, err = json.Marshal(&sub); err == nil {
rc := restclient.New()
if status, subB = rc.PostWithReturn(subURL, subB); status != http.StatusCreated {
err = fmt.Errorf("error in subscription creation api at %s, returned status %d", subURL, status)
}else {
err = json.Unmarshal(subB, &sub)
}
} else {
err = fmt.Errorf("failed to marshal subscription for %s", resourceAddress)

}

return

}

Replace <node_name> with the FQDN of the node that is generating the PTP events. For
example, compute-1.example.com.

Example PTP events consumer getCurrentState function in Go

//Get PTP event state for the resource
func getCurrentState(resource string) {
//Create publisher
url := &types.URI{URL: url.URL{Scheme: "http",
Host: localhost:8989,
Path: fmt.SPrintf("/api/ocloudNotifications/v1/%s/CurrentState",resource}}
rc := restclient.New()
status, event := rc.Get(url)
if status != http.StatusOK {
log.Errorf("CurrentState:error %d from url %s, %s", status, url.String(), event)
} else {
log.Debugf("Got CurrentState: %s ", event)
}
}

21.4.2. Reference cloud-event-proxy deployment and service CRs

Use the following example cloud-event-proxy deployment and subscriber service CRs as a reference
when deploying your PTP events consumer application.

235

OpenShift Container Platform 4.15 Networking

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Reference cloud-event-proxy deployment with HTTP transport

apiVersion: apps/v1
kind: Deployment
metadata:
name: event-consumer-deployment
namespace: <namespace>
labels:
app: consumer
spec:
replicas: 1
selector:
matchLabels:
app: consumer
template:
metadata:
labels:
app: consumer
spec:
serviceAccountName: sidecar-consumer-sa
containers:
- name: event-subscriber
image: event-subscriber-app
- name: cloud-event-proxy-as-sidecar
image: openshift4/ose-cloud-event-proxy
args:
- "--metrics-addr=127.0.0.1:9091"
- "--store-path=/store"
- "--transport-host=consumer-events-subscription-service.cloud-events.svc.cluster.local:9043"

- "--http-event-publishers=ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043"

- "--api-port=8089"
env:
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: NODE_IP
valueFrom:
fieldRef:
fieldPath: status.hostIP
volumeMounts:
- hame: pubsubstore
mountPath: /store
ports:
- name: metrics-port
containerPort: 9091

236

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

CHAPTER 21. USING PTP HARDWARE

- hame: sub-port
containerPort: 9043
volumes:
- name: pubsubstore
emptyDir: {}

Reference cloud-event-proxy deployment with AMQ transport

apiVersion: apps/v1
kind: Deployment
metadata:
name: cloud-event-proxy-sidecar
namespace: cloud-events
labels:
app: cloud-event-proxy
spec:
selector:
matchLabels:
app: cloud-event-proxy
template:
metadata:
labels:
app: cloud-event-proxy
spec:
nodeSelector:
node-role.kubernetes.io/worker: "
containers:

- name: cloud-event-sidecar
image: openshift4/ose-cloud-event-proxy
args:

- "--metrics-addr=127.0.0.1:9091"
- "--store-path=/store"
- "--transport-host=amqp://router.router.svc.cluster.local"
- "--api-port=8089"
env:
- name: <node_name>
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: <node_ip>
valueFrom:
fieldRef:
fieldPath: status.hostIP
volumeMounts:
- name: pubsubstore
mountPath: /store
ports:
- hame: metrics-port
containerPort: 9091
- hame: sub-port
containerPort: 9043

volumes:

- name: pubsubstore
emptyDir: {}

237

OpenShift Container Platform 4.15 Networking

Reference cloud-event-proxy subscriber service

apiVersion: vi
kind: Service
metadata:
annotations:
prometheus.io/scrape: "true"
service.alpha.openshift.io/serving-cert-secret-name: sidecar-consumer-secret
name: consumer-events-subscription-service
namespace: cloud-events
labels:
app: consumer-service
spec:
ports:
- name: sub-port
port: 9043
selector:
app: consumer
clusterlP: None
sessionAffinity: None
type: ClusterlP

21.4.3. PTP events available from the cloud-event-proxy sidecar REST API

PTP events consumer applications can poll the PTP events producer for the following PTP timing
events.

Table 21.14. PTP events available from the cloud-event-proxy sidecar

Resource URI Description

/cluster/node/<node_name>/sync/ptp- Describes the current status of the PTP equipment
status/lock-state lock state. Can be in LOCKED, HOLDOVER, or
FREERUN state.
/cluster/node/<node_name>/sync/sync- Describes the host operating system clock
status/os-clock-sync-state synchronization state. Can be in LOCKED or
FREERUN state.
/cluster/node/<node_name>/sync/ptp- Describes the current state of the PTP clock class.

status/ptp-clock-class-change

21.4.4. Subscribing the consumer application to PTP events

Before the PTP events consumer application can poll for events, you need to subscribe the application
to the event producer.

21.4.4.1. Subscribing to PTP lock-state events

To create a subscription for PTP lock-state events, send a POST action to the cloud event API at
http://localhost:8081/api/ocloudNotifications/vi/subscriptions with the following payload:

238

CHAPTER 21. USING PTP HARDWARE

{
"endpointUri": "http://localhost:8989/event",

"resource": "/cluster/node/<node_name>/sync/ptp-status/lock-state”,

}

Example response

{
"id": "e23473d9-ba18-4{78-946e-401a0caeff90",

"endpointUri": "http://localhost:8989/event",

"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/e23473d9-ba18-4{78-
946e-401a0caeffo0",

"resource": "/cluster/node/<node_name>/sync/ptp-status/lock-state”,

}

21.4.4.2. Subscribing to PTP os-clock-sync-state events

To create a subscription for PTP os-clock-sync-state events, send a POST action to the cloud event
API at http://localhost:8081/api/ocloudNotifications/v1/subscriptions with the following payload:

{
"endpointUri": "http://localhost:8989/event",

"resource": "/cluster/node/<node_name>/sync/sync-status/os-clock-sync-state",

}

Example response

{
"id": "e23473d9-ba18-4{78-946e-401a0caeff90",

"endpointUri": "http://localhost:8989/event",

"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/e23473d9-ba18-4{78-
946e-401a0caeffo90",

"resource": "/cluster/node/<node_name>/sync/sync-status/os-clock-sync-state",

}

21.4.4.3. Subscribing to PTP ptp-clock-class-change events

To create a subscription for PTP ptp-clock-class-change events, send a POST action to the cloud
event API at http://localhost:8081/api/ocloudNotifications/v1/subscriptions with the following
payload:

{
"endpointUri": "http://localhost:8989/event",

"resource": "/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-change”,

}

Example response

{
"id": "e23473d9-ba18-4{78-946e-401a0caeff90",

"endpointUri": "http://localhost:8989/event",
"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/e23473d9-ba18-4{78-

239

OpenShift Container Platform 4.15 Networking

946e-401a0caeffo90",
"resource": "/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-change”,

}

21.4.5. Getting the current PTP clock status

To get the current PTP status for the node, send a GET action to one of the following event REST APls:

e http:/localhost:8081/api/ocloudNotifications/vi/cluster/node/<node_names>/sync/ptp-
status/lock-state/CurrentState

e http:/localhost:8081/api/ocloudNotifications/vi/cluster/node/<node_name>/sync/sync-
status/os-clock-sync-state/CurrentState

e http:/localhost:8081/api/ocloudNotifications/vi/cluster/node/<node_names/sync/ptp-
status/ptp-clock-class-change/CurrentState

The response is a cloud native event JSON object. For example:

Example lock-state APl response

"id": "c1ac3aa5-1195-4786-84f8-da0ead4462921",

"type": "event.sync.ptp-status.ptp-state-change",

"source": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state”,
"dataContentType": "application/json",

"time": "2023-01-10T02:41:57.094981478Z",

"data™: {

"version": "v1",
"values": [

{

"resource": "/cluster/node/compute-1.example.com/ens5fx/master”,
"dataType": "notification”,

"valueType": "enumeration”,

"value": "LOCKED"

b

"resource": "/cluster/node/compute-1.example.com/ens5fx/master”,
"dataType": "metric",

"valueType": "decimal64.3",

"value": "29"

21.4.6. Verifying that the PTP events consumer application is receiving events

Verify that the cloud-event-proxy container in the application pod is receiving PTP events.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in as a user with cluster-admin privileges.

240

CHAPTER 21. USING PTP HARDWARE

® You have installed and configured the PTP Operator.

Procedure

1. Get the list of active linuxptp-daemon pods. Run the following command:
I $ oc get pods -n openshift-ptp
Example output

NAME READY STATUS RESTARTS AGE
linuxptp-daemon-2t78p 3/3 Running 0 8h
linuxptp-daemon-k8n88 3/3 Running 0 8h

2. Access the metrics for the required consumer-side cloud-event-proxy container by running the
following command:

$ oc exec -it <linuxptp-daemon> -n openshift-ptp -c cloud-event-proxy -- curl
127.0.0.1:9091/metrics

where:

<linuxptp-daemon>

Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

Example output

HELP cne_transport_connections_resets Metric to get number of connection resets
TYPE cne_transport_connections_resets gauge

cne_transport_connection_reset 1

HELP cne_transport_receiver Metric to get number of receiver created

TYPE cne_transport_receiver gauge
cne_transport_receiver{address="/cluster/node/compute-
1.example.com/ptp",status="active"} 2
cne_transport_receiver{address="/cluster/node/compute-
1.example.com/redfish/event",status="active"} 2

HELP cne_transport_sender Metric to get number of sender created

TYPE cne_transport_sender gauge
cne_transport_sender{address="/cluster/node/compute-
1.example.com/ptp",status="active"} 1
cne_transport_sender{address="/cluster/node/compute-
1.example.com/redfish/event”,status="active"} 1

HELP cne_events_ack Metric to get number of events produced

TYPE cne_events_ack gauge
cne_events_ack{status="success",type="/cluster/node/compute-1.example.com/ptp"} 18
cne_events_ack{status="success",type="/cluster/node/compute-
1.example.com/redfish/event"} 18

HELP cne_events_transport_published Metric to get number of events published by the
transport

TYPE cne_events_transport_published gauge
cne_events_transport_published{address="/cluster/node/compute-
1.example.com/ptp",status="failed"} 1
cne_events_transport_published{address="/cluster/node/compute-
1.example.com/ptp",status="success"} 18

241

OpenShift Container Platform 4.15 Networking

cne_events_transport_published{address="/cluster/node/compute-
1.example.com/redfish/event",status="failed"} 1
cne_events_transport_published{address="/cluster/node/compute-
1.example.com/redfish/event",status="success"} 18

HELP cne_events_transport_received Metric to get number of events received by the
transport

TYPE cne_events_transport_received gauge
cne_events_transport_received{address="/cluster/node/compute-
1.example.com/ptp",status="success"} 18
cne_events_transport_received{address="/cluster/node/compute-
1.example.com/redfish/event",status="success"} 18

HELP cne_events_api_published Metric to get number of events published by the rest
api

TYPE cne_events_api_published gauge
cne_events_api_published{address="/cluster/node/compute-
1.example.com/ptp",status="success"} 19
cne_events_api_published{address="/cluster/node/compute-
1.example.com/redfish/event",status="success"} 19

HELP cne_events_received Metric to get number of events received

TYPE cne_events_received gauge
cne_events_received{status="success",type="/cluster/node/compute-1.example.com/ptp"}
18

cne_events_received{status="success",type="/cluster/node/compute-
1.example.com/redfish/event"} 18

HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being
served.

TYPE promhttp_metric_handler_requests_in_flight gauge
promhttp_metric_handler_requests_in_flight 1

HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status
code.

TYPE promhttp_metric_handler_requests_total counter
promhttp_metric_handler_requests_total{code="200"} 4
promhttp_metric_handler_requests_total{code="500"} 0
promhttp_metric_handler_requests_total{code="503"} 0

242

CHAPTER 22. EXTERNAL DNS OPERATOR

CHAPTER 22. EXTERNAL DNS OPERATOR

22.1. EXTERNAL DNS OPERATOR RELEASE NOTES

The External DNS Operator deploys and manages ExternalDNS to provide name resolution for services
and routes from the external DNS provider to OpenShift Container Platform.

These release notes track the development of the External DNS Operator in OpenShift Container
Platform.

22.1.1. External DNS Operator 1.2.0

The following advisory is available for the External DNS Operator version 1.2.0:

® RHEA-2022:5867 ExternalDNS Operator 1.2 operator/operand containers

22.1.1.1. New features

® The External DNS Operator now supports AWS shared VPC. For more information, see
Creating DNS records in a different AWS Account using a shared VPC .

22.1.1.2. Bug fixes

® The update strategy for the operand changed from Rolling to Recreate. (OCPBUGS-3630)

22.1.2. External DNS Operator 1.1.1

The following advisory is available for the External DNS Operator version 1.1.1:

® RHEA-2024:0536 ExternalDNS Operator 1.1 operator/operand containers

22.1.3. External DNS Operator 1.1.0

This release included a rebase of the operand from the upstream project version 0.13.1. The following
advisory is available for the External DNS Operator version 1.1.0:

® RHEA-2022:9086-01ExternalDNS Operator 1.1 operator/operand containers

22.1.3.1. Bug fixes

® Previously, the ExternalDNS Operator enforced an empty defaultMode value for volumes,
which caused constant updates due to a conflict with the OpenShift API. Now, the defaultMode
value is not enforced and operand deployment does not update constantly. (OCPBUGS-2793)

22.1.4. External DNS Operator 1.0.1

The following advisory is available for the External DNS Operator version 1.0.1:

® RHEA-2024:0537 ExternalDNS Operator 1.0 operator/operand containers

22.1.5. External DNS Operator 1.0.0

The following advisory is available for the External DNS Operator version 1.0.0:

243

https://access.redhat.com/errata/RHEA-2023:7239
https://issues.redhat.com/browse/OCPBUGS-3630
https://access.redhat.com/errata/RHEA-2024:0536
https://access.redhat.com/errata/RHEA-2022:9086
https://issues.redhat.com/browse/OCPBUGS-2793
https://access.redhat.com/errata/RHEA-2024:0537

OpenShift Container Platform 4.15 Networking
® RHEA-2022:5867 ExternalDNS Operator 1.0 operator/operand containers

22.1.5.1. Bug fixes

® Previously, the External DNS Operator issued a warning about the violation of the restricted
SCC policy during ExternalDNS operand pod deployments. This issue has been resolved.
(BZ#2086408)

22.2. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

22.2.1. External DNS Operator

The External DNS Operator implements the External DNS API from the olm.openshift.io API group.
The External DNS Operator updates services, routes, and external DNS providers.

Prerequisites

® You have installed the yq CLI tool.

Procedure

You can deploy the External DNS Operator on demand from the OperatorHub. Deploying the External
DNS Operator creates a Subscription object.

1. Check the name of an install plan by running the following command:

$ oc -n external-dns-operator get sub external-dns-operator -o yaml | yq
'.status.installplan.name’

Example output
I install-zcvlr
2. Check if the status of an install plan is Complete by running the following command:
I $ oc -n external-dns-operator get ip <install_plan_name> -o yaml | yq '.status.phase'’
Example output
I Complete
3. View the status of the external-dns-operator deployment by running the following command:

I $ oc get -n external-dns-operator deployment/external-dns-operator

Example output

244

https://access.redhat.com/errata/RHEA-2022:5867
https://bugzilla.redhat.com/show_bug.cgi?id=2086408

CHAPTER 22. EXTERNAL DNS OPERATOR

NAME READY UP-TO-DATE AVAILABLE AGE
external-dns-operator 1/1 1 1 23h

22.2.2. External DNS Operator logs

You can view External DNS Operator logs by using the oc logs command.

Procedure

1. View the logs of the External DNS Operator by running the following command:

I $ oc logs -n external-dns-operator deployment/external-dns-operator -c external-dns-operator

22.2.2.1. External DNS Operator domain name limitations

The External DNS Operator uses the TXT registry which adds the prefix for TXT records. This reduces
the maximum length of the domain name for TXT records. A DNS record cannot be present without a
corresponding TXT record, so the domain name of the DNS record must follow the same limit as the
TXT records. For example, a DNS record of <domain_name_from_source> results in a TXT record of
external-dns-<record_type>-<domain_name_from_source>.

The domain name of the DNS records generated by the External DNS Operator has the following
limitations:

Record type Number of characters

CNAME 44

Wildcard CNAME records 42

on AzureDNS

A 48
Wildcard A records on 46
AzureDNS

The following error appears in the External DNS Operator logs if the generated domain name exceeds
any of the domain name limitations:

time="2022-09-02T08:53:57Z" level=error msg="Failure in zone test.example.io. [Id:
/hostedzone/Z06988883Q0HORLEUMXXX]"

time="2022-09-02T08:53:57Z" level=error msg="InvalidChangeBatch: [FATAL problem:
DomainLabelTooLong (Domain label is too long) encountered with 'external-dns-a-hello-openshift-
aaaaaaaaaa-bbbbbbbbbb-cccccec|\n\tstatus code: 400, request id: e54dfd5a-06¢c6-47b0-bcb9-
a4f7c3a4e0c6"

22.3.INSTALLING EXTERNAL DNS OPERATOR ON CLOUD
PROVIDERS

You can install the External DNS Operator on cloud providers such as AWS, Azure, and GCP.

245

OpenShift Container Platform 4.15 Networking

22.3.1. Installing the External DNS Operator

You can install the External DNS Operator by using the OpenShift Container Platform OperatorHub.

Procedure

1. Click Operators = OperatorHub in the OpenShift Container Platform web console.

2. Click External DNS Operator. You can use the Filter by keyword text box or the filter list to
search for External DNS Operator from the list of Operators.

3. Select the external-dns-operator namespace.

4. On the External DNS Operator page, click Install.

5. On the Install Operator page, ensure that you selected the following options:
a. Update the channel as stable-v1.
b. Installation mode as A specific name on the cluster

c. Installed namespace as external-dns-operator. If namespace external-dns-operator does
not exist, it gets created during the Operator installation.

d. Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic
by default.

e. ClickInstall.

If you select Automatic updates, the Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without any intervention.

If you select Manual updates, the OLM creates an update request. As a cluster administrator, you must
then manually approve that update request to have the Operator updated to the new version.

Verification

Verify that the External DNS Operator shows the Status as Succeeded on the Installed Operators
dashboard.

22.4. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS

The External DNS Operator includes the following configuration parameters.

22.4.1. External DNS Operator configuration parameters

The External DNS Operator includes the following configuration parameters:

Parameter Description

246

CHAPTER 22. EXTERNAL DNS OPERATOR

Parameter Description

spec Enables the type of a cloud provider.

spec:
provider:

type: AWS @)
aws:
credentials:
name: aws-access-key 9

6 Defines available options such as AWS, GCP, Azure, and Infoblox.

9 Defines a secret name for your cloud provider.

zones Enables you to specify DNS zones by their domains. If you do not specify zones,
the ExternalDNS resource discovers all of the zones present in your cloud
provider account.

zones:
- "myzoneid" 0

ﬁ Specifies the name of DNS zones.

domains Enables you to specify AWS zones by their domains. If you do not specify
domains, the ExternalDNS resource discovers all of the zones present in your
cloud provider account.

domains:
- filterType: Include

matchType: Exact

name: "myzonedomaini.com" 9
- filterType: Include

matchType: Pattern ﬂ
pattern: ".*\\.otherzonedomain\\.com"

Ensures that the ExternalDNS resource includes the domain name.

Instructs ExtrnalDNS that the domain matching has to be exact as
opposed to regular expression match.

Defines the name of the domain.

Sets the regex-domain-filter flag in the ExternalDNS resource. You
can limit possible domains by using a Regex filter.

Defines the regex pattern to be used by the ExternalDNS resource to
filter the domains of the target zones.

O 99 99O

247

OpenShift Container Platform 4.15 Networking

Parameter

248

Description

@ 9

1]
2]

source: ﬂ
type: Service g
service:
serviceType:G
- LoadBalancer
- ClusterIP
labelFilter: 6
matchLabels:
external-dns.mydomain.org/publish: "yes"
hostnameAnnotation: "Allow"
fgdnTemplate:
- "{{.Name}}.myzonedomain.com" G

Defines the settings for the source of DNS records.

The ExternalDNS resource uses the Service type as the source for
creating DNS records.

Sets the service-type-filter flag in the ExternalDNS resource. The
serviceType contains the following fields:

e default: LoadBalancer
o expected: ClusterlP
e NodePort

e LoadBalancer

e ExternalName

Ensures that the controller considers only those resources which matches
with label filter.

The default value for hosthameAnnotation is Ignore which instructs
ExternalDNS to generate DNS records using the templates specified in
the field fqdnTemplates. When the value is Allow the DNS records get
generated based on the value specified in the external-
dns.alpha.kubernetes.io/hosthname annotation.

The External DNS Operator uses a string to generate DNS names from
sources that don't define a hostname, or to add a hostname suffix when
paired with the fake source.

source:
type: OpenShiftRoute ﬂ
openshiftRouteOptions:
routerName: default
labelFilter:
matchLabels:
external-dns.mydomain.org/publish: "yes"

Creates DNS records.

CHAPTER 22. EXTERNAL DNS OPERATOR

22.5. CREATING DNS RECORDS ON AWS

You can create DNS records on AWS and AWS GovCloud by using External DNS Operator.

22.5.1. Creating DNS records on an public hosted zone for AWS by using Red Hat
External DNS Operator

You can create DNS records on a public hosted zone for AWS by using the Red Hat External DNS
Operator. You can use the same instructions to create DNS records on a hosted zone for AWS
GovCloud.

Procedure

1. Check the user. The user must have access to the kube-system namespace. If you don't have
the credentials, as you can fetch the credentials from the kube-system namespace to use the
cloud provider client:

I $ oc whoami
Example output
I system:admin
2. Fetch the values from aws-creds secret present in kube-system namespace.

$ export AWS_ACCESS_KEY_ID=$(oc get secrets aws-creds -n kube-system --template=
{{.data.aws_access_key_id}} | base64 -d)

$ export AWS_SECRET_ACCESS_KEY=%(oc get secrets aws-creds -n kube-system --
template={{.data.aws_secret_access_key}} | base64 -d)

3. Get the routes to check the domain:

I $ oc get routes --all-namespaces | grep console

Example output

openshift-console console console-openshift-
console.apps.testextdnsoperator.apacshift.support console https
reencrypt/Redirect None

openshift-console downloads downloads-openshift-
console.apps.testextdnsoperator.apacshift.support downloads http
edge/Redirect None

4. Get the list of dns zones to find the one which corresponds to the previously found route’s
domain:

I $ aws route53 list-hosted-zones | grep testextdnsoperator.apacshift.support

249

OpenShift Container Platform 4.15 Networking

Example output

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J60
testextdnsoperator.apacshift.support. 5

5. Create ExternalDNS resource for route source:

@ 990® 6 ® 00

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-aws 0
spec:
domains:
- filterType: Include
matchType: Exact
name: testextdnsoperator.apacshift.support ﬂ
provider:
type: AWS @
source:
type: OpenShiftRoute ﬂ
openshiftRouteOptions:
routerName: default G
EOF

Defines the name of external DNS resource.

By default all hosted zones are selected as potential targets. You can include a hosted
zone that you need.

The matching of the target zone’s domain has to be exact (as opposed to regular
expression match).

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the AWS Route53 DNS provider.

Defines options for the source of DNS records.

Defines OpenShift route resource as the source for the DNS records which gets created in

the previously specified DNS provider.

If the source is OpenShiftRoute, then you can pass the OpenShift Ingress Controller

name. External DNS Operator selects the canonical hostname of that router as the target

while creating CNAME record.

6. Check the records created for OCP routes using the following command:

$ aws route53 list-resource-record-sets --hosted-zone-id Z02355203TNN1XXXX1J60 --
query "ResourceRecordSets[?Type == 'CNAME']" | grep console

22.5.2. Creating DNS records in a different AWS Account using a shared VPC

250

CHAPTER 22. EXTERNAL DNS OPERATOR

You can use the ExternalDNS Operator to create DNS records in a different AWS account using a
shared Virtual Private Cloud (VPC). By using a shared VPC, an organization can connect resources from
multiple projects to a common VPC network. Organizations can then use VPC sharing to use a single
Route 53 instance across multiple AWS accounts.

Prerequisites

® You have created two Amazon AWS accounts: one with a VPC and a Route 53 private hosted
zone configured (Account A), and another for installing a cluster (Account B).

® You have created an IAM Policy and IAM Role with the appropriate permissions in Account A for
Account B to create DNS records in the Route 53 hosted zone of Account A.

® You have installed a cluster in Account B into the existing VPC for Account A.

® You have installed the ExternalDNS Operator in the cluster in Account B.

Procedure

1. Get the Role ARN of the IAM Role that you created to allow Account B to access Account A's
Route 53 hosted zone by running the following command:

I $ aws --profile account-a iam get-role --role-name user-rol1 | head -1

Example output

ROLE arn:aws:iam::1234567890123:role/user-rol1 2023-09-14T17:21:54+00:00 3600 /
AROA3SGB2ZRKRT5NISNJN user-rol1

2. Locate the private hosted zone to use with Account A’s credentials by running the following
command:

$ aws --profile account-a route53 list-hosted-zones | grep
testextdnsoperator.apacshift.support

Example output

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J60
testextdnsoperator.apacshift.support. 5

3. Create the ExternalDNS object by running the following command:

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-aws
spec:
domains:
- filterType: Include
matchType: Exact
name: testextdnsoperator.apacshift.support
provider:
type: AWS

251

OpenShift Container Platform 4.15 Networking

aws:
assumeRole:
arn: arn:aws:iam::12345678901234:role/user-rol1 ﬂ
source:
type: OpenShiftRoute
openshiftRouteOptions:
routerName: default
EOF

ﬂ Specify the Role ARN to have DNS records created in Account A.

4. Check the records created for OpenShift Container Platform (OCP) routes by using the
following command:

$ aws --profile account-a route53 list-resource-record-sets --hosted-zone-id
Z02355203TNN1XXXX1J60 --query "ResourceRecordSets[?Type == 'CNAME"" | grep
console-openshift-console

22.6. CREATING DNS RECORDS ON AZURE

You can create DNS records on Azure by using the External DNS Operator.

22.6.1. Creating DNS records on an Azure public DNS zone

You can create DNS records on a public DNS zone for Azure by using the External DNS Operator.

Prerequisites

® You must have administrator privileges.

® The admin user must have access to the kube-system namespace.

Procedure

1. Fetch the credentials from the kube-system namespace to use the cloud provider client by
running the following command:

$ CLIENT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_id}} | base64 -d)

$ CLIENT_SECRET=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_secret}} | base64 -d)

$ RESOURCE_GROUP=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_resourcegroup}} | base64 -d)

$ SUBSCRIPTION_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_subscription_id}} | base64 -d)

$ TENANT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_tenant_id}} | base64 -d)

2. Login to Azure by running the following command:

$ az login --service-principal -u "${CLIENT_ID}" -p "${CLIENT_SECRET}" --tenant
"${TENANT_ID}"

252

CHAPTER 22. EXTERNAL DNS OPERATOR

3. Getallist of routes by running the following command:

I $ oc get routes --all-namespaces | grep console

Example output

openshift-console console console-openshift-
console.apps.test.azure.example.com console https reencrypt/Redirect
None

openshift-console downloads downloads-openshift-
console.apps.test.azure.example.com downloads http edge/Redirect
None

4. Getalist of DNS zones by running the following command:

I $ az network dns zone list --resource-group "${RESOURCE_GROUP}"

5. Create a YAML file, for example, external-dns-sample-azure.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-azure.yaml file

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-azure ﬂ
spec:
zones:
- "/subscriptions/1234567890/resourceGroups/test-azure-xxxxx-
rg/providers/Microsoft.Network/dnszones/test.azure.example.com"” g
provider:
type: Azure 6
source:
openshiftRouteOptions: ﬂ
routerName: default 6
type: OpenShiftRoute G

Specifies the External DNS name.
Defines the zone ID.
Defines the provider type.

You can define options for the source of DNS records.

0009

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

6 Defines the route resource as the source for the Azure DNS records.

6. Check the DNS records created for OpenShift Container Platform routes by running the
following command:

253

OpenShift Container Platform 4.15 Networking

$ az network dns record-set list -g "${RESOURCE_GROUP}" -z test.azure.example.com |
grep console

NOTE

To create records on private hosted zones on private Azure DNS, you need to
specify the private zone under the zones field which populates the provider type
to azure-private-dns in the ExternalDNS container arguments.

22.7. CREATING DNS RECORDS ON GCP

You can create DNS records on GCP by using the External DNS Operator.

22.7.1. Creating DNS records on a public managed zone for GCP

You can create DNS records on a public managed zone for GCP by using the External DNS Operator.

Prerequisites

You must have administrator privileges.

Procedure

1.

254

Copy the gcp-credentials secret in the encoded-gcloud.json file by running the following
command:

$ oc get secret gcp-credentials -n kube-system --template="{{$v := index .data
"service_account.json"}H{{$v}}' | base64 -d - > decoded-gcloud.json

Export your Google credentials by running the following command:

I $ export GOOGLE_CREDENTIALS=decoded-gcloud.json

Activate your account by using the following command:

$ gcloud auth activate-service-account <client_email as per decoded-gcloud.json> --key-
file=decoded-gcloud.json

Set your project by running the following command:

I $ gcloud config set project <project_id as per decoded-gcloud.json>

Get a list of routes by running the following command:

I $ oc get routes --all-namespaces | grep console

Example output

openshift-console console console-openshift-
console.apps.test.gcp.example.com console https reencrypt/Redirect
None

CHAPTER 22. EXTERNAL DNS OPERATOR

openshift-console downloads downloads-openshift-
console.apps.test.gcp.example.com downloads http edge/Redirect
None

6. Get alist of managed zones by running the following command:

I $ gcloud dns managed-zones list | grep test.gcp.example.com
Example output
I ge-cvs4g-private-zone test.gcp.example.com

7. Create a YAML file, for example, external-dns-sample-gcp.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-gcp.yaml file

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-gcp ﬂ
spec:
domains:
- filterType: Include
matchType: Exact
name: test.gcp.example.com ﬂ
provider:
type: GCP 6
source:
openshiftRouteOptions: G
routerName: default ﬂ
type: OpenShiftRoute 6

Specifies the External DNS name.

By default, all hosted zones are selected as potential targets. You can include your hosted
zone.

The domain of the target must match the string defined by the name key.

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the provider type.
You can define options for the source of DNS records.
If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller

name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

@ 90® 006 00

Defines the route resource as the source for GCP DNS records.

255

OpenShift Container Platform 4.15 Networking

8. Check the DNS records created for OpenShift Container Platform routes by running the
following command:

I $ gcloud dns record-sets list --zone=qe-cvs4g-private-zone | grep console

22.8. CREATING DNS RECORDS ON INFOBLOX

You can create DNS records on Infoblox by using the External DNS Operator.

22.8.1. Creating DNS records on a public DNS zone on Infoblox

You can create DNS records on a public DNS zone on Infoblox by using the External DNS Operator.

Prerequisites

® You have access to the OpenShift CLI (oc¢).

® You have access to the Infoblox UI.

Procedure

1. Create a secret object with Infoblox credentials by running the following command:

$ oc -n external-dns-operator create secret generic infoblox-credentials --from-
literal=EXTERNAL_DNS_INFOBLOX_WAPI_USERNAME=<infoblox_username> --from-
literal=EXTERNAL_DNS_INFOBLOX_WAPI_PASSWORD-=<infoblox_password>

2. Getallist of routes by running the following command:

I $ oc get routes --all-namespaces | grep console

Example Output

openshift-console console console-openshift-console.apps.test.example.com
console https reencrypt/Redirect None

openshift-console downloads downloads-openshift-
console.apps.test.example.com downloads http edge/Redirect

None

3. Create a YAML file, for example, external-dns-sample-infoblox.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-infoblox.yaml file

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-infoblox ﬂ
spec:
provider:

type: Infoblox 9
infoblox:

256

CHAPTER 22. EXTERNAL DNS OPERATOR

credentials:
name: infoblox-credentials
gridHost: ${INFOBLOX_GRID_PUBLIC_IP}
wapiPort: 443
wapiVersion: "2.3.1"
domains:
- filterType: Include
matchType: Exact
name: test.example.com
source:
type: OpenShiftRoute 6
openshiftRouteOptions:
routerName: default

Specifies the External DNS name.
Defines the provider type.

You can define options for the source of DNS records.

- -

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

4. Create the ExternalDNS resource on Infoblox by running the following command:

I $ oc create -f external-dns-sample-infoblox.yaml

5. From the Infoblox Ul, check the DNS records created for console routes:

a. Click Data Management - DNS — Zones.

b. Select the zone name.

22.9. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL
DNS OPERATOR

After configuring the cluster-wide proxy, the Operator Lifecycle Manager (OLM) triggers automatic
updates to all of the deployed Operators with the new contents of the HTTP_PROXY, HTTPS_PROXY,
and NO_PROXY environment variables.

22.9.1. Trusting the certificate authority of the cluster-wide proxy

You can configure the External DNS Operator to trust the certificate authority of the cluster-wide
Proxy.

Procedure

1. Create the config map to contain the CA bundle in the external-dns-operator namespace by
running the following command:

I $ oc -n external-dns-operator create configmap trusted-ca

257

OpenShift Container Platform 4.15 Networking

2. Toinject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

$ oc -n external-dns-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

3. Update the subscription of the External DNS Operator by running the following command:
$ oc -n external-dns-operator patch subscription external-dns-operator --type='json’ -

p="[{"op": "add", "path": "/spec/config", "value":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}]}}]'

Verification

e After the deployment of the External DNS Operator is completed, verify that the trusted CA
environment variable is added to the external-dns-operator deployment by running the
following command:

$ oc -n external-dns-operator exec deploy/external-dns-operator -c external-dns-operator --
printenv TRUSTED_CA_CONFIGMAP_NAME

Example output

I trusted-ca

258

CHAPTER 23. NETWORK POLICY

CHAPTER 23. NETWORK POLICY

23.1. ABOUT NETWORK POLICY

As a cluster administrator, you can define network policies that restrict traffic to pods in your cluster.

23.1.1. About network policy

In a cluster using a network plugin that supports Kubernetes network policy, network isolation is
controlled entirely by NetworkPolicy objects. In OpenShift Container Platform 4.15, OpenShift SDN
supports using network policy in its default network isolation mode.

' WARNING
A Network policy does not apply to the host network namespace. Pods with host

networking enabled are unaffected by network policy rules. However, pods
connecting to the host-networked pods might be affected by the network policy
rules.

Network policies cannot block traffic from localhost or from their resident nodes.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, ICMP, and SCTP protocols. Other protocols are not
affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

® Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: deny-by-default
spec:
podSelector: {}
ingress: []

® Only allow connections from the OpenShift Container Platform Ingress Controller:

259

OpenShift Container Platform 4.15 Networking

To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-ingress
spec:

ingress:

- from:

- namespaceSelector:
matchLabels:
network.openshift.io/policy-group: ingress

podSelector: {}

policyTypes:

- Ingress

® Only accept connections from pods within a project:
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-same-namespace
spec:

podSelector: {}

ingress:

- from:

- podSelector: {}

® Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-http-and-https
spec:
podSelector:
matchLabels:
role: frontend
ingress:
- ports:
- protocol: TCP
port: 80
- protocol: TCP
port: 443

® Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a
NetworkPolicy object similar to the following:

260

CHAPTER 23. NETWORK POLICY

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-pod-and-namespace-both
spec:
podSelector:
matchLabels:
name: test-pods
ingress:
- from:
- namespaceSelector:
matchLabels:
project: project_name
podSelector:
matchLabels:
name: test-pods

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

23.1.1.1. Using the allow-from-router network policy

Use the following NetworkPolicy to allow external traffic regardless of the router configuration:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-router
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress: ﬂ
podSelector: {}
policyTypes:
- Ingress

Q policy-group.network.openshift.io/ingress:"" label supports both OpenShift-SDN and OVN-
Kubernetes.

23.1.1.2. Using the allow-from-hostnetwork network policy

Add the following allow-from-hostnetwork NetworkPolicy object to direct traffic from the host
network pods:

I apiVersion: networking.k8s.io/v1

261

OpenShift Container Platform 4.15 Networking

kind: NetworkPolicy
metadata:
name: allow-from-hostnetwork
spec:
ingress:
- from:
- namespaceSelector:

matchLabels:
policy-group.network.openshift.io/host-network: ™"

podSelector: {}
policyTypes:
- Ingress

23.1.2. Optimizations for network policy with OpenShift SDN

Use a network policy to isolate pods that are differentiated from one another by labels within a
namespace.

Itis inefficient to apply NetworkPolicy objects to large numbers of individual pods in a single
namespace. Pod labels do not exist at the IP address level, so a network policy generates a separate
Open vSwitch (OVS) flow rule for every possible link between every pod selected with a podSelector.

For example, if the spec podSelector and the ingress podSelector within a NetworkPolicy object each
match 200 pods, then 40,000 (200*200) OVS flow rules are generated. This might slow down a node.

When designing your network policy, refer to the following guidelines:

® Reduce the number of OVS flow rules by using namespaces to contain groups of pods that need

to beisolated.

NetworkPolicy objects that select a whole namespace, by using the namespaceSelector or an
empty podSelector, generate only a single OVS flow rule that matches the VXLAN virtual
network ID (VNID) of the namespace.

Keep the pods that do not need to be isolated in their original namespace, and move the pods
that require isolation into one or more different namespaces.

Create additional targeted cross-namespace network policies to allow the specific traffic that
you do want to allow from the isolated pods.

23.1.3. Optimizations for network policy with OVN-Kubernetes network plugin

When designing your network policy, refer to the following guidelines:

262

e For network policies with the same spec.podSelector spec, it is more efficient to use one

network policy with multiple ingress or egress rules, than multiple network policies with subsets
of ingress or egress rules.

Every ingress or egress rule based on the podSelector or namespaceSelector spec
generates the number of OVS flows proportional to number of pods selected by network
policy + number of pods selected by ingress or egress rule. Therefore, it is preferable to use
the podSelector or namespaceSelector spec that can select as many pods as you need in one
rule, instead of creating individual rules for every pod.

For example, the following policy contains two rules:

I apiVersion: networking.k8s.io/v1

kind: NetworkPolicy
metadata:
name: test-network-policy
spec:
podSelector: {}
ingress:
- from:
- podSelector:
matchLabels:
role: frontend
- from:
- podSelector:
matchLabels:
role: backend

The following policy expresses those same two rules as one:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: test-network-policy
spec:

podSelector: {}

ingress:

- from:

- podSelector:
matchExpressions:

- {key: role, operator: In, values: [frontend, backend]}

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: policy1
spec:
podSelector:
matchLabels:
role: db
ingress:
- from:
- podSelector:
matchLabels:
role: frontend
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: policy2
spec:
podSelector:
matchLabels:

CHAPTER 23. NETWORK POLICY

The same guideline applies to the spec.podSelector spec. If you have the same ingress or
egress rules for different network policies, it might be more efficient to create one network
policy with a common spec.podSelector spec. For example, the following two policies have
different rules:

263

OpenShift Container Platform 4.15 Networking

role: client
ingress:
- from:
- podSelector:
matchLabels:
role: frontend

The following network policy expresses those same two rules as one:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: policy3
spec:
podSelector:
matchExpressions:
- {key: role, operator: In, values: [db, client]}
ingress:
- from:
- podSelector:
matchLabels:
role: frontend

You can apply this optimization when only multiple selectors are expressed as one. In cases
where selectors are based on different labels, it may not be possible to apply this optimization. In
those cases, consider applying some new labels for network policy optimization specifically.

23.1.4. Next steps

® Creating a network policy

® Optional: Defining a default network policy

23.1.5. Additional resources

® Projects and namespaces
® Configuring multitenant network policy

® NetworkPolicy API

23.2. CREATING ANETWORK POLICY

As a user with the admin role, you can create a network policy for a namespace.

23.2.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-27107 ﬂ
spec:

264

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/api_reference/#networkpolicy-networking-k8s-io-v1

o ® 0

CHAPTER 23. NETWORK POLICY

podSelector: 9
matchLabels:
app: mongodb
ingress:
- from:
- podSelector: 6
matchLabels:
app: app
ports:
- protocol: TCP
port: 27017

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

23.2.2. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

® Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_names.yaml file:
I $ touch <policy_name>.yaml

where:

265

OpenShift Container Platform 4.15 Networking

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic
allowed by the configuration of other Network Policies.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: deny-by-default
spec:
podSelector: {}
policyTypes:
- Ingress
ingress: []

Allow ingress from all pods in the same namespace

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-same-namespace
spec:

podSelector:

ingress:

- from:

- podSelector: {}

Allow ingress traffic to one pod from a particular namespace

This policy allows traffic to pods labelled pod-a from pods running in hamespace-y.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-traffic-pod
spec:
podSelector:
matchLabels:
pod: pod-a
policyTypes:
- Ingress
ingress:
- from:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: namespace-y

2. To create the network policy object, enter the following command:

266

CHAPTER 23. NETWORK POLICY

I $ oc apply -f <policy_name>.yaml -n <namespace>

where:

<policy_name>
Specifies the network policy file name.
<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

I networkpolicy.networking.k8s.io/deny-by-default created

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

23.2.3. Creating a default deny all network policy

This is a fundamental policy, blocking all cross-pod networking other than network traffic allowed by the
configuration of other deployed network policies. This procedure enforces a default deny-by-default
policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

® Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

® You installed the OpenShift CLI (o¢).
® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace that the network policy applies to.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: deny-by-default

267

OpenShift Container Platform 4.15 Networking

namespace: default ﬂ
spec:

podSelector: {} 9

ingress: []

ﬂ namespace: default deploys this policy to the default namespace.

9 podSelector: is empty, this means it matches all the pods. Therefore, the policy applies to
all pods in the default namespace.

9 There are no ingress rules specified. This causes incoming traffic to be dropped to all

pods.

2. Apply the policy by entering the following command:

I $ oc apply -f deny-by-default.yami

Example output

I networkpolicy.networking.k8s.io/deny-by-default created

23.2.4. Creating a network policy to allow traffic from external clients

With the deny-by-default policy in place you can proceed to configure a policy that allows traffic from
external clients to a pod with the label app=web.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows external service from the public Internet directly
or by using a Load Balancer to access the pod. Traffic is only allowed to a pod with the label app=web.

Prerequisites

® Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from the public Internet directly or by using a load balancer to
access the pod. Save the YAML in the web-allow-external.yaml file:

I kind: NetworkPolicy

268

CHAPTER 23. NETWORK POLICY

apiVersion: networking.k8s.io/v1
metadata:

name: web-allow-external

namespace: default
spec:

policyTypes:

- Ingress

podSelector:

matchLabels:
app: web
ingress:

-{}
2. Apply the policy by entering the following command:

I $ oc apply -f web-allow-external.yaml

Example output
I networkpolicy.networking.k8s.io/web-allow-external created

This policy allows traffic from all resources, including external traffic as illustrated in the
following diagram:

OpenShift cluster

app = foo

RHEL client

23.2.5. Creating a network policy allowing traffic to an application from all
namespaces

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows traffic from all pods in all namespaces to a
particular application.

Prerequisites

269

OpenShift Container Platform 4.15 Networking

® Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

® You installed the OpenShift CLI (o¢).
® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in all namespaces to a particular application.
Save the YAML in the web-allow-all-namespaces.yaml file:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: web-allow-all-namespaces
namespace: default
spec:
podSelector:
matchLabels:

app: web ﬂ
policyTypes:
- Ingress
ingress:
- from:

- namespaceSelector: {} Q

ﬂ Applies the policy only to app:web pods in default namespace.

9 Selects all pods in all namespaces.

NOTE

By default, if you omit specifying a namespaceSelector it does not select any
namespaces, which means the policy allows traffic only from the namespace the
network policy is deployed to.

2. Apply the policy by entering the following command:

I $ oc apply -f web-allow-all-namespaces.yaml

Example output

I networkpolicy.networking.k8s.io/web-allow-all-namespaces created

Verification

1. Start a web service in the default namespace by entering the following command:

270

CHAPTER 23. NETWORK POLICY

I $ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

2. Run the following command to deploy an alpine image in the secondary namespace and to
start a shell:

I $ oc run test-$RANDOM --namespace=secondary --rm -i -t --image=alpine -- sh

3. Run the following command in the shell and observe that the request is allowed:

I # wget -qO- --timeout=2 http://web.default

Expected output

<IDOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>
</html>

23.2.6. Creating a network policy allowing traffic to an application from a
namespace

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows traffic to a pod with the label app=web from a
particular namespace. You might want to do this to:

® Restrict traffic to a production database only to namespaces where production workloads are
deployed.

271

OpenShift Container Platform 4.15 Networking

® Enable monitoring tools deployed to a particular namespace to scrape metrics from the current
namespace.

Prerequisites

® Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

® You installed the OpenShift CLI (o¢).
® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in a particular namespaces with a label
purpose=production. Save the YAML in the web-allow-prod.yaml file:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: web-allow-prod
namespace: default
spec:
podSelector:
matchLabels:
app: web ﬂ
policyTypes:
- Ingress
ingress:
- from:
- namespaceSelector:
matchLabels:

purpose: production 9

ﬂ Applies the policy only to app:web pods in the default namespace.

9 Restricts traffic to only pods in namespaces that have the label purpose=production.

2. Apply the policy by entering the following command:

I $ oc apply -f web-allow-prod.yaml

Example output

I networkpolicy.networking.k8s.io/web-allow-prod created

Verification

1. Start a web service in the default namespace by entering the following command:

272

CHAPTER 23. NETWORK POLICY

I $ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80
. Run the following command to create the prod namespace:

I $ oc create namespace prod

. Run the following command to label the prod namespace:

I $ oc label namespace/prod purpose=production

. Run the following command to create the dev namespace:

I $ oc create namespace dev

. Run the following command to label the dev namespace:

I $ oc label namespace/dev purpose=testing

. Run the following command to deploy an alpine image in the dev namespace and to start a
shell:

I $ oc run test-$RANDOM --namespace=dev --rm -i -t --image=alpine -- sh
. Run the following command in the shell and observe that the request is blocked:

I # wget -qO- --timeout=2 http://web.default

Expected output

I wget: download timed out

. Run the following command to deploy an alpine image in the prod namespace and start a shell:
I $ oc run test-$RANDOM --namespace=prod --rm -i -t --image=alpine -- sh

. Run the following command in the shell and observe that the request is allowed:

I # wget -qO- --timeout=2 http://web.default

Expected output

<IDOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>

273

OpenShift Container Platform 4.15 Networking

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

23.2.7. Additional resources

® Accessing the web console

® | ogging for egress firewall and network policy rules

23.3. VIEWING A NETWORK POLICY

As a user with the admin role, you can view a network policy for a namespace.

23.3.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-27107 ﬂ
spec:
podSelector: 9
matchLabels:
app: mongodb
ingress:
- from:
- podSelector: 6
matchLabels:
app: app
ports:
- protocol: TCP
port: 27017

The name of the NetworkPolicy object.

®9

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

o

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

274

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/web_console/#web-console

CHAPTER 23. NETWORK POLICY

Q A list of one or more destination ports on which to accept traffic.

23.3.2. Viewing network policies using the CLI

You can examine the network policies in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can view any network policy
in the cluster.

Prerequisites

® You installed the OpenShift CLI (o¢).
® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace where the network policy exists.

Procedure
® |ist network policies in a namespace:

o To view network policy objects defined in a namespace, enter the following command:
I $ oc get networkpolicy

o Optional: To examine a specific network policy, enter the following command:
I $ oc describe networkpolicy <policy _name> -n <namespace>

where:

<policy_name>
Specifies the name of the network policy to inspect.
<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

I $ oc describe networkpolicy allow-same-namespace

Output foroc describe command

Name: allow-same-namespace
Namespace: nsf
Created on: 2021-05-24 22:28:56 -0400 EDT

Labels: <none>
Annotations: <none>
Spec:

275

OpenShift Container Platform 4.15 Networking

PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
Allowing ingress traffic:
To Port: <any> (traffic allowed to all ports)
From:
PodSelector: <none>
Not affecting egress traffic
Policy Types: Ingress
NOTE
If you log in to the web console with cluster-admin privileges, you have a choice of

viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

23.4. EDITING A NETWORK POLICY

As a user with the admin role, you can edit an existing network policy for a namespace.

23.4.1. Editing a network policy

You can edit a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can edit a network policy in
any namespace in the cluster.

Prerequisites

® Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace where the network policy exists.

Procedure

1. Optional: To list the network policy objects in a namespace, enter the following command:
I $ oc get networkpolicy

where:

<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the network policy object.

276

CHAPTER 23. NETWORK POLICY

If you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

I $ oc apply -n <namespace> -f <policy_file>.yaml

where:

<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the network policy object directly, enter the following command:
I $ oc edit networkpolicy <policy _name> -n <namespace>

where:

<policy_name>
Specifies the name of the network policy.
<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the network policy object is updated.

$ oc describe networkpolicy <policy _name> -n <namespace>

where:

<policy_name>

Specifies the name of the network policy.

<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
editing a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

23.4.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-27107 ﬂ

277

OpenShift Container Platform 4.15 Networking

spec:
podSelector: g
matchLabels:
app: mongodb
ingress:
- from:
- podSelector: 6
matchLabels:
app: app
ports:
- protocol: TCP
port: 27017

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

o ® 00

A list of one or more destination ports on which to accept traffic.

23.4.3. Additional resources

® Creating a network policy

23.5. DELETING ANETWORK POLICY

As a user with the admin role, you can delete a network policy from a namespace.

23.5.1. Deleting a network policy using the CLI

You can delete a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can delete any network
policy in the cluster.

Prerequisites

® Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace where the network policy exists.

Procedure

278

CHAPTER 23. NETWORK POLICY

® To delete a network policy object, enter the following command:
I $ oc delete networkpolicy <policy _name> -n <namespace>

where:

<policy_name>
Specifies the name of the network policy.
<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

I networkpolicy.networking.k8s.io/default-deny deleted

NOTE
If you log in to the web console with cluster-admin privileges, you have a choice of

deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

23.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
As a cluster administrator, you can modify the new project template to automatically include network

policies when you create a new project. If you do not yet have a customized template for new projects,
you must first create one.

23.6.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Prerequisites

® You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Login as a user with cluster-admin privileges.

2. Generate the default project template:

I $ oc adm create-bootstrap-project-template -o yaml > template.yami

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

279

OpenShift Container Platform 4.15 Networking

4. The project template must be created in the openshift-config namespace. Load your modified
template:

I $ oc create -f template.yaml -n openshift-config

5. Edit the project configuration resource using the web console or CLI.
® Using the web console:
i. Navigate to the Administration — Cluster Settings page.
ii. Click Configuration to view all configuration resources.
ii. Find the entry for Project and click Edit YAML.
® Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

I $ oc edit project.config.openshift.io/cluster

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

apiVersion: config.openshift.io/v1
kind: Project
metadata:
#...
spec:
projectRequestTemplate:
name: <template_name>
#...

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

23.6.2. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

Prerequisites

® Your cluster uses a default CNI network plugin that supports NetworkPolicy objects, such as
the OpenShift SDN network plugin with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

® You installed the OpenShift CLI (oc¢).

® You must log in to the cluster with a user with cluster-admin privileges.

® You must have created a custom default project template for new projects.

280

CHAPTER 23. NETWORK POLICY

Procedure

1. Edit the default template for a new project by running the following command:
I $ oc edit template <project_template> -n openshift-config

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. Inthe template, add each NetworkPolicy object as an element to the objects parameter. The
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects.

objects:
- apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-same-namespace
spec:
podSelector: {}
ingress:
- from:
- podSelector: {}
- apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-openshift-ingress
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
network.openshift.io/policy-group: ingress
podSelector: {}
policyTypes:
- Ingress
- apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-kube-apiserver-operator
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: openshift-kube-apiserver-operator
podSelector:
matchLabels:
app: kube-apiserver-operator
policyTypes:
- Ingress

281

OpenShift Container Platform 4.15 Networking

3. Optional: Create a new project to contirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:
I $ oc new-project <project> ﬂ

ﬂ Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

$ oc get networkpolicy

NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s
allow-from-same-namespace <none> 7s

23.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK
POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

NOTE

If you are using the OpenShift SDN network plugin, configuring network policies as
described in this section provides network isolation similar to multitenant mode but with
network policy mode set.

23.7.1. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

® Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with admin privileges.

Procedure
1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-ingress

282

CHAPTER 23. NETWORK POLICY

spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress: "
podSelector: {}
policyTypes:
- Ingress
EOF

NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OpenShift SDN. You can use the
network.openshift.io/policy-group: ingress namespace selector label, but
this is a legacy label.

b. A policy named allow-from-openshift-monitoring:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-monitoring
spec:

ingress:

- from:

- namespaceSelector:
matchLabels:
network.openshift.io/policy-group: monitoring

podSelector: {}

policyTypes:

- Ingress
EOF

c. A policy named allow-same-namespace:

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-same-namespace
spec:

podSelector:

ingress:

- from:

- podSelector: {}

EOF

d. A policy named allow-from-kube-apiserver-operator:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1

283

OpenShift Container Platform 4.15 Networking

kind: NetworkPolicy
metadata:
name: allow-from-kube-apiserver-operator
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: openshift-kube-apiserver-operator
podSelector:
matchLabels:
app: kube-apiserver-operator
policyTypes:
- Ingress
EOF

For more details, see New kube-apiserver-operator webhook controller validating health
of webhook.

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

I $ oc describe networkpolicy
Example output

Name: allow-from-openshift-ingress
Namespace: examplei
Created on: 2020-06-09 00:28:17 -0400 EDT

Labels: <none>
Annotations: <none>
Spec:

PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
Allowing ingress traffic:
To Port: <any> (traffic allowed to all ports)
From:
NamespaceSelector: network.openshift.io/policy-group: ingress
Not affecting egress traffic
Policy Types: Ingress

Name: allow-from-openshift-monitoring
Namespace: examplei
Created on: 2020-06-09 00:29:57 -0400 EDT

Labels: <none>
Annotations: <none>
Spec:

PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
Allowing ingress traffic:
To Port: <any> (traffic allowed to all ports)
From:
NamespaceSelector: network.openshift.io/policy-group: monitoring
Not affecting egress traffic
Policy Types: Ingress

284

https://access.redhat.com/solutions/6964520

CHAPTER 23. NETWORK POLICY

23.7.2. Next steps

® Defining a default network policy

23.7.3. Additional resources

® OpenShift SDN network isolation modes

285

OpenShift Container Platform 4.15 Networking

CHAPTER 24. CIDR RANGE DEFINITIONS

You must specify non-overlapping ranges for the following CIDR ranges.

NOTE

Machine CIDR ranges cannot be changed after creating your cluster.

IMPORTANT

OVN-Kubernetes, the default network provider in OpenShift Container Platform 4.11 and
later, uses the 100.64.0.0/16 IP address range internally. If your cluster uses OVN-
Kubernetes, do not include the 100.64.0.0/16 IP address range in any other CIDR
definitions in your cluster.

24.1. MACHINE CIDR

In the Machine CIDR field, you must specify the IP address range for machines or cluster nodes.

The default is 10.0.0.0/16. This range must not conflict with any connected networks.

24.2. SERVICE CIDR

In the Service CIDR field, you must specify the IP address range for services. The range must be large
enough to accommodate your workload. The address block must not overlap with any external service
accessed from within the cluster. The default is 172.30.0.0/16.

24.3. POD CIDR

In the pod CIDR field, you must specify the IP address range for pods.

The pod CIDR is the same as the clusterNetwork CIDR and the cluster CIDR. The range must be large
enough to accommodate your workload. The address block must not overlap with any external service

accessed from within the cluster. The default is 10.128.0.0/14. You can expand the range after cluster
installation.

Additional resources

® Cluster Network Operator Configuration

® Configuring the cluster network range

24.4. HOST PREFIX

In the Host Prefix field, you must specify the subnet prefix length assigned to pods scheduled to
individual machines. The host prefix determines the pod IP address pool for each machine.

For example, if the host prefix is set to /23, each machine is assigned a /23 subnet from the pod CIDR
address range. The default is /23, allowing 510 cluster nodes, and 510 pod IP addresses per node.

286

CHAPTER 25. AWS LOAD BALANCER OPERATOR

CHAPTER 25. AWS LOAD BALANCER OPERATOR

25.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the
AWSLoadBalancerController resource.

These release notes track the development of the AWS Load Balancer Operator in OpenShift Container
Platform.

For an overview of the AWS Load Balancer Operator, see AWS Load Balancer Operator in OpenShift
Container Platform.

NOTE

AWS Load Balancer Operator currently does not support AWS GovCloud.

25.1.1. AWS Load Balancer Operator 1.1.1

The following advisory is available for the AWS Load Balancer Operator version 1.1.1:

® RHEA-2024:0555 Release of AWS Load Balancer Operator 1.1.z on OperatorHub

25.1.2. AWS Load Balancer Operator 1.1.0

The AWS Load Balancer Operator version 1.1.0 supports the AWS Load Balancer Controller version
2.4.4,

The following advisory is available for the AWS Load Balancer Operator version 1.1.0:

® RHEA-2023:6218 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

25.1.2.1. Notable changes

® This release uses the Kubernetes API version 0.27.2.

25.1.2.2. New features

® The AWS Load Balancer Operator now supports a standardized Security Token Service (STS)
flow by using the Cloud Credential Operator.

25.1.2.3. Bug fixes

® AFIPS-compliant cluster must use TLS version 1.2. Previously, webhooks for the AWS Load
Balancer Controller only accepted TLS 1.3 as the minimum version, resulting in an error such as
the following on a FIPS-compliant cluster:

I remote error: tls: protocol version not supported

Now, the AWS Load Balancer Controller accepts TLS 1.2 as the minimum TLS version, resolving
this issue. (OCPBUGS-14846)

287

https://access.redhat.com/errata/RHEA-2024:0555
https://access.redhat.com/errata/RHEA-2023:6218
https://issues.redhat.com/browse/OCPBUGS-14846

OpenShift Container Platform 4.15 Networking

25.1.3. AWS Load Balancer Operator 1.0.1

The following advisory is available for the AWS Load Balancer Operator version 1.0.1:

® Release of AWS Load Balancer Operator 1.0.1 on OperatorHub

25.1.4. AWS Load Balancer Operator 1.0.0

The AWS Load Balancer Operator is now generally available with this release. The AWS Load Balancer
Operator version 1.0.0 supports the AWS Load Balancer Controller version 2.4.4.

The following advisory is available for the AWS Load Balancer Operator version 1.0.0:

® RHEA-2023:1954 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

IMPORTANT

The AWS Load Balancer (ALB) Operator version 1.x.x cannot upgrade automatically from
the Technology Preview version O.x.x. To upgrade from an earlier version, you must
uninstall the ALB operands and delete the aws-load-balancer-operator namespace.

25.1.4.1. Notable changes

® This release uses the new v1 API version.

25.1.4.2. Bug fixes

® Previously, the controller provisioned by the AWS Load Balancer Operator did not properly use
the configuration for the cluster-wide proxy. These settings are now applied appropriately to
the controller. (OCPBUGS-4052, OCPBUGS-5295)

25.1.5. Earlier versions

The two earliest versions of the AWS Load Balancer Operator are available as a Technology Preview.
These versions should not be used in a production cluster. For more information about the support
scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

The following advisory is available for the AWS Load Balancer Operator version 0.2.0:

® RHEA-2022:9084 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

The following advisory is available for the AWS Load Balancer Operator version 0.0.1:

® RHEA-2022:5780 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

25.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can
install the AWS Load Balancer Operator from OperatorHub by using OpenShift Container Platform web
console or CLI.

288

https://access.redhat.com/errata/RHEA-2024:0556
https://access.redhat.com/errata/RHEA-2023:1954
https://issues.redhat.com/browse/OCPBUGS-4052
https://issues.redhat.com/browse/OCPBUGS-5295
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/errata/RHEA-2022:9084
https://access.redhat.com/errata/RHEA-2022:5780

CHAPTER 25. AWS LOAD BALANCER OPERATOR

25.2.1. AWS Load Balancer Operator considerations

Review the following limitations before installing and using the AWS Load Balancer Operator:

The IP traffic mode only works on AWS Elastic Kubernetes Service (EKS). The AWS Load
Balancer Operator disables the IP traffic mode for the AWS Load Balancer Controller. As a
result of disabling the IP traffic mode, the AWS Load Balancer Controller cannot use the pod
readiness gate.

The AWS Load Balancer Operator adds command-line flags such as --disable-ingress-class-
annotation and --disable-ingress-group-name-annotation to the AWS Load Balancer
Controller. Therefore, the AWS Load Balancer Operator does not allow using the
kubernetes.io/ingress.class and alb.ingress.kubernetes.io/group.name annotations in the
Ingress resource.

25.2.2. AWS Load Balancer Operator

The AWS Load Balancer Operator can tag the public subnets if the kubernetes.io/role/elb tag is
missing. Also, the AWS Load Balancer Operator detects the following information from the underlying
AWS cloud:

The ID of the virtual private cloud (VPC) on which the cluster hosting the Operator is deployed
in.

Public and private subnets of the discovered VPC.

The AWS Load Balancer Operator supports the Kubernetes service resource of type LoadBalancer by
using Network Load Balancer (NLB) with the instance target type only.

Procedure

1.

You can deploy the AWS Load Balancer Operator on demand from OperatorHub, by creating a
Subscription object by running the following command:

$ oc -n aws-load-balancer-operator get sub aws-load-balancer-operator --
template="{{.status.installplan.name}}{{"\n"}}'

Example output

I install-zlIfbt

Check if the status of an install plan is Complete by running the following command:

I $ oc -n aws-load-balancer-operator get ip <install_plan_name> --template="{{.status.phase}}
{ny

Example output

I Complete

View the status of the aws-load-balancer-operator-controller-manager deployment by
running the following command:

289

OpenShift Container Platform 4.15 Networking

$ oc get -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
aws-load-balancer-operator-controller-manager 1/1 1 1 23h

25.2.3. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into
an Outpost

You can configure the AWS Load Balancer Operator to provision an AWS Application Load Balancer in
an AWS VPC cluster extended into an Outpost. AWS Outposts does not support AWS Network Load
Balancers. As a result, the AWS Load Balancer Operator cannot provision Network Load Balancers in an
Outpost.

You can create an AWS Application Load Balancer either in the cloud subnet or in the Outpost subnet.
An Application Load Balancer in the cloud can attach to cloud-based compute nodes and an Application

Load Balancer in the Outpost can attach to edge compute nodes. You must annotate Ingress resources
with the Outpost subnet or the VPC subnet, but not both.

Prerequisites

® You have extended an AWS VPC cluster into an Outpost.
® You have installed the OpenShift CLI (oc).

® You have installed the AWS Load Balancer Operator and created the AWS Load Balancer
Controller.

Procedure

e Configure the Ingress resource to use a specified subnet:

Example Ingress resource configuration

apiVersion: networking.k8s.io/v1

kind: Ingress
metadata:
name: <application_name>
annotations:
alb.ingress.kubernetes.io/subnets: <subnet_id> ﬂ
spec:
ingressClassName: alb
rules:
- http:
paths:
- path: /
pathType: Exact
backend:
service:
name: <application_name>
port:
number: 80

290

CHAPTER 25. AWS LOAD BALANCER OPERATOR

ﬂ Specifies the subnet to use.
o To use the Application Load Balancer in an Outpost, specify the Outpost subnet ID.

o To use the Application Load Balancer in the cloud, you must specify at least two
subnets in different availability zones.

25.2.4. AWS Load Balancer Operator logs

You can view the AWS Load Balancer Operator logs by using the oc logs command.

Procedure

® View the logs of the AWS Load Balancer Operator by running the following command:

$ oc logs -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager -c manager

25.3.INSTALLING THE AWS LOAD BALANCER OPERATOR

The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can
install the AWS Load Balancer Operator from the OperatorHub by using OpenShift Container Platform
web console or CLI.

25.3.1. Installing the AWS Load Balancer Operator by using the web console

You can install the AWS Load Balancer Operator by using the web console.

Prerequisites

® You have logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

® Your cluster is configured with AWS as the platform type and cloud provider.
e |f you are using a security token service (STS) or user-provisioned infrastructure, follow the
related preparation steps. For example, if you are using AWS Security Token Service, see

"Preparing for the AWS Load Balancer Operator on a cluster using the AWS Security Token
Service (STS)".

Procedure

1. Navigate to Operators = OperatorHub in the OpenShift Container Platform web console.

2. Select the AWS Load Balancer Operator. You can use the Filter by keyword text box or use
the filter list to search for the AWS Load Balancer Operator from the list of Operators.

3. Select the aws-load-balancer-operator namespace.

4. On the Install Operator page, select the following options:

a. Update the channelas stable-v1.

291

OpenShift Container Platform 4.15 Networking

b. Installation mode as All namespaces on the cluster (default)

c. Installed Namespace as aws-load-balancer-operator. If the aws-load-balancer-operator
namespace does not exist, it gets created during the Operator installation.

d. Select Update approvalas Automatic or Manual. By default, the Update approvalis set to
Automatic. If you select automatic updates, the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention. If
you select manual updates, the OLM creates an update request. As a cluster administrator,
you must then manually approve that update request to update the Operator updated to

the new version.

5. Click Install.

Verification

e Verify that the AWS Load Balancer Operator shows the Status as Succeeded on the Installed

Operators dashboard.

25.3.2. Installing the AWS Load Balancer Operator by using the CLI

You can install the AWS Load Balancer Operator by using the CLI.

Prerequisites

® You are logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

® Your cluster is configured with AWS as the platform type and cloud provider.

® You are logged into the OpenShift CLI (o¢).

Procedure
1. Create a Namespace object:

a. Create a YAML file that defines the Namespace object:

Example namespace.yaml file

apiVersion: vi
kind: Namespace
metadata:
name: aws-load-balancer-operator

b. Create the Namespace object by running the following command:
I $ oc apply -f namespace.yaml

2. Create an OperatorGroup object:

a. Create a YAML file that defines the OperatorGroup object:

Example operatorgroup.yaml file

292

CHAPTER 25. AWS LOAD BALANCER OPERATOR

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: aws-lb-operatorgroup
namespace: aws-load-balancer-operator
spec:
upgradeStrategy: Default

b. Create the OperatorGroup object by running the following command:
I $ oc apply -f operatorgroup.yaml

3. Create a Subscription object:

a. Create a YAML file that defines the Subscription object:

Example subscription.yaml file

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: aws-load-balancer-operator
namespace: aws-load-balancer-operator
spec:
channel: stable-v1
installPlanApproval: Automatic
name: aws-load-balancer-operator
source: ge-app-registry
sourceNamespace: openshift-marketplace

b. Create the Subscription object by running the following command:

I $ oc apply -f subscription.yaml

Verification

1. Get the name of the install plan from the subscription:
$ oc -n aws-load-balancer-operator \

get subscription aws-load-balancer-operator \
--template="{{.status.installplan.name}}{{"\n"}}'

2. Check the status of the install plan:

$ oc -n aws-load-balancer-operator \
get ip <install_plan_name>\
--template="{{.status.phase}}{{"\n"}}'

The output must be Complete.

25.4.INSTALLING THE AWS LOAD BALANCER OPERATORON A
CLUSTER USING THE AWS SECURITY TOKEN SERVICE

293

OpenShift Container Platform 4.15 Networking

You can install the AWS Load Balancer Operator on a cluster that uses STS.

The AWS Load Balancer Operator relies on the CredentialsRequest object to bootstrap the Operator
and the AWS Load Balancer Controller. The AWS Load Balancer Operator waits until the required
secrets are created and available.

25.4.1. Creating an IAM role for the AWS Load Balancer Operator

An additional AWS Identity and Access Management (IAM) role is required to successfully install the
AWS Load Balancer Operator on a cluster that uses STS. The IAM role is required to interact with
subnets and Virtual Private Clouds (VPCs). The AWS Load Balancer Operator generates the
CredentialsRequest object with the IAM role to bootstrap itself.

You can create the IAM role by using the following options:

® Using the Cloud Credential Operator utility (ccoctl) and a predefined CredentialsRequest
object.

e Using the AWS CLI and predefined AWS manifests.

Use the AWS CLI if your environment does not support the ccoctl command.

25.4.1.1. Creating an AWS IAM role by using the Cloud Credential Operator utility

You can use the Cloud Credential Operator utility (ccoctl) to create an AWS IAM role for the AWS Load
Balancer Operator. An AWS |IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).

Prerequisites

® You must extract and prepare the ccoctl binary.

Procedure

1. Download the CredentialsRequest custom resource (CR) and store it in a directory by running
the following command:

$ curl --create-dirs -0 <credrequests-dir>/operator.yami
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-
credentials-request.yaml

2. Use the ccoctl utility to create an AWS IAM role by running the following command:

$ ccoctl aws create-iam-roles \
--name <name> \
--region=<aws_region> \
--credentials-requests-dir=<credrequests-dir> \
--identity-provider-arn <oidc-arn>

Example output

2023/09/12 11:38:57 Role arn:aws:iam:: 777777777777 :role/<name>-aws-load-balancer-
operator-aws-load-balancer-operator created ﬂ
2023/09/12 11:38:57 Saved credentials configuration to: /home/user/<credrequests-

294

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#cco-ccoctl-configuring_installing-aws-customizations

CHAPTER 25. AWS LOAD BALANCER OPERATOR

dir>/manifests/aws-load-balancer-operator-aws-load-balancer-operator-credentials.yaml
2023/09/12 11:38:58 Updated Role policy for Role <name>-aws-load-balancer-operator-aws-
load-balancer-operator created

ﬂ Note the Amazon Resource Name (ARN) of an AWS IAM role.

NOTE

The length of an AWS IAM role name must be less than or equal to 12 characters.

25.4.1.2. Creating an AWS IAM role by using the AWS CLI

You can use the AWS Command Line Interface to create an IAM role for the AWS Load Balancer
Operator. The IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).

Prerequisites

® You must have access to the AWS Command Line Interface (aws).

Procedure

1. Generate a trust policy file by using your identity provider by running the following command:

$ cat <<EOF > albo-operator-trust-policy.json
{
"Version": "2012-10-17",
"Statement”: |
{
"Effect": "Allow",
"Principal™: {
"Federated": "arn:aws:iam::777777777777:0idc-provider/<oidc-provider-id>" ﬂ
2
"Action": "sts:AssumeRoleWithWebldentity",
"Condition": {
"StringEquals™: {
"<oidc-provider-id>:sub": "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-operator-controller-manager” g

}
}
}
]

}
EOF

ﬂ Specifies the Amazon Resource Name (ARN) of the identity provider.

9 Specifies the service account for the AWS Load Balancer Operator.

2. Create the IAM role with the generated trust policy by running the following command:

$ aws iam create-role --role-name albo-operator --assume-role-policy-document file://albo-
operator-trust-policy.json

295

OpenShift Container Platform 4.15 Networking

Example output

ROLE arn:aws:iam::777777777777:role/albo-operator 2023-08-02T12:13:22Z ﬂ
ASSUMEROLEPOLICYDOCUMENT 2012-10-17

STATEMENT sts:AssumeRoleWithWebldentity Allow

STRINGEQUALS system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-
controller-manager

PRINCIPAL arn:aws:iam:777777777777:oidc-provider/<oidc-provider-id>

ﬂ Note the ARN of the created IAM role.

3. Download the permission policy for the AWS Load Balancer Operator by running the following
command:

$ curl -0 albo-operator-permission-policy.json
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-
permission-policy.json

4. Attach the permission policy for the AWS Load Balancer Controller to the IAM role by running
the following command:

$ aws iam put-role-policy --role-name albo-operator --policy-name perms-policy-albo-
operator --policy-document file://albo-operator-permission-policy.json

25.4.2. Configuring the ARN role for the AWS Load Balancer Operator

You can configure the Amazon Resource Name (ARN) role for the AWS Load Balancer Operator as an
environment variable. You can configure the ARN role by using the CLI.
Prerequisites

® You have installed the OpenShift CLI (oc).

Procedure

1. Create the aws-load-balancer-operator project by running the following command:

I $ oc new-project aws-load-balancer-operator

2. Create the OperatorGroup object by running the following command:

$ cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: aws-load-balancer-operator
namespace: aws-load-balancer-operator
spec:
targetNamespaces: []
EOF

3. Create the Subscription object by running the following command:

296

$ cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: aws-load-balancer-operator
namespace: aws-load-balancer-operator
spec:
channel: stable-v1
name: aws-load-balancer-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
config:
env:
- name: ROLEARN
value: "<role-arn>"
EOF

CHAPTER 25. AWS LOAD BALANCER OPERATOR

Specifies the ARN role to be used in the CredentialsRequest to provision the AWS
credentials for the AWS Load Balancer Operator.

NOTE

The AWS Load Balancer Operator waits until the secret is created before

moving to the Available status.

25.4.3. Creating an IAM role for the AWS Load Balancer Controller

The CredentialsRequest object for the AWS Load Balancer Controller must be set with a manually
provisioned IAM role.

You can create the IAM role by using the following options:

e Using the Cloud Credential Operator utility (ccoctl) and a predefined CredentialsRequest
object.

e Using the AWS CLI and predefined AWS manifests.

Use the AWS CLI if your environment does not support the ccoctl command.

25.4.3.1. Creating an AWS IAM role for the controller by using the Cloud Credential
Operator utility

You can use the Cloud Credential Operator utility (ccoctl) to create an AWS IAM role for the AWS Load
Balancer Controller. An AWS IAM role is used to interact with subnets and Virtual Private Clouds

(VPCs).

Prerequisites

® You must extract and prepare the ccoctl binary.

Procedure

297

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#cco-ccoctl-configuring_installing-aws-customizations

OpenShift Container Platform 4.15 Networking

1. Download the CredentialsRequest custom resource (CR) and store it in a directory by running
the following command:

$ curl --create-dirs -0 <credrequests-dir>/controller.yami
https://raw.githubusercontent.com/openshift/aws-load-balancer-
operator/main/hack/controller/controller-credentials-request.yaml

2. Use the ccoctl utility to create an AWS IAM role by running the following command:

$ ccoctl aws create-iam-roles \
--name <name> \
--region=<aws_region> \
--credentials-requests-dir=<credrequests-dir> \
--identity-provider-arn <oidc-arn>

Example output

2023/09/12 11:38:57 Role arn:aws:iam:: 777777777777 :role/<name>-aws-load-balancer-
operator-aws-load-balancer-controller created ﬂ

2023/09/12 11:38:57 Saved credentials configuration to: /home/user/<credrequests-
dir>/manifests/aws-load-balancer-operator-aws-load-balancer-controller-credentials.yaml
2023/09/12 11:38:58 Updated Role policy for Role <name>-aws-load-balancer-operator-aws-
load-balancer-controller created

ﬂ Note the Amazon Resource Name (ARN) of an AWS IAM role.

NOTE

The length of an AWS IAM role name must be less than or equal to 12 characters.

25.4.3.2. Creating an AWS IAM role for the controller by using the AWS CLI

You can use the AWS command line interface to create an AWS IAM role for the AWS Load Balancer
Controller. An AWS IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).

Prerequisites

® You must have access to the AWS command line interface (aws).

Procedure

1. Generate a trust policy file using your identity provider by running the following command:

$ cat <<EOF > albo-controller-trust-policy.json

{
"Version": "2012-10-17",

"Statement”: |

{
"Effect": "Allow",

"Principal™: {
"Federated": "arn:aws:iam::777777777777:0idc-provider/<oidc-provider-id>" ﬂ
2

298

CHAPTER 25. AWS LOAD BALANCER OPERATOR

"Action": "sts:AssumeRoleWithWebldentity",
"Condition": {
"StringEquals™: {
"<oidc-provider-id>:sub": "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-controller-cluster"
}
}
}
]

}
EOF

ﬂ Specifies the Amazon Resource Name (ARN) of the identity provider.

9 Specifies the service account for the AWS Load Balancer Controller.

2. Create an AWS IAM role with the generated trust policy by running the following command:

$ aws iam create-role --role-name albo-controller --assume-role-policy-document file://albo-
controller-trust-policy.json

Example output

ROLE arn:aws:iam::777777777777:role/albo-controller 2023-08-02T12:13:22Z ﬂ
ASSUMEROLEPOLICYDOCUMENT 2012-10-17

STATEMENT sts:AssumeRoleWithWebldentity Allow

STRINGEQUALS system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-
controller-cluster

PRINCIPAL arn:aws:iam:777777777777:oidc-provider/<oidc-provider-id>

Q Note the ARN of an AWS IAM role.

3. Download the permission policy for the AWS Load Balancer Controller by running the following
command:

$ curl -0 albo-controller-permission-policy.json
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/assets/iam-
policy.json

4. Attach the permission policy for the AWS Load Balancer Controller to an AWS IAM role by

running the following command:

$ aws iam put-role-policy --role-name albo-controller --policy-name perms-policy-albo-
controller --policy-document file://albo-controller-permission-policy.json

5. Create a YAML file that defines the AWSLoadBalancerController object:

Example sample-aws-lb-manual-creds.yaml file:

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:

299

OpenShift Container Platform 4.15 Networking

name: clustere
spec:
credentialsRequestConfig:
stsIAMRoleARN: <role-arn> @)

Defines the AWSLoadBalancerController object.

Defines the AWS Load Balancer Controller name. All related resources use this instance
name as a suffix.

® 9

Specifies the ARN role. The CredentialsRequest object uses this ARN role to provision
the AWS credentials.

25.4.4. Additional resources

® Configuring the Cloud Credential Operator utility

25.5. CREATING AN INSTANCE OF THE AWS LOAD BALANCER
CONTROLLER

After installing the AWS Load Balancer Operator, you can create the AWS Load Balancer Controller.

25.5.1. Creating the AWS Load Balancer Controller

You can install only a single instance of the AWSLoadBalancerController object in a cluster. You can
create the AWS Load Balancer Controller by using CLI. The AWS Load Balancer Operator reconciles
only the cluster named resource.

Prerequisites

® You have created the echoserver namespace.

® You have access to the OpenShift CLI (oc¢).

Procedure

1. Create a YAML file that defines the AWSLoadBalancerController object:

Example sample-aws-Ib.yaml file

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController 0
metadata:

name: clustere
spec:

subnetTagging: Auto 6

additionalResourceTags:

- key: example.org/security-scope

value: staging
ingressClass: alb
config:

300

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#cco-ccoctl-configuring_installing-aws-customizations

CHAPTER 25. AWS LOAD BALANCER OPERATOR

replicas: 2 G
enabledAddons: ﬂ
- AWSWAFv2 ©)

Defines the AWSLoadBalancerController object.

9 Defines the AWS Load Balancer Controller name. This instance name gets added as a
suffix to all related resources.

Configures the subnet tagging method for the AWS Load Balancer Controller. The
following values are valid:
® Auto: The AWS Load Balancer Operator determines the subnets that belong to the
cluster and tags them appropriately. The Operator cannot determine the role correctly

if the internal subnet tags are not present on internal subnet.

® Manual: You manually tag the subnets that belong to the cluster with the appropriate
role tags. Use this option if you installed your cluster on user-provided infrastructure.

Defines the tags used by the AWS Load Balancer Controller when it provisions AWS
resources.

Defines the ingress class name. The default value is alb.
Specifies the number of replicas of the AWS Load Balancer Controller.
Specifies annotations as an add-on for the AWS Load Balancer Controller.

Enables the alb.ingress.kubernetes.io/wafv2-acl-arn annotation.

Q9900® O

2. Create the AWSLoadBalancerController object by running the following command:
I $ oc create -f sample-aws-Ib.yaml

3. Create a YAML file that defines the Deployment resource:

Example sample-aws-Ib.yaml file

apiVersion: apps/vi
kind: Deployment 0
metadata:
name: <echoserver> 9
namespace: echoserver
spec:
selector:
matchLabels:
app: echoserver
replicas: 3
template:
metadata:
labels:
app: echoserver
spec:
containers:

301

OpenShift Container Platform 4.15 Networking

- image: openshift/origin-node
command:
- "/bin/socat"
args:
- TCP4-LISTEN:8080,reuseaddr,fork
- EXEC:'/bin/bash -c \"printf W'HTTP/1.0 200 OK\A\n\n\n\\\"; sed -e \\\"/Mr/g\"\"
imagePullPolicy: Always
name: echoserver
ports:
- containerPort: 8080

ﬂ Defines the deployment resource.
9 Specifies the deployment name.

g Specifies the number of replicas of the deployment.

4. Create a YAML file that defines the Service resource:

Example service-albo.yaml file:

apiVersion: vi
kind: Service)
metadata:
name: <echoserver> 9
namespace: echoserver
spec:
ports:
- port: 80
targetPort: 8080
protocol: TCP
type: NodePort
selector:
app: echoserver

ﬂ Defines the service resource.

9 Specifies the service name.

5. Create a YAML file that defines the Ingress resource:

Example ingress-albo.yaml file:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: <name> ﬂ
namespace: echoserver
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress.kubernetes.io/target-type: instance
spec:
ingressClassName: alb

302

CHAPTER 25. AWS LOAD BALANCER OPERATOR

rules:
- http:
paths:
- path: /
pathType: Exact
backend:
service:
name: <echoserver> 9
port:
number: 80

ﬂ Specify a name for the Ingress resource.

9 Specifies the service name.

Verification

® Save the status of the Ingress resource in the HOST variable by running the following
command:

$ HOST=$(oc get ingress -n echoserver echoserver --template="{{(index
.status.loadBalancer.ingress 0).hostname}}')

e Verify the status of the Ingress resource by running the following command:

I $ curl $HOST

25.6. SERVING MULTIPLE INGRESS RESOURCES THROUGH A SINGLE
AWS LOAD BALANCER

You can route the traffic to different services that are part of a single domain through a single AWS
Load Balancer. Each Ingress resource provides different endpoints of the domain.
25.6.1. Creating multiple ingress resources through a single AWS Load Balancer

You can route the traffic to multiple ingress resources through a single AWS Load Balancer by using the
CLI.

Prerequisites

® You have an access to the OpenShift CLI (o¢).

Procedure

1. Create an IngressClassParams resource YAML file, for example, sample-single-lb-
params.yaml, as follows:

apiVersion: elbv2.k8s.aws/vibetal ﬂ
kind: IngressClassParams
metadata:

name: single-lb-params g

303

OpenShift Container Platform 4.15 Networking

spec:
group:
name: single-lb G

ﬂ Defines the API group and version of the IngressClassParams resource.
9 Specifies the IngressClassParams resource name.
Specifies the IngressGroup resource name. All of the Ingress resources of this class

belong to this IngressGroup.

2. Create the IngressClassParams resource by running the following command:
I $ oc create -f sample-single-lb-params.yaml

3. Create the IngressClass resource YAML file, for example, sample-single-Ib-class.yaml, as
follows:

apiVersion: networking.k8s.io/v1 ﬂ
kind: IngressClass
metadata:
name: single-lb 9
spec:
controller: ingress.k8s.aws/alb G
parameters:
apiGroup: elbv2.k8s.aws ﬂ
kind: IngressClassParams 9
name: single-lb-params G

Defines the API group and version of the IngressClass resource.

Specifies the ingress class name.

Defines the controller name. The ingress.k8s.aws/alb value denotes that all ingress
resources of this class should be managed by the AWS Load Balancer Controller.

Defines the API group of the IngressClassParams resource.
Defines the resource type of the IngressClassParams resource.

Defines the IngressClassParams resource name.

QDO 009

4. Create the IngressClass resource by running the following command:
I $ oc create -f sample-single-lb-class.yaml

5. Create the AWSLoadBalancerController resource YAML file, for example, sample-single-
Ib.yaml, as follows:

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:

name: cluster

304

spec:
subnetTagging: Auto
ingressClass: single-lb ﬂ

CHAPTER 25. AWS LOAD BALANCER OPERATOR

ﬂ Defines the name of the IngressClass resource.

6. Create the AWSLoadBalancerController resource by running the following command:

I $ oc create -f sample-single-lb.yami

7. Create the Ingress resource YAML file, for example, sample-multiple-ingress.yaml, as follows:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-1 ﬂ
annotations:

alb.ingress.kubernetes.io/scheme: internet-facing 9

alb.ingress.kubernetes.io/group.order: "1"

alb.ingress.kubernetes.io/target-type: instance ﬂ

spec:
ingressClassName: single-Ib 6
rules:
- host: example.com G
http:
paths:
- path: /blog ﬂ
pathType: Prefix
backend:
service:
name: example-1 6
port:
number: 80 Q
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-2
annotations:

alb.ingress.kubernetes.io/scheme: internet-facing

alb.ingress.kubernetes.io/group.order: "2"

alb.ingress.kubernetes.io/target-type: instance

spec:
ingressClassName: single-Ib
rules:
- host: example.com
http:

paths:

- path: /store
pathType: Prefix
backend:

service:
name: example-2

305

OpenShift Container Platform 4.15 Networking

port:
number: 80
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-3
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress.kubernetes.io/group.order: "3"
alb.ingress.kubernetes.io/target-type: instance

spec:
ingressClassName: single-Ib
rules:
- host: example.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: example-3
port:
number: 80

Specifies the ingress name.

when the request is received at the load balancer.

the service.

Defines a domain name used for request routing.

Defines the path that must route to the service.

90900 9 609

Indicates the load balancer to provision in the public subnet to access the internet.

Specifies the order in which the rules from the multiple ingress resources are matched

Indicates that the load balancer will target OpenShift Container Platform nodes to reach

Specifies the ingress class that belongs to this ingress.

Defines the service name that serves the endpoint configured in the Ingress resource.

Defines the port on the service that serves the endpoint.

8. Create the Ingress resource by running the following command:

I $ oc create -f sample-multiple-ingress.yaml

25.7. ADDING TLS TERMINATION

You can add TLS termination on the AWS Load Balancer.

25.7.1. Adding TLS termination on the AWS Load Balancer

306

CHAPTER 25. AWS LOAD BALANCER OPERATOR

You can route the traffic for the domain to pods of a service and add TLS termination on the AWS Load
Balancer.

Prerequisites

® You have an access to the OpenShift CLI (oc¢).

Procedure
1. Create a YAML file that defines the AWSLoadBalancerController resource:

Example add-tls-termination-albc.yaml file

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:

name: cluster
spec:

subnetTagging: Auto

ingressClass: tls-termination ﬂ

Defines the ingress class name. If the ingress class is not present in your cluster the AWS
Load Balancer Controller creates one. The AWS Load Balancer Controller reconciles the
additional ingress class values if spec.controller is set to ingress.k8s.aws/alb.

2. Create a YAML file that defines the Ingress resource:

Example add-tls-termination-ingress.yaml file

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: <example> ﬂ
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing 9

alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-west-2:xxxxx 6

spec:
ingressClassName: tls-termination ﬂ
rules:
- host: <example.com> 6
http:
paths:
- path: /
pathType: Exact
backend:
service:
name: <example-service> G
port:
number: 80

ﬂ Specifies the ingress name.

307

OpenShift Container Platform 4.15 Networking

9 The controller provisions the load balancer for ingress in a public subnet to access the load
balancer over the internet.

9 The Amazon Resource Name (ARN) of the certificate that you attach to the load balancer.
Q Defines the ingress class name.
9 Defines the domain for traffic routing.

6 Defines the service for traffic routing.

25.8. CONFIGURING CLUSTER-WIDE PROXY

You can configure the cluster-wide proxy in the AWS Load Balancer Operator. After configuring the
cluster-wide proxy, Operator Lifecycle Manager (OLM) automatically updates all the deployments of
the Operators with the environment variables such as HTTP_PROXY, HTTPS_PROXY, and
NO_PROXY. These variables are populated to the managed controller by the AWS Load Balancer
Operator.

25.8.1. Trusting the certificate authority of the cluster-wide proxy

1. Create the config map to contain the certificate authority (CA) bundle in the aws-load-
balancer-operator namespace by running the following command:

I $ oc -n aws-load-balancer-operator create configmap trusted-ca

2. Toinject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

$ oc -n aws-load-balancer-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

3. Update the AWS Load Balancer Operator subscription to access the config map in the AWS
Load Balancer Operator deployment by running the following command:

$ oc -n aws-load-balancer-operator patch subscription aws-load-balancer-operator --
type="'merge' -p {"spec":{"config":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}],"volumes":
[{"name":"trusted-ca","configMap":{"name":"trusted-ca"}}],"volumeMounts":[{"name":"trusted-
ca","mountPath":"/etc/pki/tls/certs/albo-tls-ca-bundle.crt","subPath":"ca-bundle.crt"}]}}}'

4. After the AWS Load Balancer Operator is deployed, verify that the CA bundle is added to the
aws-load-balancer-operator-controller-manager deployment by running the following
command:

$ oc -n aws-load-balancer-operator exec deploy/aws-load-balancer-operator-controller-
manager -¢ manager -- bash -c "Is -l /etc/pki/tls/certs/albo-tls-ca-bundle.crt; printenv
TRUSTED_CA_CONFIGMAP_NAME"

Example output

-rw-r--r--. 1 root 1000690000 5875 Jan 11 12:25 /etc/pki/tls/certs/albo-tls-ca-bundle.crt
trusted-ca

308

CHAPTER 25. AWS LOAD BALANCER OPERATOR

5. Optional: Restart deployment of the AWS Load Balancer Operator every time the config map
changes by running the following command:

$ oc -n aws-load-balancer-operator rollout restart deployment/aws-load-balancer-operator-
controller-manager

25.8.2. Additional resources

® Certificate injection using Operators

309

OpenShift Container Platform 4.15 Networking

CHAPTER 26. MULTIPLE NETWORKS

26.1. UNDERSTANDING MULTIPLE NETWORKS

In Kubernetes, container networking is delegated to networking plugins that implement the Container
Network Interface (CNI).

OpenShift Container Platform uses the Multus CNI plugin to allow chaining of CNI plugins. During cluster
installation, you configure your default pod network. The default network handles all ordinary network
traffic for the cluster. You can define an additional network based on the available CNI plugins and attach
one or more of these networks to your pods. You can define more than one additional network for your
cluster, depending on your needs. This gives you flexibility when you configure pods that deliver network
functionality, such as switching or routing.

26.1.1. Usage scenarios for an additional network

You can use an additional network in situations where network isolation is needed, including data plane
and control plane separation. Isolating network traffic is useful for the following performance and
security reasons:

Performance
You can send traffic on two different planes to manage how much traffic is along each plane.
Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

All of the pods in the cluster still use the cluster-wide default network to maintain connectivity across
the cluster. Every pod has an eth0 interface that is attached to the cluster-wide pod network. You can
view the interfaces for a pod by using the oc exec -it <pod_name> -- ip a command. If you add
additional network interfaces that use Multus CNI, they are named net1, net2, ..., netN.

To attach additional network interfaces to a pod, you must create configurations that define how the
interfaces are attached. You specify each interface by using a NetworkAttachmentDefinition custom
resource (CR). A CNI configuration inside each of these CRs defines how that interface is created.

26.1.2. Additional networks in OpenShift Container Platform

OpenShift Container Platform provides the following CNI plugins for creating additional networks in
your cluster:

® bridge: Configure a bridge-based additional network to allow pods on the same host to
communicate with each other and the host.

® host-device: Configure a host-device additional network to allow pods access to a physical
Ethernet network device on the host system.

® ipvlan: Configure an ipvlan-based additional network to allow pods on a host to communicate
with other hosts and pods on those hosts, similar to a macvlan-based additional network. Unlike
a macvlan-based additional network, each pod shares the same MAC address as the parent
physical network interface.

® vlan: Configure a vlan-based additional network to allow VLAN-based network isolation and
connectivity for pods.

310

CHAPTER 26. MULTIPLE NETWORKS

macvlan: Configure a macvlan-based additional network to allow pods on a host to
communicate with other hosts and pods on those hosts by using a physical network interface.
Each pod that is attached to a macvlan-based additional network is provided a unique MAC
address.

tap: Configure a tap-based additional network to create a tap device inside the container
namespace. A tap device enables user space programs to send and receive network packets.

SR-IOV: Configure an SR-IOV based additional network to allow pods to attach to a virtual
function (VF) interface on SR-IOV capable hardware on the host system.

26.2. CONFIGURING AN ADDITIONAL NETWORK

As a cluster administrator, you can configure an additional network for your cluster. The following
network types are supported:

Bridge

Host device
VLAN
IPVLAN
MACVLAN
TAP

OVN-Kubernetes

26.2.1. Approaches to managing an additional network

You can manage the life cycle of an additional network by two approaches. Each approach is mutually
exclusive and you can only use one approach for managing an additional network at a time. For either
approach, the additional network is managed by a Container Network Interface (CNI) plugin that you

configure.

For an additional network, IP addresses are provisioned through an IP Address Management (IPAM) CNI
plugin that you configure as part of the additional network. The IPAM plugin supports a variety of IP
address assignment approaches including DHCP and static assignment.

Modify the Cluster Network Operator (CNO) configuration: The CNO automatically creates and
manages the NetworkAttachmentDefinition object. In addition to managing the object
lifecycle the CNO ensures a DHCP is available for an additional network that uses a DHCP
assigned IP address.

® Applying a YAML manifest: You can manage the additional network directly by creating an

NetworkAttachmentDefinition object. This approach allows for the chaining of CNI plugins.

31

OpenShift Container Platform 4.15 Networking

NOTE

When deploying OpenShift Container Platform nodes with multiple network interfaces on
Red Hat OpenStack Platform (RHOSP) with OVN SDN, DNS configuration of the
secondary interface might take precedence over the DNS configuration of the primary
interface. In this case, remove the DNS nameservers for the subnet id that is attached to
the secondary interface:

I $ openstack subnet set --dns-nameserver 0.0.0.0 <subnet_id>

26.2.2. Configuration for an additional network attachment

An additional network is configured by using the NetworkAttachmentDefinition APl in the
k8s.cni.cncf.io APl group.

IMPORTANT

Do not store any sensitive information or a secret in the NetworkAttachmentDefinition
object because this information is accessible by the project administration user.

The configuration for the APl is described in the following table:

Table 26.1. NetworkAttachmentDefinition API fields

Field Type Description

metadata.name string The name for the additional network.
metadata.namespace string The namespace that the object is associated with.
spec.config string The CNI plugin configuration in JSON format.

26.2.2.1. Configuration of an additional network through the Cluster Network Operator

The configuration for an additional network attachment is specified as part of the Cluster Network
Operator (CNO) configuration.

The following YAML describes the configuration parameters for managing an additional network with
the CNO:

Cluster Network Operator configuration

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
#...
additionalNetworks: ﬂ
- name: <name> g
namespace: <namespace> 6
rawCNIConfig: |-)

312

CHAPTER 26. MULTIPLE NETWORKS

{

}
type: Raw

An array of one or more additional network configurations.

The name for the additional network attachment that you are creating. The name must be unique
within the specified namespace.

The namespace to create the network attachment in. If you do not specify a value, then the default
namespace is used.

o o 90 —m

A CNI plugin configuration in JSON format.

26.2.2.2. Configuration of an additional network from a YAML manifest

The configuration for an additional network is specified from a YAML configuration file, such as in the
following example:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
name: <name> 0
spec:
config: |-

{
}
ﬂ The name for the additional network attachment that you are creating.

9 A CNI plugin configuration in JSON format.

26.2.3. Configurations for additional network types

The specific configuration fields for additional networks is described in the following sections.

26.2.3.1. Configuration for a bridge additional network

The following object describes the configuration parameters for the bridge CNI plugin:

Table 26.2. Bridge CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

hame string The value for the name parameter you provided previously for
the CNO configuration.

313

OpenShift Container Platform 4.15 Networking

Field Type Description
type string The name of the CNI plugin to configure: bridge.
ipam object The configuration object for the IPAM CNI plugin. The plugin

manages |IP address assignment for the attachment definition.

bridge string Optional: Specify the name of the virtual bridge to use. If the
bridge interface does not exist on the host, it is created. The
default value is cni0.

ipMasq boolean Optional: Set to true to enable IP masquerading for traffic that
leaves the virtual network. The source IP address for all traffic is
rewritten to the bridge’s IP address. If the bridge does not have
an IP address, this setting has no effect. The default value is
false.

isGateway boolean Optional: Set to true to assign an IP address to the bridge. The
default value is false.

isDefaultGatewa boolean Optional: Set to true to configure the bridge as the default

y gateway for the virtual network. The default value is false. If
isDefaultGateway is set to true, thenisGateway is also set
to true automatically.

forceAddress boolean Optional: Set to true to allow assignment of a previously
assigned IP address to the virtual bridge. When set to false, if an
IPv4 address or an IPv6 address from overlapping subsets is
assigned to the virtual bridge, an error occurs. The default value
is false.

hairpinMode boolean Optional: Set to true to allow the virtual bridge to send an
Ethernet frame back through the virtual port it was received on.
This mode is also known as reflective relay. The default value is
false.

promiscMode boolean Optional: Set to true to enable promiscuous mode on the
bridge. The default value is false.

vian string Optional: Specify a virtual LAN (VLAN) tag as an integer value.
By default, no VLAN tag is assigned.

preserveDefault string Optional: Indicates whether the default vlan must be preserved

Vian on the veth end connected to the bridge. Defaults to true.

vlanTrunk list Optional: Assign a VLAN trunk tag. The default value is hone.

mtu string Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

314

CHAPTER 26. MULTIPLE NETWORKS

Field Type Description

enabledad boolean Optional: Enables duplicate address detection for the container

side veth. The default value isfalse.

macspoofchk boolean Optional: Enables mac spoof check, limiting the traffic
originating from the container to the mac address of the

interface. The default value is false.

NOTE

The VLAN parameter configures the VLAN tag on the host end of the veth and also

enables the vlan_filtering feature on the bridge interface.

NOTE

using the following command:

I $ bridge vlan add vid VLAN_ID dev DEV

26.2.3.1.1. bridge configuration example

The following example configures an additional network named bridge-net:

"cniVersion": "0.3.1",
"name": "bridge-net",
"type": "bridge",
"isGateway": true,
"vlan": 2,
"ipam": {

"type": "dhcp"

!

!

26.2.3.2. Configuration for a host device additional network

NOTE

Specify your network device by setting only one of the following parameters:
device hwaddr, kernelpath, or pciBuslID.

The following object describes the configuration parameters for the host-device CNI plugin:

Table 26.3. Host device CNI plugin JSON configuration object

To configure uplink for a L2 network you need to allow the vlan on the uplink interface by

315

OpenShift Container Platform 4.15 Networking

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

hame string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: host-device.

device string Optional: The name of the device, such as eth0.

hwaddr string Optional: The device hardware MAC address.

kernelpath string Optional: The Linux kernel device path, such as

/sys/devices/pci0000:00/0000:00:11.6.

pciBusID string Optional: The PCl address of the network device, such as
0000:00:11.6.

26.2.3.2.1. host-device configuration example

The following example configures an additional network named hostdev-net:

"cniVersion": "0.3.1",
"name": "hostdev-net",
"type": "host-device",
"device": "eth1"

26.2.3.3. Configuration for an VLAN additional network

The following object describes the configuration parameters for the VLAN CNI plugin:

Table 26.4. VLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

hame string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: vian.

master string The Ethernetinterface to associate with the network

attachment. If a master is not specified, the interface for the
default network route is used.

316

CHAPTER 26. MULTIPLE NETWORKS

Field Type Description
vianid integer Set the id of the vlan.
ipam object The configuration object for the IPAM CNI plugin. The plugin

manages |IP address assignment for the attachment definition.

mtu integer Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

dns integer Optional: DNS information to return, for example, a priority-

ordered list of DNS nameservers.

linkinContainer boolean Optional: Specifies whether the master interface is in the
container network namespace or the main network namespace.
Set the value to true to request the use of a container
namespace master interface.

26.2.3.3.1. vlan configuration example

The following example configures an additional network named vlan-net:

"name": "vlan-net",
"cniVersion": "0.3.1",
"type": "vlan",
"master": "ethQ",
"mtu": 1500,
"vlanld": 5,
"linkInContainer": false,
"ipam": {
"type": "host-local",
"subnet": "10.1.1.0/24"
b
"dns™: {
"nameservers™: ["10.1.1.1", "8.8.8.8"]
}
1

26.2.3.4. Configuration for an IPVLAN additional network

The following object describes the configuration parameters for the IPVLAN CNI plugin:

Table 26.5. IPVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

317

OpenShift Container Platform 4.15 Networking

Field Type Description

hame string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: ipvlan.

ipam object The configuration object for the IPAM CNI plugin. The plugin

manages |IP address assignment for the attachment definition.
This is required unless the plugin is chained.

mode string Optional: The operating mode for the virtual network. The value
must be 12,13, orI3s. The default value isl2.

master string Optional: The Ethernet interface to associate with the network
attachment. If a master is not specified, the interface for the
default network route is used.

mtu integer Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

linkinContainer boolean Optional: Specifies whether the master interface is in the

container network namespace or the main network namespace.
Set the value to true to request the use of a container
namespace master interface.

NOTE

® The ipvlan object does not allow virtual interfaces to communicate with the
master interface. Therefore the container will not be able to reach the host by
using the ipvlan interface. Be sure that the container joins a network that
provides connectivity to the host, such as a network supporting the Precision
Time Protocol (PTP).

® Asingle master interface cannot simultaneously be configured to use both
macvlan and ipvlan.

® ForIP allocation schemes that cannot be interface agnostic, the ipvlan plugin
can be chained with an earlier plugin that handles this logic. If the master is
omitted, then the previous result must contain a single interface name for the
ipvlan plugin to enslave. If ipam is omitted, then the previous result is used to
configure the ipvlan interface.

26.2.3.4.1. ipvlan configuration example

The following example configures an additional network named ipvlan-net:

{

"cniVersion": "0.3.1",

318

CHAPTER 26. MULTIPLE NETWORKS

"name": "ipvlan-net",
"type": "ipvlan”,
"master": "eth1",
"linkInContainer": false,
"mode": "I3",
"ipam": {
"type": "static",
"addresses": [
{
"address": "192.168.10.10/24"
}
]
}
1

26.2.3.5. Configuration for a MACVLAN additional network

The following object describes the configuration parameters for the macvlan CNI plugin:

Table 26.6. MACVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

hame string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: macvlan.

ipam object The configuration object for the IPAM CNI plugin. The plugin

manages |IP address assignment for the attachment definition.

mode string Optional: Configures traffic visibility on the virtual network.
Must be either bridge, passthru, private, orvepa. If a value is
not provided, the default value is bridge.

master string Optional: The host network interface to associate with the newly
created macvlan interface. If a value is not specified, then the
default route interface is used.

mtu string Optional: The maximum transmission unit (MTU) to the specified
value. The default value is automatically set by the kernel.

linkinContainer boolean Optional: Specifies whether the master interface is in the
container network namespace or the main network namespace.
Set the value to true to request the use of a container
namespace master interface.

319

OpenShift Container Platform 4.15 Networking

NOTE

If you specify the master key for the plugin configuration, use a different physical
network interface than the one that is associated with your primary network plugin to
avoid possible conflicts.

26.2.3.5.1. macvlan configuration example

The following example configures an additional network named macvlan-net:

"cniVersion": "0.3.1",
"name": "macvlan-net",
"type": "macvlan”,
"master": "eth1",
"linkInContainer": false,

"mode": "bridge",
"ipam": {
"type": "dhcp"
}
1

26.2.3.6. Configuration for a TAP additional network

The following object describes the configuration parameters for the TAP CNI plugin:

Table 26.7. TAP CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

hame string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: tap.

mac string Optional: Request the specified MAC address for the interface.

mtu integer Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

selinuxcontext string Optional: The SELinux context to associate with the tap device.

v NOTE
The value

system_u:system_r:container_t:s0is
required for OpenShift Container Platform.

-

320

CHAPTER 26. MULTIPLE NETWORKS

Field Type Description

multiQueue boolean Optional: Set to true to enable multi-queue.

owner integer Optional: The user owning the tap device.

group integer Optional: The group owning the tap device.

bridge string Optional: Set the tap device as a port of an already existing
bridge.

26.2.3.6.1. Tap configuration example

The following example configures an additional network named mynet:

"name": "mynet",
"cniVersion": "0.3.1",

"typell: "tapll’
"mac": "00:11:22:33:44:55",
"mtu": 1500,

"selinuxcontext": "system_u:system_r:container_t:sQ",
"multiQueue": true,

"owner": 0,

"group": 0

"bridge": "br1"

}

26.2.3.6.2. Setting SELinux boolean for the TAP CNI plugin

To create the tap device with the container_t SELinux context, enable the container_use_devices
boolean on the host by using the Machine Config Operator (MCO).

Prerequisites

® You have installed the OpenShift CLI (oc).

Procedure

1. Create a new YAML file named, such as setsebool-container-use-devices.yaml, with the
following details:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-worker-setsebool
spec:
config:
ignition:
version: 3.2.0

321

OpenShift Container Platform 4.15 Networking

systemd:
units:
- enabled: true
name: setsebool.service
contents: |
[Unit]
Description=Set SELinux boolean for the TAP CNI plugin
Before=kubelet.service

[Service]

Type=oneshot

ExecStart=/usr/sbin/setsebool container_use_devices=on
RemainAfterExit=true

[Install]
WantedBy=multi-user.target graphical.target

2. Create the new MachineConfig object by running the following command:

I $ oc apply -f setsebool-container-use-devices.yaml|

NOTE

Applying any changes to the MachineConfig object causes all affected nodes to
gracefully reboot after the change is applied. This update can take some time to
be applied.

3. Verify the change is applied by running the following command:

I $ oc get machineconfigpools

Expected output

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE

master rendered-master-e5e0c8e8be9194e7c5a882e047379cfa True False

False 3 3 3 0 7d2h
worker rendered-worker-déc9cai107fbabecd76cdcbfcedcafalf2 True False False
3 3 3 0 7d

NOTE

All nodes should be in the updated and ready state.

Additional resources

® For more information about enabling an SELinux boolean on a node, see Setting SELinux
booleans

26.2.3.7. Configuration for an OVN-Kubernetes additional network

322

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-nodes-working-setting-booleans_nodes-nodes-managing

CHAPTER 26. MULTIPLE NETWORKS

The Red Hat OpenShift Networking OVN-Kubernetes network plugin allows the configuration of
secondary network interfaces for pods. To configure secondary network interfaces, you must define the
configurations in the NetworkAttachmentDefinition custom resource (CR).

NOTE
Pod and multi-network policy creation might remain in a pending state until the OVN-

Kubernetes control plane agent in the nodes processes the associated network-
attachment-definition CR.

You can configure an OVN-Kubernetes additional network in either layer 2 or localnet topologies.

® Alayer 2 topology supports east-west cluster traffic, but does not allow access to the
underlying physical network.

® Alocalnet topology allows connections to the physical network, but requires additional
configuration of the underlying Open vSwitch (OVS) bridge on cluster nodes.

The following sections provide example configurations for each of the topologies that OVN-Kubernetes
currently allows for secondary networks.

NOTE
Networks names must be unique. For example, creating multiple

NetworkAttachmentDefinition CRs with different configurations that reference the
same network is unsupported.

26.2.3.7.1. Supported platforms for OVN-Kubernetes additional network

You can use an OVN-Kubernetes additional network with the following supported platforms:
® Bare metal
® |[BM Power®
e |BMZ®
e |BM® LinuxONE

® \/Mware vSphere

Red Hat OpenStack Platform (RHOSP)

26.2.3.7.2. OVN-Kubernetes network plugin JSON configuration table

The following table describes the configuration parameters for the OVN-Kubernetes CNI network
plugin:

Table 26.8. OVN-Kubernetes network plugin JSON configuration table

Field Type Description

cniVersion string The CNI specification version. The required value is 0.3.1.

323

OpenShift Container Platform 4.15 Networking

Field Type Description

name string The name of the network. These networks are not namespaced.
For example, you can have a network named 12-network
referenced from two different
NetworkAttachmentDefinitions that exist on two different
namespaces. This ensures that pods making use of the
NetworkAttachmentDefinition on their own different
namespaces can communicate over the same secondary
network. However, those two different
NetworkAttachmentDefinitions must also share the same
network specific parameters such as topology, subnets, mtu,
and excludeSubnets.

type string The name of the CNI plugin to configure. This value must be set
to ovn-k8s-cni-overlay.

topology string The topological configuration for the network. Must be one of
layer2 orlocalnet.

subnets string The subnet to use for the network across the cluster. When
specifying layer2 for the topology, only include the CIDR for
the node. For example, 10.100.200.0/24.

For "topology":"layer2" deployments, IPv6
(2001:DBB::/64) and dual-stack
(192.168.100.0/24,2001:DBB::/64) subnets are supported.

When omitted, the logical switch implementing the network only
provides layer 2 communication, and users must configure IP
addresses for the pods. Port security only prevents MAC
spoofing.

mtu string The maximum transmission unit (MTU). The default value, 1300,
is automatically set by the kernel.

netAttachDefNa string The metadata hamespace and hame of the network

me