
OpenShift Container Platform 4.15

Nodes

Configuring and managing nodes in OpenShift Container Platform

Last Updated: 2024-04-25

OpenShift Container Platform 4.15 Nodes

Configuring and managing nodes in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing the nodes, Pods, and containers
in your cluster. It also provides information on configuring Pod scheduling and placement, using
jobs and DaemonSets to automate tasks, and other tasks to ensure an efficient cluster.

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF NODES
1.1. ABOUT NODES

Read operations
Management operations
Enhancement operations

1.2. ABOUT PODS
Read operations
Management operations
Enhancement operations

1.3. ABOUT CONTAINERS
1.4. ABOUT AUTOSCALING PODS ON A NODE
1.5. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NODES

CHAPTER 2. WORKING WITH PODS
2.1. USING PODS

2.1.1. Understanding pods
2.1.2. Example pod configurations
2.1.3. Additional resources

2.2. VIEWING PODS
2.2.1. About pods
2.2.2. Viewing pods in a project
2.2.3. Viewing pod usage statistics
2.2.4. Viewing resource logs

2.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER FOR PODS
2.3.1. Configuring how pods behave after restart
2.3.2. Limiting the bandwidth available to pods
2.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up

2.3.3.1. Specifying the number of pods that must be up with pod disruption budgets
2.3.3.2. Specifying the eviction policy for unhealthy pods

2.3.4. Preventing pod removal using critical pods
2.3.5. Reducing pod timeouts when using persistent volumes with high file counts

2.4. AUTOMATICALLY SCALING PODS WITH THE HORIZONTAL POD AUTOSCALER
2.4.1. Understanding horizontal pod autoscalers

2.4.1.1. Supported metrics
2.4.2. How does the HPA work?
2.4.3. About requests and limits
2.4.4. Best practices

2.4.4.1. Scaling policies
2.4.5. Creating a horizontal pod autoscaler by using the web console
2.4.6. Creating a horizontal pod autoscaler for CPU utilization by using the CLI
2.4.7. Creating a horizontal pod autoscaler object for memory utilization by using the CLI
2.4.8. Understanding horizontal pod autoscaler status conditions by using the CLI

2.4.8.1. Viewing horizontal pod autoscaler status conditions by using the CLI
2.4.9. Additional resources

2.5. AUTOMATICALLY ADJUST POD RESOURCE LEVELS WITH THE VERTICAL POD AUTOSCALER
2.5.1. About the Vertical Pod Autoscaler Operator
2.5.2. Installing the Vertical Pod Autoscaler Operator
2.5.3. About Using the Vertical Pod Autoscaler Operator

2.5.3.1. Changing the VPA minimum value
2.5.3.2. Automatically applying VPA recommendations
2.5.3.3. Automatically applying VPA recommendations on pod creation

12
12
13
13
14
14
14
14
15
16
16
17

19
19
19
19
21
21
21
21
22
23
24
24
25
26
27
28
29
30
30
31
31

33
33
34
34
37
38
41

45
47
49
49
49
50
51

53
54
55

Table of Contents

1

2.5.3.4. Manually applying VPA recommendations
2.5.3.5. Exempting containers from applying VPA recommendations
2.5.3.6. Performance tuning the VPA Operator
2.5.3.7. Using an alternative recommender

2.5.4. Using the Vertical Pod Autoscaler Operator
2.5.5. Uninstalling the Vertical Pod Autoscaler Operator

2.6. PROVIDING SENSITIVE DATA TO PODS BY USING SECRETS
2.6.1. Understanding secrets

2.6.1.1. Types of secrets
2.6.1.2. Secret data keys
2.6.1.3. Automatically generated secrets

2.6.2. Understanding how to create secrets
2.6.2.1. Secret creation restrictions
2.6.2.2. Creating an opaque secret
2.6.2.3. Creating a service account token secret
2.6.2.4. Creating a basic authentication secret
2.6.2.5. Creating an SSH authentication secret
2.6.2.6. Creating a Docker configuration secret
2.6.2.7. Creating a secret using the web console

2.6.3. Understanding how to update secrets
2.6.4. Creating and using secrets
2.6.5. About using signed certificates with secrets

2.6.5.1. Generating signed certificates for use with secrets
2.6.6. Troubleshooting secrets

2.7. PROVIDING SENSITIVE DATA TO PODS BY USING AN EXTERNAL SECRETS STORE
2.7.1. About the Secrets Store CSI Driver Operator

2.7.1.1. Secrets store providers
2.7.1.2. Automatic rotation

2.7.2. Installing the Secrets Store CSI driver
2.7.3. Mounting secrets from an external secrets store to a CSI volume

2.7.3.1. Mounting secrets from AWS Secrets Manager
2.7.3.2. Mounting secrets from AWS Systems Manager Parameter Store
2.7.3.3. Mounting secrets from Azure Key Vault

2.7.4. Enabling synchronization of mounted content as Kubernetes secrets
2.7.5. Viewing the status of secrets in the pod volume mount
2.7.6. Uninstalling the Secrets Store CSI Driver Operator

2.8. CREATING AND USING CONFIG MAPS
2.8.1. Understanding config maps

Config map restrictions
2.8.2. Creating a config map in the OpenShift Container Platform web console
2.8.3. Creating a config map by using the CLI

2.8.3.1. Creating a config map from a directory
2.8.3.2. Creating a config map from a file
2.8.3.3. Creating a config map from literal values

2.8.4. Use cases: Consuming config maps in pods
2.8.4.1. Populating environment variables in containers by using config maps
2.8.4.2. Setting command-line arguments for container commands with config maps
2.8.4.3. Injecting content into a volume by using config maps

2.9. USING DEVICE PLUGINS TO ACCESS EXTERNAL RESOURCES WITH PODS
2.9.1. Understanding device plugins

Example device plugins
2.9.1.1. Methods for deploying a device plugin

2.9.2. Understanding the Device Manager

56
56
58
61

64
67
68
68
69
69
69
71
73
74
74
76
76
77
79
79
80
81
81

83
84
84
85
85
85
86
86
92
98

103
105
106
107
107
108
108
109
109

111
113
114
114
116
117
119
119
119

120
120

OpenShift Container Platform 4.15 Nodes

2

. .

2.9.3. Enabling Device Manager
2.10. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS

2.10.1. Understanding pod priority
2.10.1.1. Pod priority classes
2.10.1.2. Pod priority names

2.10.2. Understanding pod preemption
2.10.2.1. Non-preempting priority classes
2.10.2.2. Pod preemption and other scheduler settings
2.10.2.3. Graceful termination of preempted pods

2.10.3. Configuring priority and preemption
2.11. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

2.11.1. Using node selectors to control pod placement
2.12. RUN ONCE DURATION OVERRIDE OPERATOR

2.12.1. Run Once Duration Override Operator overview
2.12.1.1. About the Run Once Duration Override Operator

2.12.2. Run Once Duration Override Operator release notes
2.12.2.1. Run Once Duration Override Operator 1.1.0

2.12.2.1.1. Bug fixes
2.12.3. Overriding the active deadline for run-once pods

2.12.3.1. Installing the Run Once Duration Override Operator
2.12.3.2. Enabling the run-once duration override on a namespace
2.12.3.3. Updating the run-once active deadline override value

2.12.4. Uninstalling the Run Once Duration Override Operator
2.12.4.1. Uninstalling the Run Once Duration Override Operator
2.12.4.2. Uninstalling Run Once Duration Override Operator resources

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

3.1. RELEASE NOTES
3.1.1. Custom Metrics Autoscaler Operator release notes

3.1.1.1. Supported versions
3.1.1.2. Custom Metrics Autoscaler Operator 2.12.1-384 release notes

3.1.1.2.1. Bug fixes
3.1.2. Release notes for past releases of the Custom Metrics Autoscaler Operator

3.1.2.1. Custom Metrics Autoscaler Operator 2.12.1-376 release notes
3.1.2.1.1. Bug fixes

3.1.2.2. Custom Metrics Autoscaler Operator 2.11.2-322 release notes
3.1.2.2.1. Bug fixes

3.1.2.3. Custom Metrics Autoscaler Operator 2.11.2-311 release notes
3.1.2.3.1. New features and enhancements

3.1.2.3.1.1. Red Hat OpenShift Service on AWS (ROSA) and OpenShift Dedicated are now supported

3.1.2.3.2. Bug fixes
3.1.2.4. Custom Metrics Autoscaler Operator 2.10.1-267 release notes

3.1.2.4.1. Bug fixes
3.1.2.5. Custom Metrics Autoscaler Operator 2.10.1 release notes

3.1.2.5.1. New features and enhancements
3.1.2.5.1.1. Custom Metrics Autoscaler Operator general availability
3.1.2.5.1.2. Performance metrics
3.1.2.5.1.3. Pausing the custom metrics autoscaling for scaled objects
3.1.2.5.1.4. Replica fall back for scaled objects
3.1.2.5.1.5. Customizable HPA naming for scaled objects
3.1.2.5.1.6. Activation and scaling thresholds

121
122
122
122
123
123
124
124
125
125
126
126
130
130
130
131
131
131
131
131

133
134
135
135
136

138
138
138
138
138
138
139
139
139
139
139
140
140

140
140
140
140
141
141
141

142
142
142
142
142

Table of Contents

3

. .

3.1.2.6. Custom Metrics Autoscaler Operator 2.8.2-174 release notes
3.1.2.6.1. New features and enhancements

3.1.2.6.1.1. Operator upgrade support
3.1.2.6.1.2. must-gather support

3.1.2.7. Custom Metrics Autoscaler Operator 2.8.2 release notes
3.1.2.7.1. New features and enhancements

3.1.2.7.1.1. Audit Logging
3.1.2.7.1.2. Scale applications based on Apache Kafka metrics
3.1.2.7.1.3. Scale applications based on CPU metrics
3.1.2.7.1.4. Scale applications based on memory metrics

3.2. CUSTOM METRICS AUTOSCALER OPERATOR OVERVIEW
3.3. INSTALLING THE CUSTOM METRICS AUTOSCALER

3.3.1. Installing the custom metrics autoscaler
3.4. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGERS

3.4.1. Understanding the Prometheus trigger
3.4.1.1. Configuring the custom metrics autoscaler to use OpenShift Container Platform monitoring

3.4.2. Understanding the CPU trigger
3.4.3. Understanding the memory trigger
3.4.4. Understanding the Kafka trigger

3.5. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGER AUTHENTICATIONS
3.5.1. Using trigger authentications

3.6. PAUSING THE CUSTOM METRICS AUTOSCALER FOR A SCALED OBJECT
3.6.1. Pausing a custom metrics autoscaler
3.6.2. Restarting the custom metrics autoscaler for a scaled object

3.7. GATHERING AUDIT LOGS
3.7.1. Configuring audit logging

3.8. GATHERING DEBUGGING DATA
3.8.1. Gathering debugging data

3.9. VIEWING OPERATOR METRICS
3.9.1. Accessing performance metrics

3.9.1.1. Provided Operator metrics
3.10. UNDERSTANDING HOW TO ADD CUSTOM METRICS AUTOSCALERS

3.10.1. Adding a custom metrics autoscaler to a workload
3.10.2. Adding a custom metrics autoscaler to a job
3.10.3. Additional resources

3.11. REMOVING THE CUSTOM METRICS AUTOSCALER OPERATOR
3.11.1. Uninstalling the Custom Metrics Autoscaler Operator

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)
4.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER

4.1.1. About the default scheduler
4.1.1.1. Understanding default scheduling

4.1.2. Scheduler use cases
4.1.2.1. Infrastructure topological levels
4.1.2.2. Affinity
4.1.2.3. Anti-affinity

4.2. SCHEDULING PODS USING A SCHEDULER PROFILE
4.2.1. About scheduler profiles
4.2.2. Configuring a scheduler profile

4.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND ANTI-AFFINITY RULES
4.3.1. Understanding pod affinity
4.3.2. Configuring a pod affinity rule
4.3.3. Configuring a pod anti-affinity rule

142
142
142
143
143
143
143
143
143
143
143
146
146
148
148
149
153
154
154
156
159
161
161

162
163
163
166
166
169
169
169
170
170
174
177
177
178

180
180
180
180
181
181
181
181
181

182
182
183
183
185
187

OpenShift Container Platform 4.15 Nodes

4

4.3.4. Sample pod affinity and anti-affinity rules
4.3.4.1. Pod Affinity
4.3.4.2. Pod Anti-affinity
4.3.4.3. Pod Affinity with no Matching Labels

4.3.5. Using pod affinity and anti-affinity to control where an Operator is installed
4.4. CONTROLLING POD PLACEMENT ON NODES USING NODE AFFINITY RULES

4.4.1. Understanding node affinity
4.4.2. Configuring a required node affinity rule
4.4.3. Configuring a preferred node affinity rule
4.4.4. Sample node affinity rules

4.4.4.1. Node affinity with matching labels
4.4.4.2. Node affinity with no matching labels

4.4.5. Using node affinity to control where an Operator is installed
4.4.6. Additional resources

4.5. PLACING PODS ONTO OVERCOMMITED NODES
4.5.1. Understanding overcommitment
4.5.2. Understanding nodes overcommitment

4.6. CONTROLLING POD PLACEMENT USING NODE TAINTS
4.6.1. Understanding taints and tolerations

4.6.1.1. Understanding how to use toleration seconds to delay pod evictions
4.6.1.2. Understanding how to use multiple taints
4.6.1.3. Understanding pod scheduling and node conditions (taint node by condition)
4.6.1.4. Understanding evicting pods by condition (taint-based evictions)
4.6.1.5. Tolerating all taints

4.6.2. Adding taints and tolerations
4.6.2.1. Adding taints and tolerations using a compute machine set
4.6.2.2. Binding a user to a node using taints and tolerations
4.6.2.3. Creating a project with a node selector and toleration
4.6.2.4. Controlling nodes with special hardware using taints and tolerations

4.6.3. Removing taints and tolerations
4.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

4.7.1. About node selectors
4.7.2. Using node selectors to control pod placement
4.7.3. Creating default cluster-wide node selectors
4.7.4. Creating project-wide node selectors

4.8. CONTROLLING POD PLACEMENT BY USING POD TOPOLOGY SPREAD CONSTRAINTS
4.8.1. About pod topology spread constraints
4.8.2. Configuring pod topology spread constraints
4.8.3. Example pod topology spread constraints

4.8.3.1. Single pod topology spread constraint example
4.8.3.2. Multiple pod topology spread constraints example

4.8.4. Additional resources
4.9. DESCHEDULER

4.9.1. Descheduler overview
4.9.1.1. About the descheduler
4.9.1.2. Descheduler profiles

4.9.2. Kube Descheduler Operator release notes
4.9.2.1. Release notes for Kube Descheduler Operator 5.0.0

4.9.2.1.1. Notable changes
4.9.2.1.2. Bug fixes

4.9.3. Evicting pods using the descheduler
4.9.3.1. Installing the descheduler
4.9.3.2. Configuring descheduler profiles

188
188
189
190
192
194
194
197
198
199
199

200
201

204
204
204
204
205
205
208
209
210
210
212
212
214
216
217
218
219

220
220
224
228
231

235
235
235
236
236
237
238
238
238
238
239
240
240
240
240
240
241
242

Table of Contents

5

. .

. .

4.9.3.3. Configuring the descheduler interval
4.9.4. Uninstalling the Kube Descheduler Operator

4.9.4.1. Uninstalling the descheduler
4.10. SECONDARY SCHEDULER

4.10.1. Secondary scheduler overview
4.10.1.1. About the Secondary Scheduler Operator

4.10.2. Secondary Scheduler Operator for Red Hat OpenShift release notes
4.10.2.1. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.2.1

4.10.2.1.1. New features and enhancements
Resource limits removed to support large clusters

4.10.2.1.2. Bug fixes
4.10.2.1.3. Known issues

4.10.2.2. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.2.0
4.10.2.2.1. Bug fixes
4.10.2.2.2. Known issues

4.10.3. Scheduling pods using a secondary scheduler
4.10.3.1. Installing the Secondary Scheduler Operator
4.10.3.2. Deploying a secondary scheduler
4.10.3.3. Scheduling a pod using the secondary scheduler

4.10.4. Uninstalling the Secondary Scheduler Operator
4.10.4.1. Uninstalling the Secondary Scheduler Operator
4.10.4.2. Removing Secondary Scheduler Operator resources

CHAPTER 5. USING JOBS AND DAEMONSETS
5.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY WITH DAEMON SETS

5.1.1. Scheduled by default scheduler
5.1.2. Creating daemonsets

5.2. RUNNING TASKS IN PODS USING JOBS
5.2.1. Understanding jobs and cron jobs

5.2.1.1. Understanding how to create jobs
5.2.1.2. Understanding how to set a maximum duration for jobs
5.2.1.3. Understanding how to set a job back off policy for pod failure
5.2.1.4. Understanding how to configure a cron job to remove artifacts
5.2.1.5. Known limitations

5.2.2. Creating jobs
5.2.3. Creating cron jobs

CHAPTER 6. WORKING WITH NODES
6.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT CONTAINER PLATFORM CLUSTER

6.1.1. About listing all the nodes in a cluster
6.1.2. Listing pods on a node in your cluster
6.1.3. Viewing memory and CPU usage statistics on your nodes

6.2. WORKING WITH NODES
6.2.1. Understanding how to evacuate pods on nodes
6.2.2. Understanding how to update labels on nodes
6.2.3. Understanding how to mark nodes as unschedulable or schedulable
6.2.4. Handling errors in single-node OpenShift clusters when the node reboots without draining application
pods
6.2.5. Deleting nodes

6.2.5.1. Deleting nodes from a cluster
6.2.5.2. Deleting nodes from a bare metal cluster

6.3. MANAGING NODES
6.3.1. Modifying nodes

243
243
244
245
245
245
245
245
246
246
246
246
246
246
246
246
246
247
249
250
250
251

253
253
253
254
256
257
258
258
259
259
259
259
261

263
263
263
268
268
269
269
270
271

272
272
272
274
274
274

OpenShift Container Platform 4.15 Nodes

6

. .

6.3.2. Configuring control plane nodes as schedulable
6.3.3. Setting SELinux booleans
6.3.4. Adding kernel arguments to nodes
6.3.5. Enabling swap memory use on nodes
6.3.6. Migrating control plane nodes from one RHOSP host to another manually

6.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE
6.4.1. Configuring the maximum number of pods per node

6.5. USING THE NODE TUNING OPERATOR
Purpose
6.5.1. Accessing an example Node Tuning Operator specification
6.5.2. Custom tuning specification
6.5.3. Default profiles set on a cluster
6.5.4. Supported TuneD daemon plugins

6.6. REMEDIATING, FENCING, AND MAINTAINING NODES
6.7. UNDERSTANDING NODE REBOOTING

6.7.1. About rebooting nodes running critical infrastructure
6.7.2. Rebooting a node using pod anti-affinity
6.7.3. Understanding how to reboot nodes running routers
6.7.4. Rebooting a node gracefully

6.8. FREEING NODE RESOURCES USING GARBAGE COLLECTION
6.8.1. Understanding how terminated containers are removed through garbage collection
6.8.2. Understanding how images are removed through garbage collection
6.8.3. Configuring garbage collection for containers and images

6.9. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER
6.9.1. Understanding how to allocate resources for nodes

6.9.1.1. How OpenShift Container Platform computes allocated resources
6.9.1.2. How nodes enforce resource constraints
6.9.1.3. Understanding Eviction Thresholds
6.9.1.4. How the scheduler determines resource availability

6.9.2. Automatically allocating resources for nodes
6.9.3. Manually allocating resources for nodes

6.10. ALLOCATING SPECIFIC CPUS FOR NODES IN A CLUSTER
6.10.1. Reserving CPUs for nodes

6.11. ENABLING TLS SECURITY PROFILES FOR THE KUBELET
6.11.1. Understanding TLS security profiles
6.11.2. Configuring the TLS security profile for the kubelet

6.12. MACHINE CONFIG DAEMON METRICS
6.12.1. Machine Config Daemon metrics

6.13. CREATING INFRASTRUCTURE NODES
6.13.1. OpenShift Container Platform infrastructure components

6.13.1.1. Creating an infrastructure node

CHAPTER 7. WORKING WITH CONTAINERS
7.1. UNDERSTANDING CONTAINERS

7.1.1. About containers and RHEL kernel memory
7.1.2. About the container engine and container runtime

7.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS DEPLOYED
7.2.1. Understanding Init Containers
7.2.2. Creating Init Containers

7.3. USING VOLUMES TO PERSIST CONTAINER DATA
7.3.1. Understanding volumes
7.3.2. Working with volumes using the OpenShift Container Platform CLI
7.3.3. Listing volumes and volume mounts in a pod

276
277
278
281
283
285
286
288
288
289
289
294
295
296
296
296
297
298
298
300
300
301
302
305
305
306
306
306
307
307
309

311
311
312
312
313
315
315
318
318
319

321
321
321
321

322
322
323
325
325
326
327

Table of Contents

7

. .

7.3.4. Adding volumes to a pod
7.3.5. Updating volumes and volume mounts in a pod
7.3.6. Removing volumes and volume mounts from a pod
7.3.7. Configuring volumes for multiple uses in a pod

7.4. MAPPING VOLUMES USING PROJECTED VOLUMES
7.4.1. Understanding projected volumes

7.4.1.1. Example Pod specs
7.4.1.2. Pathing Considerations

7.4.2. Configuring a Projected Volume for a Pod
7.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS

7.5.1. Expose pod information to Containers using the Downward API
7.5.2. Understanding how to consume container values using the downward API

7.5.2.1. Consuming container values using environment variables
7.5.2.2. Consuming container values using a volume plugin

7.5.3. Understanding how to consume container resources using the Downward API
7.5.3.1. Consuming container resources using environment variables
7.5.3.2. Consuming container resources using a volume plugin

7.5.4. Consuming secrets using the Downward API
7.5.5. Consuming configuration maps using the Downward API
7.5.6. Referencing environment variables
7.5.7. Escaping environment variable references

7.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER PLATFORM CONTAINER
7.6.1. Understanding how to copy files

7.6.1.1. Requirements
7.6.2. Copying files to and from containers
7.6.3. Using advanced Rsync features

7.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER PLATFORM CONTAINER
7.7.1. Executing remote commands in containers
7.7.2. Protocol for initiating a remote command from a client

7.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A CONTAINER
7.8.1. Understanding port forwarding
7.8.2. Using port forwarding
7.8.3. Protocol for initiating port forwarding from a client

7.9. USING SYSCTLS IN CONTAINERS
7.9.1. About sysctls
7.9.2. Namespaced and node-level sysctls
7.9.3. Safe and unsafe sysctls
7.9.4. Updating the interface-specific safe sysctls list
7.9.5. Starting a pod with safe sysctls
7.9.6. Starting a pod with unsafe sysctls
7.9.7. Enabling unsafe sysctls
7.9.8. Additional resources

7.10. ACCESSING FASTER BUILDS WITH /DEV/FUSE
7.10.1. Configuring /dev/fuse on unprivileged pods

CHAPTER 8. WORKING WITH CLUSTERS
8.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER

8.1.1. Understanding events
8.1.2. Viewing events using the CLI
8.1.3. List of events

8.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT CONTAINER PLATFORM NODES CAN HOLD

8.2.1. Understanding the OpenShift Cluster Capacity Tool

327
331

334
335
336
337
338
340
341

344
344
345
345
347
348
348
349
351
352
353
354
355
355
355
355
356
357
357
357
358
358
359
360
360
361
361
361

364
368
370
371

374
374
374

376
376
376
376
377

385
385

OpenShift Container Platform 4.15 Nodes

8

8.2.2. Running the OpenShift Cluster Capacity Tool on the command line
8.2.3. Running the OpenShift Cluster Capacity Tool as a job inside a pod

8.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES
8.3.1. About limit ranges

8.3.1.1. About component limits
8.3.1.1.1. Container limits
8.3.1.1.2. Pod limits
8.3.1.1.3. Image limits
8.3.1.1.4. Image stream limits
8.3.1.1.5. Persistent volume claim limits

8.3.2. Creating a Limit Range
8.3.3. Viewing a limit
8.3.4. Deleting a Limit Range

8.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS
8.4.1. Understanding managing application memory

8.4.1.1. Managing application memory strategy
8.4.2. Understanding OpenJDK settings for OpenShift Container Platform

8.4.2.1. Understanding how to override the JVM maximum heap size
8.4.2.2. Understanding how to encourage the JVM to release unused memory to the operating system
8.4.2.3. Understanding how to ensure all JVM processes within a container are appropriately configured

8.4.3. Finding the memory request and limit from within a pod
8.4.4. Understanding OOM kill policy
8.4.5. Understanding pod eviction

8.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON OVERCOMMITTED NODES
8.5.1. Resource requests and overcommitment
8.5.2. Cluster-level overcommit using the Cluster Resource Override Operator

8.5.2.1. Installing the Cluster Resource Override Operator using the web console
8.5.2.2. Installing the Cluster Resource Override Operator using the CLI
8.5.2.3. Configuring cluster-level overcommit

8.5.3. Node-level overcommit
8.5.3.1. Understanding compute resources and containers

8.5.3.1.1. Understanding container CPU requests
8.5.3.1.2. Understanding container memory requests

8.5.3.2. Understanding overcomitment and quality of service classes
8.5.3.2.1. Understanding how to reserve memory across quality of service tiers

8.5.3.3. Understanding swap memory and QOS
8.5.3.4. Understanding nodes overcommitment
8.5.3.5. Disabling or enforcing CPU limits using CPU CFS quotas
8.5.3.6. Reserving resources for system processes
8.5.3.7. Disabling overcommitment for a node

8.5.4. Project-level limits
8.5.4.1. Disabling overcommitment for a project

8.5.5. Additional resources
8.6. CONFIGURING THE LINUX CGROUP VERSION ON YOUR NODES

8.6.1. Configuring Linux cgroup
8.7. ENABLING FEATURES USING FEATURE GATES

8.7.1. Understanding feature gates
8.7.2. Enabling feature sets at installation
8.7.3. Enabling feature sets using the web console
8.7.4. Enabling feature sets using the CLI

8.8. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY
PROFILES

386
387
391
391

392
392
393
394
395
396
396
398
398
399
399
400
400
401
401

402
402
404
406
406
407
407
408
410
413
414
414
415
415
415
416
416
416
417
419
419
419
419

420
420
420
424
424
426
428
429

431

Table of Contents

9

. .

. .

. .

8.8.1. Understanding worker latency profiles
8.8.2. Using and changing worker latency profiles

CHAPTER 9. REMOTE WORKER NODES ON THE NETWORK EDGE
9.1. USING REMOTE WORKER NODES AT THE NETWORK EDGE

9.1.1. Adding remote worker nodes
9.1.2. Network separation with remote worker nodes
9.1.3. Power loss on remote worker nodes
9.1.4. Latency spikes or temporary reduction in throughput to remote workers
9.1.5. Remote worker node strategies

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS
10.1. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT CLUSTERS

10.1.1. Requirements for installing single-node OpenShift worker nodes
10.1.2. Adding worker nodes using the Assisted Installer and OpenShift Cluster Manager
10.1.3. Adding worker nodes using the Assisted Installer API

10.1.3.1. Authenticating against the Assisted Installer REST API
10.1.3.2. Adding worker nodes using the Assisted Installer REST API

10.1.4. Adding worker nodes to single-node OpenShift clusters manually
10.1.5. Approving the certificate signing requests for your machines

CHAPTER 11. NODE METRICS DASHBOARD
11.1. ABOUT THE NODE METRICS DASHBOARD
11.2. ACCESSING THE NODE METRICS DASHBOARD
11.3. IDENTIFY METRICS FOR INDICATING OPTIMAL NODE RESOURCE USAGE

11.3.1. Top 3 containers with the most OOM kills in the last day
11.3.2. Failure rate for image pulls in the last hour
11.3.3. Nodes with system reserved memory utilization > 80%
11.3.4. Nodes with Kubelet system reserved memory utilization > 50%
11.3.5. Nodes with CRI-O system reserved memory utilization > 50%
11.3.6. Nodes with System Reserved CPU Utilization > 80%
11.3.7. Nodes with Kubelet system reserved CPU utilization > 50%
11.3.8. Nodes with CRI-O system reserved CPU utilization > 50%

11.4. CUSTOMIZING DASHBOARD QUERIES

432
434

437
437
437
438
439
439
440

445
445
445
447
447
448
449
455
459

462
462
462
462
463
463
464
464
464
465
465
466
466

OpenShift Container Platform 4.15 Nodes

10

Table of Contents

11

CHAPTER 1. OVERVIEW OF NODES

1.1. ABOUT NODES

A node is a virtual or bare-metal machine in a Kubernetes cluster. Worker nodes host your application
containers, grouped as pods. The control plane nodes run services that are required to control the
Kubernetes cluster. In OpenShift Container Platform, the control plane nodes contain more than just the
Kubernetes services for managing the OpenShift Container Platform cluster.

Having stable and healthy nodes in a cluster is fundamental to the smooth functioning of your hosted
application. In OpenShift Container Platform, you can access, manage, and monitor a node through the
Node object representing the node. Using the OpenShift CLI (oc) or the web console, you can perform
the following operations on a node.

The following components of a node are responsible for maintaining the running of pods and providing
the Kubernetes runtime environment.

Container runtime

The container runtime is responsible for running containers. Kubernetes offers several runtimes such
as containerd, cri-o, rktlet, and Docker.

Kubelet

Kubelet runs on nodes and reads the container manifests. It ensures that the defined containers
have started and are running. The kubelet process maintains the state of work and the node server.
Kubelet manages network rules and port forwarding. The kubelet manages containers that are
created by Kubernetes only.

Kube-proxy

Kube-proxy runs on every node in the cluster and maintains the network traffic between the
Kubernetes resources. A Kube-proxy ensures that the networking environment is isolated and
accessible.

DNS

Cluster DNS is a DNS server which serves DNS records for Kubernetes services. Containers started
by Kubernetes automatically include this DNS server in their DNS searches.

OpenShift Container Platform 4.15 Nodes

12

Read operations
The read operations allow an administrator or a developer to get information about nodes in an
OpenShift Container Platform cluster.

List all the nodes in a cluster .

Get information about a node, such as memory and CPU usage, health, status, and age.

List pods running on a node .

Management operations
As an administrator, you can easily manage a node in an OpenShift Container Platform cluster through
several tasks:

Add or update node labels . A label is a key-value pair applied to a Node object. You can control
the scheduling of pods using labels.

Change node configuration using a custom resource definition (CRD), or the kubeletConfig
object.

Configure nodes to allow or disallow the scheduling of pods. Healthy worker nodes with a Ready
status allow pod placement by default while the control plane nodes do not; you can change this
default behavior by configuring the worker nodes to be unschedulable and the control plane
nodes to be schedulable.

Allocate resources for nodes using the system-reserved setting. You can allow OpenShift
Container Platform to automatically determine the optimal system-reserved CPU and memory
resources for your nodes, or you can manually determine and set the best resources for your
nodes.

Configure the number of pods that can run on a node based on the number of processor cores
on the node, a hard limit, or both.

CHAPTER 1. OVERVIEW OF NODES

13

Reboot a node gracefully using pod anti-affinity.

Delete a node from a cluster by scaling down the cluster using a compute machine set. To
delete a node from a bare-metal cluster, you must first drain all pods on the node and then
manually delete the node.

Enhancement operations
OpenShift Container Platform allows you to do more than just access and manage nodes; as an
administrator, you can perform the following tasks on nodes to make the cluster more efficient,
application-friendly, and to provide a better environment for your developers.

Manage node-level tuning for high-performance applications that require some level of kernel
tuning by using the Node Tuning Operator .

Enable TLS security profiles on the node to protect communication between the kubelet and
the Kubernetes API server.

Run background tasks on nodes automatically with daemon sets . You can create and use
daemon sets to create shared storage, run a logging pod on every node, or deploy a monitoring
agent on all nodes.

Free node resources using garbage collection . You can ensure that your nodes are running
efficiently by removing terminated containers and the images not referenced by any running
pods.

Add kernel arguments to a set of nodes .

Configure an OpenShift Container Platform cluster to have worker nodes at the network edge
(remote worker nodes). For information on the challenges of having remote worker nodes in an
OpenShift Container Platform cluster and some recommended approaches for managing pods
on a remote worker node, see Using remote worker nodes at the network edge .

1.2. ABOUT PODS

A pod is one or more containers deployed together on a node. As a cluster administrator, you can define
a pod, assign it to run on a healthy node that is ready for scheduling, and manage. A pod runs as long as
the containers are running. You cannot change a pod once it is defined and is running. Some operations
you can perform when working with pods are:

Read operations
As an administrator, you can get information about pods in a project through the following tasks:

List pods associated with a project , including information such as the number of replicas and
restarts, current status, and age.

View pod usage statistics such as CPU, memory, and storage consumption.

Management operations
The following list of tasks provides an overview of how an administrator can manage pods in an
OpenShift Container Platform cluster.

Control scheduling of pods using the advanced scheduling features available in OpenShift
Container Platform:

Node-to-pod binding rules such as pod affinity, node affinity, and anti-affinity.

Node labels and selectors .

OpenShift Container Platform 4.15 Nodes

14

Taints and tolerations.

Pod topology spread constraints .

Secondary scheduling .

Configure the descheduler to evict pods based on specific strategies so that the scheduler
reschedules the pods to more appropriate nodes.

Configure how pods behave after a restart using pod controllers and restart policies .

Limit both egress and ingress traffic on a pod .

Add and remove volumes to and from any object that has a pod template . A volume is a
mounted file system available to all the containers in a pod. Container storage is ephemeral; you
can use volumes to persist container data.

Enhancement operations
You can work with pods more easily and efficiently with the help of various tools and features available
in OpenShift Container Platform. The following operations involve using those tools and features to
better manage pods.

Operation User More information

Create and use a horizontal pod
autoscaler.

Developer You can use a horizontal pod autoscaler
to specify the minimum and the maximum
number of pods you want to run, as well
as the CPU utilization or memory
utilization your pods should target. Using
a horizontal pod autoscaler, you can
automatically scale pods.

Install and use a vertical pod autoscaler. Administrator and
developer

As an administrator, use a vertical pod
autoscaler to better use cluster resources
by monitoring the resources and the
resource requirements of workloads.

As a developer, use a vertical pod
autoscaler to ensure your pods stay up
during periods of high demand by
scheduling pods to nodes that have
enough resources for each pod.

Provide access to external resources
using device plugins.

Administrator A device plugin is a gRPC service running
on nodes (external to the kubelet), which
manages specific hardware resources.
You can deploy a device plugin to provide
a consistent and portable solution to
consume hardware devices across
clusters.

CHAPTER 1. OVERVIEW OF NODES

15

Provide sensitive data to pods using the
Secret object.

Administrator Some applications need sensitive
information, such as passwords and
usernames. You can use the Secret
object to provide such information to an
application pod.

Operation User More information

1.3. ABOUT CONTAINERS

A container is the basic unit of an OpenShift Container Platform application, which comprises the
application code packaged along with its dependencies, libraries, and binaries. Containers provide
consistency across environments and multiple deployment targets: physical servers, virtual machines
(VMs), and private or public cloud.

Linux container technologies are lightweight mechanisms for isolating running processes and limiting
access to only designated resources. As an administrator, You can perform various tasks on a Linux
container, such as:

Copy files to and from a container .

Allow containers to consume API objects .

Execute remote commands in a container .

Use port forwarding to access applications in a container .

OpenShift Container Platform provides specialized containers called Init containers. Init containers run
before application containers and can contain utilities or setup scripts not present in an application
image. You can use an Init container to perform tasks before the rest of a pod is deployed.

Apart from performing specific tasks on nodes, pods, and containers, you can work with the overall
OpenShift Container Platform cluster to keep the cluster efficient and the application pods highly
available.

1.4. ABOUT AUTOSCALING PODS ON A NODE

OpenShift Container Platform offers three tools that you can use to automatically scale the number of
pods on your nodes and the resources allocated to pods.

Horizontal Pod Autoscaler

The Horizontal Pod Autoscaler (HPA) can automatically increase or decrease the scale of a
replication controller or deployment configuration, based on metrics collected from the pods that
belong to that replication controller or deployment configuration.
For more information, see Automatically scaling pods with the horizontal pod autoscaler .

Custom Metrics Autoscaler

The Custom Metrics Autoscaler can automatically increase or decrease the number of pods for a
deployment, stateful set, custom resource, or job based on custom metrics that are not based only
on CPU or memory.
For more information, see Custom Metrics Autoscaler Operator overview .

OpenShift Container Platform 4.15 Nodes

16

Vertical Pod Autoscaler

The Vertical Pod Autoscaler (VPA) can automatically review the historic and current CPU and
memory resources for containers in pods and can update the resource limits and requests based on
the usage values it learns.
For more information, see Automatically adjust pod resource levels with the vertical pod autoscaler .

1.5. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM NODES

This glossary defines common terms that are used in the node content.

Container

It is a lightweight and executable image that comprises software and all its dependencies. Containers
virtualize the operating system, as a result, you can run containers anywhere from a data center to a
public or private cloud to even a developer’s laptop.

Daemon set

Ensures that a replica of the pod runs on eligible nodes in an OpenShift Container Platform cluster.

egress

The process of data sharing externally through a network’s outbound traffic from a pod.

garbage collection

The process of cleaning up cluster resources, such as terminated containers and images that are not
referenced by any running pods.

Horizontal Pod Autoscaler(HPA)

Implemented as a Kubernetes API resource and a controller. You can use the HPA to specify the
minimum and maximum number of pods that you want to run. You can also specify the CPU or
memory utilization that your pods should target. The HPA scales out and scales in pods when a given
CPU or memory threshold is crossed.

Ingress

Incoming traffic to a pod.

Job

A process that runs to completion. A job creates one or more pod objects and ensures that the
specified pods are successfully completed.

Labels

You can use labels, which are key-value pairs, to organise and select subsets of objects, such as a
pod.

Node

A worker machine in the OpenShift Container Platform cluster. A node can be either be a virtual
machine (VM) or a physical machine.

Node Tuning Operator

You can use the Node Tuning Operator to manage node-level tuning by using the TuneD daemon. It
ensures custom tuning specifications are passed to all containerized TuneD daemons running in the
cluster in the format that the daemons understand. The daemons run on all nodes in the cluster, one

CHAPTER 1. OVERVIEW OF NODES

17

per node.

Self Node Remediation Operator

The Operator runs on the cluster nodes and identifies and reboots nodes that are unhealthy.

Pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and
managed.

Toleration

Indicates that the pod is allowed (but not required) to be scheduled on nodes or node groups with
matching taints. You can use tolerations to enable the scheduler to schedule pods with matching
taints.

Taint

A core object that comprises a key,value, and effect. Taints and tolerations work together to ensure
that pods are not scheduled on irrelevant nodes.

OpenShift Container Platform 4.15 Nodes

18

CHAPTER 2. WORKING WITH PODS

2.1. USING PODS

A pod is one or more containers deployed together on one host, and the smallest compute unit that can
be defined, deployed, and managed.

2.1.1. Understanding pods

Pods are the rough equivalent of a machine instance (physical or virtual) to a Container. Each pod is
allocated its own internal IP address, therefore owning its entire port space, and containers within pods
can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their
container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code,
might be removed after exiting, or can be retained to enable access to the logs of their containers.

OpenShift Container Platform treats pods as largely immutable; changes cannot be made to a pod
definition while it is running. OpenShift Container Platform implements changes by terminating an
existing pod and recreating it with modified configuration, base image(s), or both. Pods are also treated
as expendable, and do not maintain state when recreated. Therefore pods should usually be managed by
higher-level controllers, rather than directly by users.

NOTE

For the maximum number of pods per OpenShift Container Platform node host, see the
Cluster Limits.

WARNING

Bare pods that are not managed by a replication controller will be not rescheduled
upon node disruption.

2.1.2. Example pod configurations

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed.

The following is an example definition of a pod. It demonstrates many features of pods, most of which
are discussed in other topics and thus only briefly mentioned here:

Pod object definition (YAML)

kind: Pod
apiVersion: v1
metadata:
 name: example
 labels:

CHAPTER 2. WORKING WITH PODS

19

1

2

3

4

5

6

7

Pods can be "tagged" with one or more labels, which can then be used to select and manage
groups of pods in a single operation. The labels are stored in key/value format in the metadata
hash.

The pod restart policy with possible values Always, OnFailure, and Never. The default value is
Always.

OpenShift Container Platform defines a security context for containers which specifies whether
they are allowed to run as privileged containers, run as a user of their choice, and more. The default
context is very restrictive but administrators can modify this as needed.

containers specifies an array of one or more container definitions.

The container specifies where external storage volumes are mounted within the container.

Specify the volumes to provide for the pod. Volumes mount at the specified path. Do not mount to
the container root, /, or any path that is the same in the host and the container. This can corrupt
your host system if the container is sufficiently privileged, such as the host /dev/pts files. It is safe
to mount the host by using /host.

Each container in the pod is instantiated from its own container image.

 environment: production
 app: abc 1
spec:
 restartPolicy: Always 2
 securityContext: 3
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers: 4
 - name: abc
 args:
 - sleep
 - "1000000"
 volumeMounts: 5
 - name: cache-volume
 mountPath: /cache 6
 image: registry.access.redhat.com/ubi7/ubi-init:latest 7
 securityContext:
 allowPrivilegeEscalation: false
 runAsNonRoot: true
 capabilities:
 drop: ["ALL"]
 resources:
 limits:
 memory: "100Mi"
 cpu: "1"
 requests:
 memory: "100Mi"
 cpu: "1"
 volumes: 8
 - name: cache-volume
 emptyDir:
 sizeLimit: 500Mi

OpenShift Container Platform 4.15 Nodes

20

8 The pod defines storage volumes that are available to its container(s) to use.

If you attach persistent volumes that have high file counts to pods, those pods can fail or can take a
long time to start. For more information, see When using Persistent Volumes with high file counts
in OpenShift, why do pods fail to start or take an excessive amount of time to achieve "Ready"
state?.

NOTE

This pod definition does not include attributes that are filled by OpenShift Container
Platform automatically after the pod is created and its lifecycle begins. The Kubernetes
pod documentation has details about the functionality and purpose of pods.

2.1.3. Additional resources

For more information on pods and storage see Understanding persistent storage and
Understanding ephemeral storage .

2.2. VIEWING PODS

As an administrator, you can view the pods in your cluster and to determine the health of those pods and
the cluster as a whole.

2.2.1. About pods

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed. Pods are the rough equivalent of a machine instance (physical or virtual) to a
container.

You can view a list of pods associated with a specific project or view usage statistics about pods.

2.2.2. Viewing pods in a project

You can view a list of pods associated with the current project, including the number of replica, the
current status, number or restarts and the age of the pod.

Procedure

To view the pods in a project:

1. Change to the project:

2. Run the following command:

For example:

Example output

$ oc project <project-name>

$ oc get pods

$ oc get pods

CHAPTER 2. WORKING WITH PODS

21

https://access.redhat.com/solutions/6221251
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#understanding-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#understanding-ephemeral-storage

Example output

Add the -o wide flags to view the pod IP address and the node where the pod is located.

Example output

2.2.3. Viewing pod usage statistics

You can display usage statistics about pods, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

Prerequisites

You must have cluster-reader permission to view the usage statistics.

Metrics must be installed to view the usage statistics.

Procedure

To view the usage statistics:

1. Run the following command:

For example:

Example output

2. Run the following command to view the usage statistics for pods with labels:

NAME READY STATUS RESTARTS AGE
console-698d866b78-bnshf 1/1 Running 2 165m
console-698d866b78-m87pm 1/1 Running 2 165m

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
console-698d866b78-bnshf 1/1 Running 2 166m 10.128.0.24 ip-10-0-152-
71.ec2.internal <none>
console-698d866b78-m87pm 1/1 Running 2 166m 10.129.0.23 ip-10-0-173-
237.ec2.internal <none>

$ oc adm top pods

$ oc adm top pods -n openshift-console

NAME CPU(cores) MEMORY(bytes)
console-7f58c69899-q8c8k 0m 22Mi
console-7f58c69899-xhbgg 0m 25Mi
downloads-594fcccf94-bcxk8 3m 18Mi
downloads-594fcccf94-kv4p6 2m 15Mi

$ oc adm top pod --selector=''

OpenShift Container Platform 4.15 Nodes

22

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

For example:

2.2.4. Viewing resource logs

You can view the log for various resources in the OpenShift CLI (oc) and web console. Logs read from
the tail, or end, of the log.

Prerequisites

Access to the OpenShift CLI (oc).

Procedure (UI)

1. In the OpenShift Container Platform console, navigate to Workloads → Pods or navigate to the
pod through the resource you want to investigate.

NOTE

Some resources, such as builds, do not have pods to query directly. In such
instances, you can locate the Logs link on the Details page for the resource.

2. Select a project from the drop-down menu.

3. Click the name of the pod you want to investigate.

4. Click Logs.

Procedure (CLI)

View the log for a specific pod:

where:

-f

Optional: Specifies that the output follows what is being written into the logs.

<pod_name>

Specifies the name of the pod.

<container_name>

Optional: Specifies the name of a container. When a pod has more than one container, you
must specify the container name.

For example:

$ oc adm top pod --selector='name=my-pod'

$ oc logs -f <pod_name> -c <container_name>

$ oc logs ruby-58cd97df55-mww7r

CHAPTER 2. WORKING WITH PODS

23

1

The contents of log files are printed out.

View the log for a specific resource:

Specifies the resource type and name.

For example:

The contents of log files are printed out.

2.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER
FOR PODS

As an administrator, you can create and maintain an efficient cluster for pods.

By keeping your cluster efficient, you can provide a better environment for your developers using such
tools as what a pod does when it exits, ensuring that the required number of pods is always running,
when to restart pods designed to run only once, limit the bandwidth available to pods, and how to keep
pods running during disruptions.

2.3.1. Configuring how pods behave after restart

A pod restart policy determines how OpenShift Container Platform responds when Containers in that
pod exit. The policy applies to all Containers in that pod.

The possible values are:

Always - Tries restarting a successfully exited Container on the pod continuously, with an
exponential back-off delay (10s, 20s, 40s) capped at 5 minutes. The default is Always.

OnFailure - Tries restarting a failed Container on the pod with an exponential back-off delay
(10s, 20s, 40s) capped at 5 minutes.

Never - Does not try to restart exited or failed Containers on the pod. Pods immediately fail and
exit.

After the pod is bound to a node, the pod will never be bound to another node. This means that a
controller is necessary in order for a pod to survive node failure:

Condition Controller Type Restart Policy

Pods that are expected to
terminate (such as batch
computations)

Job OnFailure or Never

$ oc logs -f ruby-57f7f4855b-znl92 -c ruby

$ oc logs <object_type>/<resource_name> 1

$ oc logs deployment/ruby

OpenShift Container Platform 4.15 Nodes

24

Pods that are expected to not
terminate (such as web servers)

Replication controller Always.

Pods that must run one-per-
machine

Daemon set Any

Condition Controller Type Restart Policy

If a Container on a pod fails and the restart policy is set to OnFailure, the pod stays on the node and the
Container is restarted. If you do not want the Container to restart, use a restart policy of Never.

If an entire pod fails, OpenShift Container Platform starts a new pod. Developers must address the
possibility that applications might be restarted in a new pod. In particular, applications must handle
temporary files, locks, incomplete output, and so forth caused by previous runs.

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Container Platform from restarting.

If the underlying cloud provider endpoints are not reliable, do not install a cluster using
cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.

For details on how OpenShift Container Platform uses restart policy with failed Containers, see the
Example States in the Kubernetes documentation.

2.3.2. Limiting the bandwidth available to pods

You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth.
Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the
configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle
data. The limits you place on a pod do not affect the bandwidth of other pods.

Procedure

To limit the bandwidth on a pod:

1. Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth and kubernetes.io/egress-bandwidth annotations. For
example, to limit both pod egress and ingress bandwidth to 10M/s:

Limited Pod object definition

{
 "kind": "Pod",
 "spec": {
 "containers": [
 {
 "image": "openshift/hello-openshift",
 "name": "hello-openshift"
 }
]

CHAPTER 2. WORKING WITH PODS

25

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states

2. Create the pod using the object definition:

2.3.3. Understanding how to use pod disruption budgets to specify the number of
pods that must be up

A pod disruption budget allows the specification of safety constraints on pods during operations, such as
draining a node for maintenance.

PodDisruptionBudget is an API object that specifies the minimum number or percentage of replicas
that must be up at a time. Setting these in projects can be helpful during node maintenance (such as
scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node
failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

A label selector, which is a label query over a set of pods.

An availability level, which specifies the minimum number of pods that must be available
simultaneously, either:

minAvailable is the number of pods must always be available, even during a disruption.

maxUnavailable is the number of pods can be unavailable during a disruption.

NOTE

Available refers to the number of pods that has condition Ready=True. Ready=True
refers to the pod that is able to serve requests and should be added to the load balancing
pools of all matching services.

A maxUnavailable of 0% or 0 or a minAvailable of 100% or equal to the number of
replicas is permitted but can block nodes from being drained.

 },
 "apiVersion": "v1",
 "metadata": {
 "name": "iperf-slow",
 "annotations": {
 "kubernetes.io/ingress-bandwidth": "10M",
 "kubernetes.io/egress-bandwidth": "10M"
 }
 }
}

$ oc create -f <file_or_dir_path>

OpenShift Container Platform 4.15 Nodes

26

WARNING

The default setting for maxUnavailable is 1 for all the machine config pools in
OpenShift Container Platform. It is recommended to not change this value and
update one control plane node at a time. Do not change this value to 3 for the
control plane pool.

You can check for pod disruption budgets across all projects with the following:

Example output

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in
the system. Every pod above that limit can be evicted.

NOTE

Depending on your pod priority and preemption settings, lower-priority pods might be
removed despite their pod disruption budget requirements.

2.3.3.1. Specifying the number of pods that must be up with pod disruption budgets

You can use a PodDisruptionBudget object to specify the minimum number or percentage of replicas
that must be up at a time.

Procedure

To configure a pod disruption budget:

1. Create a YAML file with the an object definition similar to the following:

$ oc get poddisruptionbudget --all-namespaces

NAMESPACE NAME MIN AVAILABLE MAX UNAVAILABLE
ALLOWED DISRUPTIONS AGE
openshift-apiserver openshift-apiserver-pdb N/A 1 1
121m
openshift-cloud-controller-manager aws-cloud-controller-manager 1 N/A 1
125m
openshift-cloud-credential-operator pod-identity-webhook 1 N/A 1
117m
openshift-cluster-csi-drivers aws-ebs-csi-driver-controller-pdb N/A 1 1
121m
openshift-cluster-storage-operator csi-snapshot-controller-pdb N/A 1 1
122m
openshift-cluster-storage-operator csi-snapshot-webhook-pdb N/A 1 1
122m
openshift-console console N/A 1 1
116m
#...

CHAPTER 2. WORKING WITH PODS

27

1

2

3

1

2

3

PodDisruptionBudget is part of the policy/v1 API group.

The minimum number of pods that must be available simultaneously. This can be either an
integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined. Leave this parameter blank, for example selector {}, to select all
pods in the project.

Or:

PodDisruptionBudget is part of the policy/v1 API group.

The maximum number of pods that can be unavailable simultaneously. This can be either
an integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined. Leave this parameter blank, for example selector {}, to select all
pods in the project.

2. Run the following command to add the object to project:

2.3.3.2. Specifying the eviction policy for unhealthy pods

When you use pod disruption budgets (PDBs) to specify how many pods must be available
simultaneously, you can also define the criteria for how unhealthy pods are considered for eviction.

You can choose one of the following policies:

IfHealthyBudget

apiVersion: policy/v1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 minAvailable: 2 2
 selector: 3
 matchLabels:
 name: my-pod

apiVersion: policy/v1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 maxUnavailable: 25% 2
 selector: 3
 matchLabels:
 name: my-pod

$ oc create -f </path/to/file> -n <project_name>

OpenShift Container Platform 4.15 Nodes

28

1

Running pods that are not yet healthy can be evicted only if the guarded application is not disrupted.

AlwaysAllow

Running pods that are not yet healthy can be evicted regardless of whether the criteria in the pod
disruption budget is met. This policy can help evict malfunctioning applications, such as ones with
pods stuck in the CrashLoopBackOff state or failing to report the Ready status.

NOTE

It is recommended to set the unhealthyPodEvictionPolicy field to AlwaysAllow in
the PodDisruptionBudget object to support the eviction of misbehaving applications
during a node drain. The default behavior is to wait for the application pods to
become healthy before the drain can proceed.

Procedure

1. Create a YAML file that defines a PodDisruptionBudget object and specify the unhealthy pod
eviction policy:

Example pod-disruption-budget.yaml file

Choose either IfHealthyBudget or AlwaysAllow as the unhealthy pod eviction policy. The
default is IfHealthyBudget when the unhealthyPodEvictionPolicy field is empty.

2. Create the PodDisruptionBudget object by running the following command:

With a PDB that has the AlwaysAllow unhealthy pod eviction policy set, you can now drain nodes and
evict the pods for a malfunctioning application guarded by this PDB.

Additional resources

Enabling features using feature gates

Unhealthy Pod Eviction Policy in the Kubernetes documentation

2.3.4. Preventing pod removal using critical pods

There are a number of core components that are critical to a fully functional cluster, but, run on a regular
cluster node rather than the master. A cluster might stop working properly if a critical add-on is evicted.

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 minAvailable: 2
 selector:
 matchLabels:
 name: my-pod
 unhealthyPodEvictionPolicy: AlwaysAllow 1

$ oc create -f pod-disruption-budget.yaml

CHAPTER 2. WORKING WITH PODS

29

https://kubernetes.io/docs/tasks/run-application/configure-pdb/#unhealthy-pod-eviction-policy

1

Pods marked as critical are not allowed to be evicted.

Procedure

To make a pod critical:

1. Create a Pod spec or edit existing pods to include the system-cluster-critical priority class:

Default priority class for pods that should never be evicted from a node.

Alternatively, you can specify system-node-critical for pods that are important to the cluster
but can be removed if necessary.

2. Create the pod:

2.3.5. Reducing pod timeouts when using persistent volumes with high file counts

If a storage volume contains many files (~1,000,000 or greater), you might experience pod timeouts.

This can occur because, when volumes are mounted, OpenShift Container Platform recursively changes
the ownership and permissions of the contents of each volume in order to match the fsGroup specified
in a pod’s securityContext. For large volumes, checking and changing the ownership and permissions
can be time consuming, resulting in a very slow pod startup.

You can reduce this delay by applying one of the following workarounds:

Use a security context constraint (SCC) to skip the SELinux relabeling for a volume.

Use the fsGroupChangePolicy field inside an SCC to control the way that OpenShift Container
Platform checks and manages ownership and permissions for a volume.

Use the Cluster Resource Override Operator to automatically apply an SCC to skip the SELinux
relabeling.

Use a runtime class to skip the SELinux relabeling for a volume.

For information, see When using Persistent Volumes with high file counts in OpenShift, why do pods fail
to start or take an excessive amount of time to achieve "Ready" state?.

2.4. AUTOMATICALLY SCALING PODS WITH THE HORIZONTAL POD
AUTOSCALER

apiVersion: v1
kind: Pod
metadata:
 name: my-pdb
spec:
 template:
 metadata:
 name: critical-pod
 priorityClassName: system-cluster-critical 1
...

$ oc create -f <file-name>.yaml

OpenShift Container Platform 4.15 Nodes

30

https://access.redhat.com/solutions/6221251

As a developer, you can use a horizontal pod autoscaler (HPA) to specify how OpenShift Container
Platform should automatically increase or decrease the scale of a replication controller or deployment
configuration, based on metrics collected from the pods that belong to that replication controller or
deployment configuration. You can create an HPA for any deployment, deployment config, replica set,
replication controller, or stateful set.

For information on scaling pods based on custom metrics, see Automatically scaling pods based on
custom metrics.

NOTE

It is recommended to use a Deployment object or ReplicaSet object unless you need a
specific feature or behavior provided by other objects. For more information on these
objects, see Understanding deployments .

2.4.1. Understanding horizontal pod autoscalers

You can create a horizontal pod autoscaler to specify the minimum and maximum number of pods you
want to run, as well as the CPU utilization or memory utilization your pods should target.

After you create a horizontal pod autoscaler, OpenShift Container Platform begins to query the CPU
and/or memory resource metrics on the pods. When these metrics are available, the horizontal pod
autoscaler computes the ratio of the current metric utilization with the desired metric utilization, and
scales up or down accordingly. The query and scaling occurs at a regular interval, but can take one to two
minutes before metrics become available.

For replication controllers, this scaling corresponds directly to the replicas of the replication controller.
For deployment configurations, scaling corresponds directly to the replica count of the deployment
configuration. Note that autoscaling applies only to the latest deployment in the Complete phase.

OpenShift Container Platform automatically accounts for resources and prevents unnecessary
autoscaling during resource spikes, such as during start up. Pods in the unready state have 0 CPU
usage when scaling up and the autoscaler ignores the pods when scaling down. Pods without known
metrics have 0% CPU usage when scaling up and 100% CPU when scaling down. This allows for more
stability during the HPA decision. To use this feature, you must configure readiness checks to determine
if a new pod is ready for use.

To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster
metrics.

2.4.1.1. Supported metrics

The following metrics are supported by horizontal pod autoscalers:

Table 2.1. Metrics

Metric Description API version

CPU utilization Number of CPU cores used. Can be
used to calculate a percentage of the
pod’s requested CPU.

autoscaling/v1, autoscaling/v2

CHAPTER 2. WORKING WITH PODS

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/building_applications/#what-deployments-are

Memory utilization Amount of memory used. Can be used
to calculate a percentage of the pod’s
requested memory.

autoscaling/v2

Metric Description API version

IMPORTANT

For memory-based autoscaling, memory usage must increase and decrease
proportionally to the replica count. On average:

An increase in replica count must lead to an overall decrease in memory (working
set) usage per-pod.

A decrease in replica count must lead to an overall increase in per-pod memory
usage.

Use the OpenShift Container Platform web console to check the memory behavior of
your application and ensure that your application meets these requirements before using
memory-based autoscaling.

The following example shows autoscaling for the image-registry Deployment object. The initial
deployment requires 3 pods. The HPA object increases the minimum to 5. If CPU usage on the pods
reaches 75%, the pods increase to 7:

Example output

Sample HPA for the image-registry Deployment object with minReplicas set to 3

1. View the new state of the deployment:

$ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75

horizontalpodautoscaler.autoscaling/image-registry autoscaled

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: image-registry
 namespace: default
spec:
 maxReplicas: 7
 minReplicas: 3
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: image-registry
 targetCPUUtilizationPercentage: 75
status:
 currentReplicas: 5
 desiredReplicas: 0

OpenShift Container Platform 4.15 Nodes

32

There are now 5 pods in the deployment:

Example output

2.4.2. How does the HPA work?

The horizontal pod autoscaler (HPA) extends the concept of pod auto-scaling. The HPA lets you create
and manage a group of load-balanced nodes. The HPA automatically increases or decreases the
number of pods when a given CPU or memory threshold is crossed.

Figure 2.1. High level workflow of the HPA

The HPA is an API resource in the Kubernetes autoscaling API group. The autoscaler works as a control
loop with a default of 15 seconds for the sync period. During this period, the controller manager queries
the CPU, memory utilization, or both, against what is defined in the YAML file for the HPA. The
controller manager obtains the utilization metrics from the resource metrics API for per-pod resource
metrics like CPU or memory, for each pod that is targeted by the HPA.

If a utilization value target is set, the controller calculates the utilization value as a percentage of the
equivalent resource request on the containers in each pod. The controller then takes the average of
utilization across all targeted pods and produces a ratio that is used to scale the number of desired
replicas. The HPA is configured to fetch metrics from metrics.k8s.io, which is provided by the metrics
server. Because of the dynamic nature of metrics evaluation, the number of replicas can fluctuate
during scaling for a group of replicas.

NOTE

To implement the HPA, all targeted pods must have a resource request set on their
containers.

2.4.3. About requests and limits

The scheduler uses the resource request that you specify for containers in a pod, to decide which node

$ oc get deployment image-registry

NAME REVISION DESIRED CURRENT TRIGGERED BY
image-registry 1 5 5 config

CHAPTER 2. WORKING WITH PODS

33

to place the pod on. The kubelet enforces the resource limit that you specify for a container to ensure
that the container is not allowed to use more than the specified limit. The kubelet also reserves the
request amount of that system resource specifically for that container to use.

How to use resource metrics?

In the pod specifications, you must specify the resource requests, such as CPU and memory. The HPA
uses this specification to determine the resource utilization and then scales the target up or down.

For example, the HPA object uses the following metric source:

In this example, the HPA keeps the average utilization of the pods in the scaling target at 60%.
Utilization is the ratio between the current resource usage to the requested resource of the pod.

2.4.4. Best practices

All pods must have resource requests configured

The HPA makes a scaling decision based on the observed CPU or memory utilization values of pods in an
OpenShift Container Platform cluster. Utilization values are calculated as a percentage of the resource
requests of each pod. Missing resource request values can affect the optimal performance of the HPA.

Configure the cool down period

During horizontal pod autoscaling, there might be a rapid scaling of events without a time gap.
Configure the cool down period to prevent frequent replica fluctuations. You can specify a cool down
period by configuring the stabilizationWindowSeconds field. The stabilization window is used to
restrict the fluctuation of replicas count when the metrics used for scaling keep fluctuating. The
autoscaling algorithm uses this window to infer a previous desired state and avoid unwanted changes to
workload scale.

For example, a stabilization window is specified for the scaleDown field:

In the above example, all desired states for the past 5 minutes are considered. This approximates a
rolling maximum, and avoids having the scaling algorithm frequently remove pods only to trigger
recreating an equivalent pod just moments later.

2.4.4.1. Scaling policies

The autoscaling/v2 API allows you to add scaling policies to a horizontal pod autoscaler. A scaling policy
controls how the OpenShift Container Platform horizontal pod autoscaler (HPA) scales pods. Scaling
policies allow you to restrict the rate that HPAs scale pods up or down by setting a specific number or
specific percentage to scale in a specified period of time. You can also define a stabilization window,
which uses previously computed desired states to control scaling if the metrics are fluctuating. You can

type: Resource
resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 60

behavior:
 scaleDown:
 stabilizationWindowSeconds: 300

OpenShift Container Platform 4.15 Nodes

34

1

2

3

4

5

6

7

create multiple policies for the same scaling direction, and determine which policy is used, based on the
amount of change. You can also restrict the scaling by timed iterations. The HPA scales pods during an
iteration, then performs scaling, as needed, in further iterations.

Sample HPA object with a scaling policy

Specifies the direction for the scaling policy, either scaleDown or scaleUp. This example creates a
policy for scaling down.

Defines the scaling policy.

Determines if the policy scales by a specific number of pods or a percentage of pods during each
iteration. The default value is pods.

Limits the amount of scaling, either the number of pods or percentage of pods, during each
iteration. There is no default value for scaling down by number of pods.

Determines the length of a scaling iteration. The default value is 15 seconds.

The default value for scaling down by percentage is 100%.

Determines which policy to use first, if multiple policies are defined. Specify Max to use the policy
that allows the highest amount of change, Min to use the policy that allows the lowest amount of
change, or Disabled to prevent the HPA from scaling in that policy direction. The default value is
Max.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory
 namespace: default
spec:
 behavior:
 scaleDown: 1
 policies: 2
 - type: Pods 3
 value: 4 4
 periodSeconds: 60 5
 - type: Percent
 value: 10 6
 periodSeconds: 60
 selectPolicy: Min 7
 stabilizationWindowSeconds: 300 8
 scaleUp: 9
 policies:
 - type: Pods
 value: 5 10
 periodSeconds: 70
 - type: Percent
 value: 12 11
 periodSeconds: 80
 selectPolicy: Max
 stabilizationWindowSeconds: 0
...

CHAPTER 2. WORKING WITH PODS

35

8

9

10

11

Determines the time period the HPA should look back at desired states. The default value is 0.

This example creates a policy for scaling up.

Limits the amount of scaling up by the number of pods. The default value for scaling up the number
of pods is 4%.

Limits the amount of scaling up by the percentage of pods. The default value for scaling up by
percentage is 100%.

Example policy for scaling down

In this example, when the number of pods is greater than 40, the percent-based policy is used for
scaling down, as that policy results in a larger change, as required by the selectPolicy.

If there are 80 pod replicas, in the first iteration the HPA reduces the pods by 8, which is 10% of the 80
pods (based on the type: Percent and value: 10 parameters), over one minute (periodSeconds: 60).
For the next iteration, the number of pods is 72. The HPA calculates that 10% of the remaining pods is
7.2, which it rounds up to 8 and scales down 8 pods. On each subsequent iteration, the number of pods
to be scaled is re-calculated based on the number of remaining pods. When the number of pods falls
below 40, the pods-based policy is applied, because the pod-based number is greater than the
percent-based number. The HPA reduces 4 pods at a time (type: Pods and value: 4), over 30 seconds
(periodSeconds: 30), until there are 20 replicas remaining (minReplicas).

The selectPolicy: Disabled parameter prevents the HPA from scaling up the pods. You can manually
scale up by adjusting the number of replicas in the replica set or deployment set, if needed.

If set, you can view the scaling policy by using the oc edit command:

Example output

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory
 namespace: default
spec:
...
 minReplicas: 20
...
 behavior:
 scaleDown:
 stabilizationWindowSeconds: 300
 policies:
 - type: Pods
 value: 4
 periodSeconds: 30
 - type: Percent
 value: 10
 periodSeconds: 60
 selectPolicy: Max
 scaleUp:
 selectPolicy: Disabled

$ oc edit hpa hpa-resource-metrics-memory

OpenShift Container Platform 4.15 Nodes

36

Example output

2.4.5. Creating a horizontal pod autoscaler by using the web console

From the web console, you can create a horizontal pod autoscaler (HPA) that specifies the minimum
and maximum number of pods you want to run on a Deployment or DeploymentConfig object. You can
also define the amount of CPU or memory usage that your pods should target.

NOTE

An HPA cannot be added to deployments that are part of an Operator-backed service,
Knative service, or Helm chart.

Procedure

To create an HPA in the web console:

1. In the Topology view, click the node to reveal the side pane.

2. From the Actions drop-down list, select Add HorizontalPodAutoscaler to open the Add
HorizontalPodAutoscaler form.

Figure 2.2. Add HorizontalPodAutoscaler

3. From the Add HorizontalPodAutoscaler form, define the name, minimum and maximum pod

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 annotations:
 autoscaling.alpha.kubernetes.io/behavior:\
'{"ScaleUp":{"StabilizationWindowSeconds":0,"SelectPolicy":"Max","Policies":
[{"Type":"Pods","Value":4,"PeriodSeconds":15},{"Type":"Percent","Value":100,"PeriodSeconds":15}]},\
"ScaleDown":{"StabilizationWindowSeconds":300,"SelectPolicy":"Min","Policies":
[{"Type":"Pods","Value":4,"PeriodSeconds":60},{"Type":"Percent","Value":10,"PeriodSeconds":60}]}}'
...

CHAPTER 2. WORKING WITH PODS

37

3. From the Add HorizontalPodAutoscaler form, define the name, minimum and maximum pod
limits, the CPU and memory usage, and click Save.

NOTE

If any of the values for CPU and memory usage are missing, a warning is
displayed.

To edit an HPA in the web console:

1. In the Topology view, click the node to reveal the side pane.

2. From the Actions drop-down list, select Edit HorizontalPodAutoscaler to open the Edit
Horizontal Pod Autoscaler form.

3. From the Edit Horizontal Pod Autoscaler form, edit the minimum and maximum pod limits and
the CPU and memory usage, and click Save.

NOTE

While creating or editing the horizontal pod autoscaler in the web console, you can switch
from Form view to YAML view.

To remove an HPA in the web console:

1. In the Topology view, click the node to reveal the side panel.

2. From the Actions drop-down list, select Remove HorizontalPodAutoscaler.

3. In the confirmation pop-up window, click Remove to remove the HPA.

2.4.6. Creating a horizontal pod autoscaler for CPU utilization by using the CLI

Using the OpenShift Container Platform CLI, you can create a horizontal pod autoscaler (HPA) to
automatically scale an existing Deployment, DeploymentConfig, ReplicaSet, ReplicationController, or
StatefulSet object. The HPA scales the pods associated with that object to maintain the CPU usage you
specify.

NOTE

It is recommended to use a Deployment object or ReplicaSet object unless you need a
specific feature or behavior provided by other objects.

The HPA increases and decreases the number of replicas between the minimum and maximum numbers
to maintain the specified CPU utilization across all pods.

When autoscaling for CPU utilization, you can use the oc autoscale command and specify the minimum
and maximum number of pods you want to run at any given time and the average CPU utilization your
pods should target. If you do not specify a minimum, the pods are given default values from the
OpenShift Container Platform server.

To autoscale for a specific CPU value, create a HorizontalPodAutoscaler object with the target CPU
and pod limits.

OpenShift Container Platform 4.15 Nodes

38

1

2

3

Prerequisites

To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster
metrics. You can use the oc describe PodMetrics <pod-name> command to determine if metrics are
configured. If metrics are configured, the output appears similar to the following, with Cpu and Memory
displayed under Usage.

Example output

Procedure

To create a horizontal pod autoscaler for CPU utilization:

1. Perform one of the following:

To scale based on the percent of CPU utilization, create a HorizontalPodAutoscaler object
for an existing object:

Specify the type and name of the object to autoscale. The object must exist and be a
Deployment, DeploymentConfig/dc, ReplicaSet/rs, ReplicationController/rc, or
StatefulSet.

Optionally, specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Memory: 0
 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2019-05-23T18:47:56Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-
kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>

$ oc autoscale <object_type>/<name> \ 1
 --min <number> \ 2
 --max <number> \ 3
 --cpu-percent=<percent> 4

CHAPTER 2. WORKING WITH PODS

39

4

1

2

3

4

5

6

7

Specify the target average CPU utilization over all the pods, represented as a percent
of requested CPU. If not specified or negative, a default autoscaling policy is used.

For example, the following command shows autoscaling for the image-registry
Deployment object. The initial deployment requires 3 pods. The HPA object increases the
minimum to 5. If CPU usage on the pods reaches 75%, the pods will increase to 7:

To scale for a specific CPU value, create a YAML file similar to the following for an existing
object:

a. Create a YAML file similar to the following:

Use the autoscaling/v2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a Deployment, ReplicaSet, Statefulset object, use apps/v1.

For a ReplicationController, use v1.

For a DeploymentConfig, use apps.openshift.io/v1.

Specify the type of object. The object must be a Deployment,
DeploymentConfig/dc, ReplicaSet/rs, ReplicationController/rc, or StatefulSet.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

$ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75

apiVersion: autoscaling/v2 1
kind: HorizontalPodAutoscaler
metadata:
 name: cpu-autoscale 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1 3
 kind: Deployment 4
 name: example 5
 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: cpu 9
 target:
 type: AverageValue 10
 averageValue: 500m 11

OpenShift Container Platform 4.15 Nodes

40

8

9

10

11

Use the metrics parameter for memory utilization.

Specify cpu for CPU utilization.

Set to AverageValue.

Set to averageValue with the targeted CPU value.

b. Create the horizontal pod autoscaler:

2. Verify that the horizontal pod autoscaler was created:

Example output

2.4.7. Creating a horizontal pod autoscaler object for memory utilization by using
the CLI

Using the OpenShift Container Platform CLI, you can create a horizontal pod autoscaler (HPA) to
automatically scale an existing Deployment, DeploymentConfig, ReplicaSet, ReplicationController, or
StatefulSet object. The HPA scales the pods associated with that object to maintain the average
memory utilization you specify, either a direct value or a percentage of requested memory.

NOTE

It is recommended to use a Deployment object or ReplicaSet object unless you need a
specific feature or behavior provided by other objects.

The HPA increases and decreases the number of replicas between the minimum and maximum numbers
to maintain the specified memory utilization across all pods.

For memory utilization, you can specify the minimum and maximum number of pods and the average
memory utilization your pods should target. If you do not specify a minimum, the pods are given default
values from the OpenShift Container Platform server.

Prerequisites

To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster
metrics. You can use the oc describe PodMetrics <pod-name> command to determine if metrics are
configured. If metrics are configured, the output appears similar to the following, with Cpu and Memory
displayed under Usage.

$ oc create -f <file-name>.yaml

$ oc get hpa cpu-autoscale

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
AGE
cpu-autoscale Deployment/example 173m/500m 1 10 1 20m

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-
kube-scheduler

CHAPTER 2. WORKING WITH PODS

41

Example output

Procedure

To create a horizontal pod autoscaler for memory utilization:

1. Create a YAML file for one of the following:

To scale for a specific memory value, create a HorizontalPodAutoscaler object similar to
the following for an existing object:

Name: openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Cpu: 0
 Memory: 0
 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2020-02-14T22:21:14Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-
kube-scheduler-ip-10-0-129-223.compute.internal
Timestamp: 2020-02-14T22:21:14Z
Window: 5m0s
Events: <none>

apiVersion: autoscaling/v2 1
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1 3
 kind: Deployment 4
 name: example 5
 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: memory 9
 target:
 type: AverageValue 10
 averageValue: 500Mi 11
 behavior: 12

OpenShift Container Platform 4.15 Nodes

42

1

2

3

4

5

6

7

8

9

10

11

12

Use the autoscaling/v2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a Deployment, ReplicaSet, or Statefulset object, use apps/v1.

For a ReplicationController, use v1.

For a DeploymentConfig, use apps.openshift.io/v1.

Specify the type of object. The object must be a Deployment, DeploymentConfig,
ReplicaSet, ReplicationController, or StatefulSet.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Use the metrics parameter for memory utilization.

Specify memory for memory utilization.

Set the type to AverageValue.

Specify averageValue and a specific memory value.

Optional: Specify a scaling policy to control the rate of scaling up or down.

To scale for a percentage, create a HorizontalPodAutoscaler object similar to the
following for an existing object:

 scaleDown:
 stabilizationWindowSeconds: 300
 policies:
 - type: Pods
 value: 4
 periodSeconds: 60
 - type: Percent
 value: 10
 periodSeconds: 60
 selectPolicy: Max

apiVersion: autoscaling/v2 1
kind: HorizontalPodAutoscaler
metadata:
 name: memory-autoscale 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1 3
 kind: Deployment 4
 name: example 5

CHAPTER 2. WORKING WITH PODS

43

1

2

3

4

5

6

7

8

9

10

11

12

Use the autoscaling/v2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a ReplicationController, use v1.

For a DeploymentConfig, use apps.openshift.io/v1.

For a Deployment, ReplicaSet, Statefulset object, use apps/v1.

Specify the type of object. The object must be a Deployment, DeploymentConfig,
ReplicaSet, ReplicationController, or StatefulSet.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Use the metrics parameter for memory utilization.

Specify memory for memory utilization.

Set to Utilization.

Specify averageUtilization and a target average memory utilization over all the pods,
represented as a percent of requested memory. The target pods must have memory
requests configured.

Optional: Specify a scaling policy to control the rate of scaling up or down.

2. Create the horizontal pod autoscaler:

 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: memory 9
 target:
 type: Utilization 10
 averageUtilization: 50 11
 behavior: 12
 scaleUp:
 stabilizationWindowSeconds: 180
 policies:
 - type: Pods
 value: 6
 periodSeconds: 120
 - type: Percent
 value: 10
 periodSeconds: 120
 selectPolicy: Max

OpenShift Container Platform 4.15 Nodes

44

For example:

Example output

3. Verify that the horizontal pod autoscaler was created:

Example output

Example output

2.4.8. Understanding horizontal pod autoscaler status conditions by using the CLI

$ oc create -f <file-name>.yaml

$ oc create -f hpa.yaml

horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created

$ oc get hpa hpa-resource-metrics-memory

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
hpa-resource-metrics-memory Deployment/example 2441216/500Mi 1 10 1
20m

$ oc describe hpa hpa-resource-metrics-memory

Name: hpa-resource-metrics-memory
Namespace: default
Labels: <none>
Annotations: <none>
CreationTimestamp: Wed, 04 Mar 2020 16:31:37 +0530
Reference: Deployment/example
Metrics: (current / target)
 resource memory on pods: 2441216 / 500Mi
Min replicas: 1
Max replicas: 10
ReplicationController pods: 1 current / 1 desired
Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale recommended size matches current size
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a
replica count from memory resource
 ScalingLimited False DesiredWithinRange the desired count is within the acceptable
range
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 6m34s horizontal-pod-autoscaler New size: 1;
reason: All metrics below target

CHAPTER 2. WORKING WITH PODS

45

1

You can use the status conditions set to determine whether or not the horizontal pod autoscaler (HPA)
is able to scale and whether or not it is currently restricted in any way.

The HPA status conditions are available with the v2 version of the autoscaling API.

The HPA responds with the following status conditions:

The AbleToScale condition indicates whether HPA is able to fetch and update metrics, as well
as whether any backoff-related conditions could prevent scaling.

A True condition indicates scaling is allowed.

A False condition indicates scaling is not allowed for the reason specified.

The ScalingActive condition indicates whether the HPA is enabled (for example, the replica
count of the target is not zero) and is able to calculate desired metrics.

A True condition indicates metrics is working properly.

A False condition generally indicates a problem with fetching metrics.

The ScalingLimited condition indicates that the desired scale was capped by the maximum or
minimum of the horizontal pod autoscaler.

A True condition indicates that you need to raise or lower the minimum or maximum replica
count in order to scale.

A False condition indicates that the requested scaling is allowed.

Example output

The horizontal pod autoscaler status messages.

$ oc describe hpa cm-test

Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old
as to warrant a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully
calculate a replica count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the
acceptable range
Events:

OpenShift Container Platform 4.15 Nodes

46

The following is an example of a pod that is unable to scale:

Example output

The following is an example of a pod that could not obtain the needed metrics for scaling:

Example output

The following is an example of a pod where the requested autoscaling was less than the required
minimums:

Example output

2.4.8.1. Viewing horizontal pod autoscaler status conditions by using the CLI

You can view the status conditions set on a pod by the horizontal pod autoscaler (HPA).

NOTE

The horizontal pod autoscaler status conditions are available with the v2 version of the
autoscaling API.

Prerequisites

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale False FailedGetScale the HPA controller was unable to get the target's current
scale: no matches for kind "ReplicationController" in group "apps"
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedGetScale 6s (x3 over 36s) horizontal-pod-autoscaler no matches for kind
"ReplicationController" in group "apps"

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True SucceededGetScale the HPA controller was able to get the target's
current scale
 ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica
count: failed to get cpu utilization: unable to get metrics for resource cpu: no metrics returned from
resource metrics API

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range

CHAPTER 2. WORKING WITH PODS

47

To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster
metrics. You can use the oc describe PodMetrics <pod-name> command to determine if metrics are
configured. If metrics are configured, the output appears similar to the following, with Cpu and Memory
displayed under Usage.

Example output

Procedure

To view the status conditions on a pod, use the following command with the name of the pod:

For example:

The conditions appear in the Conditions field in the output.

Example output

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Memory: 0
 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2019-05-23T18:47:56Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-
kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>

$ oc describe hpa <pod-name>

$ oc describe hpa cm-test

Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1

OpenShift Container Platform 4.15 Nodes

48

2.4.9. Additional resources

For more information on replication controllers and deployment controllers, see Understanding
deployments and deployment configs.

For an example on the usage of HPA, see Horizontal Pod Autoscaling of Quarkus Application
Based on Memory Utilization.

2.5. AUTOMATICALLY ADJUST POD RESOURCE LEVELS WITH THE
VERTICAL POD AUTOSCALER

The OpenShift Container Platform Vertical Pod Autoscaler Operator (VPA) automatically reviews the
historic and current CPU and memory resources for containers in pods and can update the resource
limits and requests based on the usage values it learns. The VPA uses individual custom resources (CR)
to update all of the pods associated with a workload object, such as a Deployment, DeploymentConfig,
StatefulSet, Job, DaemonSet, ReplicaSet, or ReplicationController, in a project.

The VPA helps you to understand the optimal CPU and memory usage for your pods and can
automatically maintain pod resources through the pod lifecycle.

2.5.1. About the Vertical Pod Autoscaler Operator

The Vertical Pod Autoscaler Operator (VPA) is implemented as an API resource and a custom resource
(CR). The CR determines the actions that the VPA Operator should take with the pods associated with a
specific workload object, such as a daemon set, replication controller, and so forth, in a project.

The VPA Operator consists of three components, each of which has its own pod in the VPA namespace:

Recommender

The VPA recommender monitors the current and past resource consumption and, based on this data,
determines the optimal CPU and memory resources for the pods in the associated workload object.

Updater

The VPA updater checks if the pods in the associated workload object have the correct resources. If
the resources are correct, the updater takes no action. If the resources are not correct, the updater
kills the pod so that they can be recreated by their controllers with the updated requests.

Admission controller

The VPA admission controller sets the correct resource requests on each new pod in the associated
workload object, whether the pod is new or was recreated by its controller due to the VPA updater
actions.

You can use the default recommender or use your own alternative recommender to autoscale based on

Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range

CHAPTER 2. WORKING WITH PODS

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/building_applications/#what-deployments-are
https://cloud.redhat.com/blog/horizontal-pod-autoscaling-of-quarkus-application-based-on-memory-utilization

You can use the default recommender or use your own alternative recommender to autoscale based on
your own algorithms.

The default recommender automatically computes historic and current CPU and memory usage for the
containers in those pods and uses this data to determine optimized resource limits and requests to
ensure that these pods are operating efficiently at all times. For example, the default recommender
suggests reduced resources for pods that are requesting more resources than they are using and
increased resources for pods that are not requesting enough.

The VPA then automatically deletes any pods that are out of alignment with these recommendations
one at a time, so that your applications can continue to serve requests with no downtime. The workload
objects then re-deploy the pods with the original resource limits and requests. The VPA uses a mutating
admission webhook to update the pods with optimized resource limits and requests before the pods are
admitted to a node. If you do not want the VPA to delete pods, you can view the VPA resource limits and
requests and manually update the pods as needed.

NOTE

By default, workload objects must specify a minimum of two replicas in order for the VPA
to automatically delete their pods. Workload objects that specify fewer replicas than this
minimum are not deleted. If you manually delete these pods, when the workload object
redeploys the pods, the VPA does update the new pods with its recommendations. You
can change this minimum by modifying the VerticalPodAutoscalerController object as
shown in Changing the VPA minimum value .

For example, if you have a pod that uses 50% of the CPU but only requests 10%, the VPA determines
that the pod is consuming more CPU than requested and deletes the pod. The workload object, such as
replica set, restarts the pods and the VPA updates the new pod with its recommended resources.

For developers, you can use the VPA to help ensure your pods stay up during periods of high demand by
scheduling pods onto nodes that have appropriate resources for each pod.

Administrators can use the VPA to better utilize cluster resources, such as preventing pods from
reserving more CPU resources than needed. The VPA monitors the resources that workloads are
actually using and adjusts the resource requirements so capacity is available to other workloads. The
VPA also maintains the ratios between limits and requests that are specified in initial container
configuration.

NOTE

If you stop running the VPA or delete a specific VPA CR in your cluster, the resource
requests for the pods already modified by the VPA do not change. Any new pods get the
resources defined in the workload object, not the previous recommendations made by the
VPA.

2.5.2. Installing the Vertical Pod Autoscaler Operator

You can use the OpenShift Container Platform web console to install the Vertical Pod Autoscaler
Operator (VPA).

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose VerticalPodAutoscaler from the list of available Operators, and click Install.

OpenShift Container Platform 4.15 Nodes

50

3. On the Install Operator page, ensure that the Operator recommended namespace option is
selected. This installs the Operator in the mandatory openshift-vertical-pod-autoscaler
namespace, which is automatically created if it does not exist.

4. Click Install.

5. Verify the installation by listing the VPA Operator components:

a. Navigate to Workloads → Pods.

b. Select the openshift-vertical-pod-autoscaler project from the drop-down menu and verify
that there are four pods running.

c. Navigate to Workloads → Deployments to verify that there are four deployments running.

6. Optional. Verify the installation in the OpenShift Container Platform CLI using the following
command:

The output shows four pods and four deployments:

Example output

2.5.3. About Using the Vertical Pod Autoscaler Operator

To use the Vertical Pod Autoscaler Operator (VPA), you create a VPA custom resource (CR) for a
workload object in your cluster. The VPA learns and applies the optimal CPU and memory resources for
the pods associated with that workload object. You can use a VPA with a deployment, stateful set, job,
daemon set, replica set, or replication controller workload object. The VPA CR must be in the same
project as the pods you want to monitor.

You use the VPA CR to associate a workload object and specify which mode the VPA operates in:

The Auto and Recreate modes automatically apply the VPA CPU and memory

$ oc get all -n openshift-vertical-pod-autoscaler

NAME READY STATUS RESTARTS AGE
pod/vertical-pod-autoscaler-operator-85b4569c47-2gmhc 1/1 Running 0 3m13s
pod/vpa-admission-plugin-default-67644fc87f-xq7k9 1/1 Running 0 2m56s
pod/vpa-recommender-default-7c54764b59-8gckt 1/1 Running 0 2m56s
pod/vpa-updater-default-7f6cc87858-47vw9 1/1 Running 0 2m56s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/vpa-webhook ClusterIP 172.30.53.206 <none> 443/TCP 2m56s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/vertical-pod-autoscaler-operator 1/1 1 1 3m13s
deployment.apps/vpa-admission-plugin-default 1/1 1 1 2m56s
deployment.apps/vpa-recommender-default 1/1 1 1 2m56s
deployment.apps/vpa-updater-default 1/1 1 1 2m56s

NAME DESIRED CURRENT READY AGE
replicaset.apps/vertical-pod-autoscaler-operator-85b4569c47 1 1 1 3m13s
replicaset.apps/vpa-admission-plugin-default-67644fc87f 1 1 1 2m56s
replicaset.apps/vpa-recommender-default-7c54764b59 1 1 1 2m56s
replicaset.apps/vpa-updater-default-7f6cc87858 1 1 1 2m56s

CHAPTER 2. WORKING WITH PODS

51

The Auto and Recreate modes automatically apply the VPA CPU and memory
recommendations throughout the pod lifetime. The VPA deletes any pods in the project that
are out of alignment with its recommendations. When redeployed by the workload object, the
VPA updates the new pods with its recommendations.

The Initial mode automatically applies VPA recommendations only at pod creation.

The Off mode only provides recommended resource limits and requests, allowing you to
manually apply the recommendations. The off mode does not update pods.

You can also use the CR to opt-out certain containers from VPA evaluation and updates.

For example, a pod has the following limits and requests:

After creating a VPA that is set to auto, the VPA learns the resource usage and deletes the pod. When
redeployed, the pod uses the new resource limits and requests:

You can view the VPA recommendations using the following command:

After a few minutes, the output shows the recommendations for CPU and memory requests, similar to
the following:

Example output

resources:
 limits:
 cpu: 1
 memory: 500Mi
 requests:
 cpu: 500m
 memory: 100Mi

resources:
 limits:
 cpu: 50m
 memory: 1250Mi
 requests:
 cpu: 25m
 memory: 262144k

$ oc get vpa <vpa-name> --output yaml

...
status:
...
 recommendation:
 containerRecommendations:
 - containerName: frontend
 lowerBound:
 cpu: 25m
 memory: 262144k
 target:
 cpu: 25m
 memory: 262144k
 uncappedTarget:

OpenShift Container Platform 4.15 Nodes

52

The output shows the recommended resources, target, the minimum recommended resources,
lowerBound, the highest recommended resources, upperBound, and the most recent resource
recommendations, uncappedTarget.

The VPA uses the lowerBound and upperBound values to determine if a pod needs to be updated. If a
pod has resource requests below the lowerBound values or above the upperBound values, the VPA
terminates and recreates the pod with the target values.

2.5.3.1. Changing the VPA minimum value

By default, workload objects must specify a minimum of two replicas in order for the VPA to
automatically delete and update their pods. As a result, workload objects that specify fewer than two
replicas are not automatically acted upon by the VPA. The VPA does update new pods from these
workload objects if the pods are restarted by some process external to the VPA. You can change this
cluster-wide minimum value by modifying the minReplicas parameter in the
VerticalPodAutoscalerController custom resource (CR).

For example, if you set minReplicas to 3, the VPA does not delete and update pods for workload
objects that specify fewer than three replicas.

NOTE

If you set minReplicas to 1, the VPA can delete the only pod for a workload object that
specifies only one replica. You should use this setting with one-replica objects only if your
workload can tolerate downtime whenever the VPA deletes a pod to adjust its resources.
To avoid unwanted downtime with one-replica objects, configure the VPA CRs with the
podUpdatePolicy set to Initial, which automatically updates the pod only when it is
restarted by some process external to the VPA, or Off, which allows you to update the pod
manually at an appropriate time for your application.

Example VerticalPodAutoscalerController object

 cpu: 25m
 memory: 262144k
 upperBound:
 cpu: 262m
 memory: "274357142"
 - containerName: backend
 lowerBound:
 cpu: 12m
 memory: 131072k
 target:
 cpu: 12m
 memory: 131072k
 uncappedTarget:
 cpu: 12m
 memory: 131072k
 upperBound:
 cpu: 476m
 memory: "498558823"
...

apiVersion: autoscaling.openshift.io/v1
kind: VerticalPodAutoscalerController
metadata:

CHAPTER 2. WORKING WITH PODS

53

1 1

1

2

Specify the minimum number of replicas in a workload object for the VPA to act on. Any objects
with replicas fewer than the minimum are not automatically deleted by the VPA.

2.5.3.2. Automatically applying VPA recommendations

To use the VPA to automatically update pods, create a VPA CR for a specific workload object with
updateMode set to Auto or Recreate.

When the pods are created for the workload object, the VPA constantly monitors the containers to
analyze their CPU and memory needs. The VPA deletes any pods that do not meet the VPA
recommendations for CPU and memory. When redeployed, the pods use the new resource limits and
requests based on the VPA recommendations, honoring any pod disruption budget set for your
applications. The recommendations are added to the status field of the VPA CR for reference.

NOTE

By default, workload objects must specify a minimum of two replicas in order for the VPA
to automatically delete their pods. Workload objects that specify fewer replicas than this
minimum are not deleted. If you manually delete these pods, when the workload object
redeploys the pods, the VPA does update the new pods with its recommendations. You
can change this minimum by modifying the VerticalPodAutoscalerController object as
shown in Changing the VPA minimum value .

Example VPA CR for the Auto mode

The type of workload object you want this VPA CR to manage.

The name of the workload object you want this VPA CR to manage.

 creationTimestamp: "2021-04-21T19:29:49Z"
 generation: 2
 name: default
 namespace: openshift-vertical-pod-autoscaler
 resourceVersion: "142172"
 uid: 180e17e9-03cc-427f-9955-3b4d7aeb2d59
spec:
 minReplicas: 3 1
 podMinCPUMillicores: 25
 podMinMemoryMb: 250
 recommendationOnly: false
 safetyMarginFraction: 0.15

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Auto" 3

OpenShift Container Platform 4.15 Nodes

54

3

1

2

3

Set the mode to Auto or Recreate:

Auto. The VPA assigns resource requests on pod creation and updates the existing pods
by terminating them when the requested resources differ significantly from the new
recommendation.

Recreate. The VPA assigns resource requests on pod creation and updates the existing
pods by terminating them when the requested resources differ significantly from the new
recommendation. This mode should be used rarely, only if you need to ensure that the
pods are restarted whenever the resource request changes.

NOTE

Before a VPA can determine recommendations for resources and apply the
recommended resources to new pods, operating pods must exist and be running in the
project.

If a workload’s resource usage, such as CPU and memory, is consistent, the VPA can
determine recommendations for resources in a few minutes. If a workload’s resource
usage is inconsistent, the VPA must collect metrics at various resource usage intervals for
the VPA to make an accurate recommendation.

2.5.3.3. Automatically applying VPA recommendations on pod creation

To use the VPA to apply the recommended resources only when a pod is first deployed, create a VPA
CR for a specific workload object with updateMode set to Initial.

Then, manually delete any pods associated with the workload object that you want to use the VPA
recommendations. In the Initial mode, the VPA does not delete pods and does not update the pods as it
learns new resource recommendations.

Example VPA CR for the Initial mode

The type of workload object you want this VPA CR to manage.

The name of the workload object you want this VPA CR to manage.

Set the mode to Initial. The VPA assigns resources when pods are created and does not change
the resources during the lifetime of the pod.

NOTE

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Initial" 3

CHAPTER 2. WORKING WITH PODS

55

1

2

3

NOTE

Before a VPA can determine recommended resources and apply the recommendations to
new pods, operating pods must exist and be running in the project.

To obtain the most accurate recommendations from the VPA, wait at least 8 days for the
pods to run and for the VPA to stabilize.

2.5.3.4. Manually applying VPA recommendations

To use the VPA to only determine the recommended CPU and memory values, create a VPA CR for a
specific workload object with updateMode set to off.

When the pods are created for that workload object, the VPA analyzes the CPU and memory needs of
the containers and records those recommendations in the status field of the VPA CR. The VPA does not
update the pods as it determines new resource recommendations.

Example VPA CR for the Off mode

The type of workload object you want this VPA CR to manage.

The name of the workload object you want this VPA CR to manage.

Set the mode to Off.

You can view the recommendations using the following command.

With the recommendations, you can edit the workload object to add CPU and memory requests, then
delete and redeploy the pods using the recommended resources.

NOTE

Before a VPA can determine recommended resources and apply the recommendations to
new pods, operating pods must exist and be running in the project.

To obtain the most accurate recommendations from the VPA, wait at least 8 days for the
pods to run and for the VPA to stabilize.

2.5.3.5. Exempting containers from applying VPA recommendations

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Off" 3

$ oc get vpa <vpa-name> --output yaml

OpenShift Container Platform 4.15 Nodes

56

1

2

3

4

If your workload object has multiple containers and you do not want the VPA to evaluate and act on all of
the containers, create a VPA CR for a specific workload object and add a resourcePolicy to opt-out
specific containers.

When the VPA updates the pods with recommended resources, any containers with a resourcePolicy
are not updated and the VPA does not present recommendations for those containers in the pod.

The type of workload object you want this VPA CR to manage.

The name of the workload object you want this VPA CR to manage.

Set the mode to Auto, Recreate, or Off. The Recreate mode should be used rarely, only if you
need to ensure that the pods are restarted whenever the resource request changes.

Specify the containers you want to opt-out and set mode to Off.

For example, a pod has two containers, the same resource requests and limits:

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Auto" 3
 resourcePolicy: 4
 containerPolicies:
 - containerName: my-opt-sidecar
 mode: "Off"

...
spec:
 containers:
 - name: frontend
 resources:
 limits:
 cpu: 1
 memory: 500Mi
 requests:
 cpu: 500m
 memory: 100Mi
 - name: backend
 resources:
 limits:
 cpu: "1"
 memory: 500Mi
 requests:
 cpu: 500m
 memory: 100Mi
...

CHAPTER 2. WORKING WITH PODS

57

After launching a VPA CR with the backend container set to opt-out, the VPA terminates and recreates
the pod with the recommended resources applied only to the frontend container:

2.5.3.6. Performance tuning the VPA Operator

As a cluster administrator, you can tune the performance of your Vertical Pod Autoscaler Operator
(VPA) to limit the rate at which the VPA makes requests of the Kubernetes API server and to specify the
CPU and memory resources for the VPA recommender, updater, and admission controller component
pods.

Additionally, you can configure the VPA Operator to monitor only those workloads that are being
managed by a VPA custom resource (CR). By default, the VPA Operator monitors every workload in the
cluster. This allows the VPA Operator to accrue and store 8 days of historical data for all workloads,
which the Operator can use if a new VPA CR is created for a workload. However, this causes the VPA
Operator to use significant CPU and memory, which could cause the Operator to fail, particularly on
larger clusters. By configuring the VPA Operator to monitor only workloads with a VPA CR, you can save
on CPU and memory resources. One trade-off is that if you have a workload that has been running, and
you create a VPA CR to manage that workload, the VPA Operator does not have any historical data for
that workload. As a result, the initial recommendations are not as useful as those after the workload had
been running for some time.

These tunings allow you to ensure the VPA has sufficient resources to operate at peak efficiency and to
prevent throttling and a possible delay in pod admissions.

You can perform the following tunings on the VPA components by editing the
VerticalPodAutoscalerController custom resource (CR):

To prevent throttling and pod admission delays, set the queries-per-second (QPS) and burst
rates for VPA requests of the Kubernetes API server by using the kube-api-qps and kube-api-
burst parameters.

To ensure sufficient CPU and memory, set the CPU and memory requests for VPA component
pods by using the standard cpu and memory resource requests.

...
spec:
 containers:
 name: frontend
 resources:
 limits:
 cpu: 50m
 memory: 1250Mi
 requests:
 cpu: 25m
 memory: 262144k
...
 name: backend
 resources:
 limits:
 cpu: "1"
 memory: 500Mi
 requests:
 cpu: 500m
 memory: 100Mi
...

OpenShift Container Platform 4.15 Nodes

58

1

2

To configure the VPA Operator to monitor only workloads that are being managed by a VPA CR,
set the memory-saver parameter to true for the recommender component.

The following example VPA controller CR sets the VPA API QPS and burts rates, configures the
component pod resource requests, and sets memory-saver to true for the recommender:

Example VerticalPodAutoscalerController CR

Specifies the tuning parameters for the VPA admission controller.

Specifies the API QPS and burst rates for the VPA admission controller.

kube-api-qps: Specifies the queries per second (QPS) limit when making requests to
Kubernetes API server. The default is 5.0.

apiVersion: autoscaling.openshift.io/v1
kind: VerticalPodAutoscalerController
metadata:
 name: default
 namespace: openshift-vertical-pod-autoscaler
spec:
 deploymentOverrides:
 admission: 1
 container:
 args: 2
 - '--kube-api-qps=30.0'
 - '--kube-api-burst=40.0'
 resources:
 requests: 3
 cpu: 40m
 memory: 40Mi
 recommender: 4
 container:
 args:
 - '--kube-api-qps=20.0'
 - '--kube-api-burst=60.0'
 - '--memory-saver=true' 5
 resources:
 requests:
 cpu: 60m
 memory: 60Mi
 updater: 6
 container:
 args:
 - '--kube-api-qps=20.0'
 - '--kube-api-burst=80.0'
 resources:
 requests:
 cpu: 80m
 memory: 80Mi
 minReplicas: 2
 podMinCPUMillicores: 25
 podMinMemoryMb: 250
 recommendationOnly: false
 safetyMarginFraction: 0.15

CHAPTER 2. WORKING WITH PODS

59

3

4

5

6

kube-api-burst: Specifies the burst limit when making requests to Kubernetes API server.
The default is 10.0.

Specifies the CPU and memory requests for the VPA admission controller pod.

Specifies the tuning parameters for the VPA recommender.

Specifies that the VPA Operator monitors only workloads with a VPA CR. The default is false.

Specifies the tuning parameters for the VPA updater.

You can verify that the settings were applied to each VPA component pod.

Example updater pod

Example admission controller pod

apiVersion: v1
kind: Pod
metadata:
 name: vpa-updater-default-d65ffb9dc-hgw44
 namespace: openshift-vertical-pod-autoscaler
...
spec:
 containers:
 - args:
 - --logtostderr
 - --v=1
 - --min-replicas=2
 - --kube-api-qps=20.0
 - --kube-api-burst=80.0
...
 resources:
 requests:
 cpu: 80m
 memory: 80Mi
...

apiVersion: v1
kind: Pod
metadata:
 name: vpa-admission-plugin-default-756999448c-l7tsd
 namespace: openshift-vertical-pod-autoscaler
...
spec:
 containers:
 - args:
 - --logtostderr
 - --v=1
 - --tls-cert-file=/data/tls-certs/tls.crt
 - --tls-private-key=/data/tls-certs/tls.key
 - --client-ca-file=/data/tls-ca-certs/service-ca.crt
 - --webhook-timeout-seconds=10
 - --kube-api-qps=30.0
 - --kube-api-burst=40.0

OpenShift Container Platform 4.15 Nodes

60

Example recommender pod

2.5.3.7. Using an alternative recommender

You can use your own recommender to autoscale based on your own algorithms. If you do not specify an
alternative recommender, OpenShift Container Platform uses the default recommender, which
suggests CPU and memory requests based on historical usage. Because there is no universal
recommendation policy that applies to all types of workloads, you might want to create and deploy
different recommenders for specific workloads.

For example, the default recommender might not accurately predict future resource usage when
containers exhibit certain resource behaviors, such as cyclical patterns that alternate between usage
spikes and idling as used by monitoring applications, or recurring and repeating patterns used with deep
learning applications. Using the default recommender with these usage behaviors might result in
significant over-provisioning and Out of Memory (OOM) kills for your applications.

NOTE

Instructions for how to create a recommender are beyond the scope of this
documentation,

Procedure

To use an alternative recommender for your pods:

...
 resources:
 requests:
 cpu: 40m
 memory: 40Mi
...

apiVersion: v1
kind: Pod
metadata:
 name: vpa-recommender-default-74c979dbbc-znrd2
 namespace: openshift-vertical-pod-autoscaler
...
spec:
 containers:
 - args:
 - --logtostderr
 - --v=1
 - --recommendation-margin-fraction=0.15
 - --pod-recommendation-min-cpu-millicores=25
 - --pod-recommendation-min-memory-mb=250
 - --kube-api-qps=20.0
 - --kube-api-burst=60.0
 - --memory-saver=true
...
 resources:
 requests:
 cpu: 60m
 memory: 60Mi
...

CHAPTER 2. WORKING WITH PODS

61

1

2

3

1. Create a service account for the alternative recommender and bind that service account to the
required cluster role:

Creates a service account for the recommender in the namespace where the
recommender is deployed.

Binds the recommender service account to the metrics-reader role. Specify the
namespace where the recommender is to be deployed.

Binds the recommender service account to the vpa-actor role. Specify the namespace

apiVersion: v1 1
kind: ServiceAccount
metadata:
 name: alt-vpa-recommender-sa
 namespace: <namespace_name>

apiVersion: rbac.authorization.k8s.io/v1 2
kind: ClusterRoleBinding
metadata:
 name: system:example-metrics-reader
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:metrics-reader
subjects:
- kind: ServiceAccount
 name: alt-vpa-recommender-sa
 namespace: <namespace_name>

apiVersion: rbac.authorization.k8s.io/v1 3
kind: ClusterRoleBinding
metadata:
 name: system:example-vpa-actor
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:vpa-actor
subjects:
- kind: ServiceAccount
 name: alt-vpa-recommender-sa
 namespace: <namespace_name>

apiVersion: rbac.authorization.k8s.io/v1 4
kind: ClusterRoleBinding
metadata:
 name: system:example-vpa-target-reader-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:vpa-target-reader
subjects:
- kind: ServiceAccount
 name: alt-vpa-recommender-sa
 namespace: <namespace_name>

OpenShift Container Platform 4.15 Nodes

62

4

1

2

3

Binds the recommender service account to the vpa-actor role. Specify the namespace
where the recommender is to be deployed.

Binds the recommender service account to the vpa-target-reader role. Specify the
namespace where the recommender is to be deployed.

2. To add the alternative recommender to the cluster, create a Deployment object similar to the
following:

Creates a container for your alternative recommender.

Specifies your recommender image.

Associates the service account that you created for the recommender.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: alt-vpa-recommender
 namespace: <namespace_name>
spec:
 replicas: 1
 selector:
 matchLabels:
 app: alt-vpa-recommender
 template:
 metadata:
 labels:
 app: alt-vpa-recommender
 spec:
 containers: 1
 - name: recommender
 image: quay.io/example/alt-recommender:latest 2
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 200m
 memory: 1000Mi
 requests:
 cpu: 50m
 memory: 500Mi
 ports:
 - name: prometheus
 containerPort: 8942
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 seccompProfile:
 type: RuntimeDefault
 serviceAccountName: alt-vpa-recommender-sa 3
 securityContext:
 runAsNonRoot: true

CHAPTER 2. WORKING WITH PODS

63

1

2

A new pod is created for the alternative recommender in the same namespace.

Example output

3. Configure a VPA CR that includes the name of the alternative recommender Deployment
object.

Example VPA CR to include the alternative recommender

Specifies the name of the alternative recommender deployment.

Specifies the name of an existing workload object you want this VPA to manage.

2.5.4. Using the Vertical Pod Autoscaler Operator

You can use the Vertical Pod Autoscaler Operator (VPA) by creating a VPA custom resource (CR). The
CR indicates which pods it should analyze and determines the actions the VPA should take with those
pods.

Prerequisites

The workload object that you want to autoscale must exist.

If you want to use an alternative recommender, a deployment including that recommender must
exist.

Procedure

To create a VPA CR for a specific workload object:

1. Change to the project where the workload object you want to scale is located.

$ oc get pods

NAME READY STATUS RESTARTS AGE
frontend-845d5478d-558zf 1/1 Running 0 4m25s
frontend-845d5478d-7z9gx 1/1 Running 0 4m25s
frontend-845d5478d-b7l4j 1/1 Running 0 4m25s
vpa-alt-recommender-55878867f9-6tp5v 1/1 Running 0 9s

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
 namespace: <namespace_name>
spec:
 recommenders:
 - name: alt-vpa-recommender 1
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 2
 name: frontend

OpenShift Container Platform 4.15 Nodes

64

1

2

3

4

5

a. Create a VPA CR YAML file:

Specify the type of workload object you want this VPA to manage: Deployment,
StatefulSet, Job, DaemonSet, ReplicaSet, or ReplicationController.

Specify the name of an existing workload object you want this VPA to manage.

Specify the VPA mode:

auto to automatically apply the recommended resources on pods associated with
the controller. The VPA terminates existing pods and creates new pods with the
recommended resource limits and requests.

recreate to automatically apply the recommended resources on pods associated
with the workload object. The VPA terminates existing pods and creates new pods
with the recommended resource limits and requests. The recreate mode should
be used rarely, only if you need to ensure that the pods are restarted whenever the
resource request changes.

initial to automatically apply the recommended resources when pods associated
with the workload object are created. The VPA does not update the pods as it
learns new resource recommendations.

off to only generate resource recommendations for the pods associated with the
workload object. The VPA does not update the pods as it learns new resource
recommendations and does not apply the recommendations to new pods.

Optional. Specify the containers you want to opt-out and set the mode to Off.

Optional. Specify an alternative recommender.

b. Create the VPA CR:

After a few moments, the VPA learns the resource usage of the containers in the pods
associated with the workload object.

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Auto" 3
 resourcePolicy: 4
 containerPolicies:
 - containerName: my-opt-sidecar
 mode: "Off"
 recommenders: 5
 - name: my-recommender

$ oc create -f <file-name>.yaml

CHAPTER 2. WORKING WITH PODS

65

1

2

3

4

You can view the VPA recommendations using the following command:

The output shows the recommendations for CPU and memory requests, similar to the
following:

Example output

lowerBound is the minimum recommended resource levels.

target is the recommended resource levels.

upperBound is the highest recommended resource levels.

uncappedTarget is the most recent resource recommendations.

$ oc get vpa <vpa-name> --output yaml

...
status:

...

 recommendation:
 containerRecommendations:
 - containerName: frontend
 lowerBound: 1
 cpu: 25m
 memory: 262144k
 target: 2
 cpu: 25m
 memory: 262144k
 uncappedTarget: 3
 cpu: 25m
 memory: 262144k
 upperBound: 4
 cpu: 262m
 memory: "274357142"
 - containerName: backend
 lowerBound:
 cpu: 12m
 memory: 131072k
 target:
 cpu: 12m
 memory: 131072k
 uncappedTarget:
 cpu: 12m
 memory: 131072k
 upperBound:
 cpu: 476m
 memory: "498558823"

...

OpenShift Container Platform 4.15 Nodes

66

2.5.5. Uninstalling the Vertical Pod Autoscaler Operator

You can remove the Vertical Pod Autoscaler Operator (VPA) from your OpenShift Container Platform
cluster. After uninstalling, the resource requests for the pods already modified by an existing VPA CR do
not change. Any new pods get the resources defined in the workload object, not the previous
recommendations made by the Vertical Pod Autoscaler Operator.

NOTE

You can remove a specific VPA CR by using the oc delete vpa <vpa-name> command.
The same actions apply for resource requests as uninstalling the vertical pod autoscaler.

After removing the VPA Operator, it is recommended that you remove the other components
associated with the Operator to avoid potential issues.

Prerequisites

The Vertical Pod Autoscaler Operator must be installed.

Procedure

1. In the OpenShift Container Platform web console, click Operators → Installed Operators.

2. Switch to the openshift-vertical-pod-autoscaler project.

3. For the VerticalPodAutoscaler Operator, click the Options menu and select Uninstall
Operator.

4. Optional: To remove all operands associated with the Operator, in the dialog box, select Delete
all operand instances for this operator checkbox.

5. Click Uninstall.

6. Optional: Use the OpenShift CLI to remove the VPA components:

a. Delete the VPA namespace:

b. Delete the VPA custom resource definition (CRD) objects:

Deleting the CRDs removes the associated roles, cluster roles, and role bindings.

NOTE

$ oc delete namespace openshift-vertical-pod-autoscaler

$ oc delete crd verticalpodautoscalercheckpoints.autoscaling.k8s.io

$ oc delete crd verticalpodautoscalercontrollers.autoscaling.openshift.io

$ oc delete crd verticalpodautoscalers.autoscaling.k8s.io

CHAPTER 2. WORKING WITH PODS

67

1

NOTE

This action removes from the cluster all user-created VPA CRs. If you re-
install the VPA, you must create these objects again.

c. Delete the MutatingWebhookConfiguration object by running the following command:

d. Delete the VPA Operator:

2.6. PROVIDING SENSITIVE DATA TO PODS BY USING SECRETS

Some applications need sensitive information, such as passwords and user names, that you do not want
developers to have.

As an administrator, you can use Secret objects to provide this information without exposing that
information in clear text.

2.6.1. Understanding secrets

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, private source repository credentials, and so on.
Secrets decouple sensitive content from the pods. You can mount secrets into containers using a
volume plugin or the system can use secrets to perform actions on behalf of a pod.

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

YAML Secret object definition

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the

$ oc delete MutatingWebhookConfiguration vpa-webhook-config

$ oc delete operator/vertical-pod-autoscaler.openshift-vertical-pod-autoscaler

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: <username> 3
 password: <password>
stringData: 4
 hostname: myapp.mydomain.com 5

OpenShift Container Platform 4.15 Nodes

68

2

3

4

5

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry will then be moved to the
data map automatically. This field is write-only; the value will only be returned via the data field.

The value associated with keys in the stringData map is made up of plain text strings.

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod’s service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume).

2.6.1.1. Types of secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/service-account-token. Uses a service account token.

kubernetes.io/basic-auth. Use with Basic Authentication.

kubernetes.io/ssh-auth. Use with SSH Key Authentication.

kubernetes.io/tls. Use with TLS certificate authorities.

Specify type: Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

For examples of different secret types, see the code samples in Using Secrets.

2.6.1.2. Secret data keys

Secret keys must be in a DNS subdomain.

2.6.1.3. Automatically generated secrets

CHAPTER 2. WORKING WITH PODS

69

https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/design/identifiers.md

By default, OpenShift Container Platform creates the following secrets for each service account:

A dockercfg image pull secret

A service account token secret

NOTE

Prior to OpenShift Container Platform 4.11, a second service account token
secret was generated when a service account was created. This service account
token secret was used to access the Kubernetes API.

Starting with OpenShift Container Platform 4.11, this second service account
token secret is no longer created. This is because the
LegacyServiceAccountTokenNoAutoGeneration upstream Kubernetes
feature gate was enabled, which stops the automatic generation of secret-based
service account tokens to access the Kubernetes API.

After upgrading to 4.15, any existing service account token secrets are not
deleted and continue to function.

This service account token secret and docker configuration image pull secret are necessary to integrate
the OpenShift image registry into the cluster’s user authentication and authorization system.

However, if you do not enable the ImageRegistry capability or if you disable the integrated OpenShift
image registry in the Cluster Image Registry Operator’s configuration, these secrets are not generated
for each service account.

WARNING

Do not rely on these automatically generated secrets for your own use; they might
be removed in a future OpenShift Container Platform release.

Workloads are automatically injected with a projected volume to obtain a bound service account token. If
your workload needs an additional service account token, add an additional projected volume in your
workload manifest. Bound service account tokens are more secure than service account token secrets
for the following reasons:

Bound service account tokens have a bounded lifetime.

Bound service account tokens contain audiences.

Bound service account tokens can be bound to pods or secrets and the bound tokens are
invalidated when the bound object is removed.

For more information, see Configuring bound service account tokens using volume projection .

You can also manually create a service account token secret to obtain a token, if the security exposure
of a non-expiring token in a readable API object is acceptable to you. For more information, see
Creating a service account token secret .

OpenShift Container Platform 4.15 Nodes

70

1

2

3

Additional resources

For information about requesting bound service account tokens, see Using bound service
account tokens

For information about creating a service account token secret, see Creating a service account
token secret.

2.6.2. Understanding how to create secrets

As an administrator you must create a secret before developers can create the pods that depend on
that secret.

When creating secrets:

1. Create a secret object that contains the data you want to keep secret. The specific data
required for each secret type is descibed in the following sections.

Example YAML object that creates an opaque secret

Specifies the type of secret.

Specifies encoded string and data.

Specifies decoded string and data.

Use either the data or stringdata fields, not both.

2. Update the pod’s service account to reference the secret:

YAML of a service account that uses a secret

3. Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume):

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
type: Opaque 1
data: 2
 username: <username>
 password: <password>
stringData: 3
 hostname: myapp.mydomain.com
 secret.properties: |
 property1=valueA
 property2=valueB

apiVersion: v1
kind: ServiceAccount
 ...
secrets:
- name: test-secret

CHAPTER 2. WORKING WITH PODS

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#bound-sa-tokens-configuring_bound-service-account-tokens

1

2

3

4

YAML of a pod populating files in a volume with secret data

Add a volumeMounts field to each container that needs the secret.

Specifies an unused directory name where you would like the secret to appear. Each key in
the secret data map becomes the filename under mountPath.

Set to true. If true, this instructs the driver to provide a read-only volume.

Specifies the name of the secret.

YAML of a pod populating environment variables with secret data

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts: 1
 - name: secret-volume
 mountPath: /etc/secret-volume 2
 readOnly: true 3
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret 4
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:

OpenShift Container Platform 4.15 Nodes

72

1

1

Specifies the environment variable that consumes the secret key.

YAML of a build config populating environment variables with secret data

Specifies the environment variable that consumes the secret key.

2.6.2.1. Secret creation restrictions

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

To populate environment variables for containers.

As files in a volume mounted on one or more of its containers.

By kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism. Image pull
secrets use service accounts for the automatic injection of the secret into all pods in a namespace.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to a Secret object. Therefore, a secret needs to be created before any pods that depend on it.
The most effective way to ensure this is to have it get injected automatically through the use of a service
account.

 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef: 1
 name: test-secret
 key: username
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef: 1
 name: test-secret
 key: username
 from:
 kind: ImageStreamTag
 namespace: openshift
 name: 'cli:latest'

CHAPTER 2. WORKING WITH PODS

73

1

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that could
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

2.6.2.2. Creating an opaque secret

As an administrator, you can create an opaque secret, which allows you to store unstructured key:value
pairs that can contain arbitrary values.

Procedure

1. Create a Secret object in a YAML file on a control plane node.
For example:

Specifies an opaque secret.

2. Use the following command to create a Secret object:

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

For more information on using secrets in pods, see Understanding how to create secrets .

2.6.2.3. Creating a service account token secret

As an administrator, you can create a service account token secret, which allows you to distribute a
service account token to applications that must authenticate to the API.

NOTE

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque 1
data:
 username: <username>
 password: <password>

$ oc create -f <filename>.yaml

OpenShift Container Platform 4.15 Nodes

74

1

2

NOTE

It is recommended to obtain bound service account tokens using the TokenRequest API
instead of using service account token secrets. The tokens obtained from the
TokenRequest API are more secure than the tokens stored in secrets, because they have
a bounded lifetime and are not readable by other API clients.

You should create a service account token secret only if you cannot use the
TokenRequest API and if the security exposure of a non-expiring token in a readable API
object is acceptable to you.

See the Additional resources section that follows for information on creating bound
service account tokens.

Procedure

1. Create a Secret object in a YAML file on a control plane node:

Example secret object:

Specifies an existing service account name. If you are creating both the ServiceAccount
and the Secret objects, create the ServiceAccount object first.

Specifies a service account token secret.

2. Use the following command to create the Secret object:

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

For more information on using secrets in pods, see Understanding how to create secrets .

For information on requesting bound service account tokens, see Using bound service account
tokens

For information on creating service accounts, see Understanding and creating service accounts .

apiVersion: v1
kind: Secret
metadata:
 name: secret-sa-sample
 annotations:
 kubernetes.io/service-account.name: "sa-name" 1
type: kubernetes.io/service-account-token 2

$ oc create -f <filename>.yaml

CHAPTER 2. WORKING WITH PODS

75

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#bound-sa-tokens-configuring_bound-service-account-tokens
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#understanding-and-creating-service-accounts

1

2

2.6.2.4. Creating a basic authentication secret

As an administrator, you can create a basic authentication secret, which allows you to store the
credentials needed for basic authentication. When using this secret type, the data parameter of the
Secret object must contain the following keys encoded in the base64 format:

username: the user name for authentication

password: the password or token for authentication

NOTE

You can use the stringData parameter to use clear text content.

Procedure

1. Create a Secret object in a YAML file on a control plane node:

Example secret object

Specifies a basic authentication secret.

Specifies the basic authentication values to use.

2. Use the following command to create the Secret object:

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

For more information on using secrets in pods, see Understanding how to create secrets .

2.6.2.5. Creating an SSH authentication secret

As an administrator, you can create an SSH authentication secret, which allows you to store data used

apiVersion: v1
kind: Secret
metadata:
 name: secret-basic-auth
type: kubernetes.io/basic-auth 1
data:
stringData: 2
 username: admin
 password: <password>

$ oc create -f <filename>.yaml

OpenShift Container Platform 4.15 Nodes

76

1

2

As an administrator, you can create an SSH authentication secret, which allows you to store data used
for SSH authentication. When using this secret type, the data parameter of the Secret object must
contain the SSH credential to use.

Procedure

1. Create a Secret object in a YAML file on a control plane node:

Example secret object:

Specifies an SSH authentication secret.

Specifies the SSH key/value pair as the SSH credentials to use.

2. Use the following command to create the Secret object:

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

Understanding how to create secrets .

2.6.2.6. Creating a Docker configuration secret

As an administrator, you can create a Docker configuration secret, which allows you to store the
credentials for accessing a container image registry.

kubernetes.io/dockercfg. Use this secret type to store your local Docker configuration file. The
data parameter of the secret object must contain the contents of a .dockercfg file encoded in
the base64 format.

kubernetes.io/dockerconfigjson. Use this secret type to store your local Docker configuration
JSON file. The data parameter of the secret object must contain the contents of a
.docker/config.json file encoded in the base64 format.

Procedure

apiVersion: v1
kind: Secret
metadata:
 name: secret-ssh-auth
type: kubernetes.io/ssh-auth 1
data:
 ssh-privatekey: | 2
 MIIEpQIBAAKCAQEAulqb/Y ...

$ oc create -f <filename>.yaml

CHAPTER 2. WORKING WITH PODS

77

1

2

1

2

1. Create a Secret object in a YAML file on a control plane node.

Example Docker configuration secret object

Specifies that the secret is using a Docker configuration file.

The output of a base64-encoded Docker configuration file

Example Docker configuration JSON secret object

Specifies that the secret is using a Docker configuration JSONfile.

The output of a base64-encoded Docker configuration JSON file

2. Use the following command to create the Secret object

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

For more information on using secrets in pods, see Understanding how to create secrets .

apiVersion: v1
kind: Secret
metadata:
 name: secret-docker-cfg
 namespace: my-project
type: kubernetes.io/dockerconfig 1
data:

.dockerconfig:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV
0aCBrZXlzCg== 2

apiVersion: v1
kind: Secret
metadata:
 name: secret-docker-json
 namespace: my-project
type: kubernetes.io/dockerconfig 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg
YXV0aCBrZXlzCg== 2

$ oc create -f <filename>.yaml

OpenShift Container Platform 4.15 Nodes

78

1

2

2.6.2.7. Creating a secret using the web console

You can create secrets using the web console.

Procedure

1. Navigate to Workloads → Secrets.

2. Click Create → From YAML.

a. Edit the YAML manually to your specifications, or drag and drop a file into the YAML editor.
For example:

This example specifies an opaque secret; however, you may see other secret types
such as service account token secret, basic authentication secret, SSH authentication
secret, or a secret that uses Docker configuration.

Entries in the stringData map are converted to base64 and the entry will then be
moved to the data map automatically. This field is write-only; the value will only be
returned via the data field.

3. Click Create.

4. Click Add Secret to workload.

a. From the drop-down menu, select the workload to add.

b. Click Save.

2.6.3. Understanding how to update secrets

When you modify the value of a secret, the value (used by an already running pod) will not dynamically
change. To change a secret, you must delete the original pod and create a new pod (perhaps with an
identical PodSpec).

Updating a secret follows the same workflow as deploying a new Container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, the version of the secret that is used for the pod is not
defined.

NOTE

apiVersion: v1
kind: Secret
metadata:
 name: example
 namespace: <namespace>
type: Opaque 1
data:
 username: <base64 encoded username>
 password: <base64 encoded password>
stringData: 2
 hostname: myapp.mydomain.com

CHAPTER 2. WORKING WITH PODS

79

1

2

3

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods will report this information, so that a
controller could restart ones using an old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

2.6.4. Creating and using secrets

As an administrator, you can create a service account token secret. This allows you to distribute a service
account token to applications that must authenticate to the API.

Procedure

1. Create a service account in your namespace by running the following command:

2. Save the following YAML example to a file named service-account-token-secret.yaml. The
example includes a Secret object configuration that you can use to generate a service account
token:

Replace <secret_name> with the name of your service token secret.

Specifies an existing service account name. If you are creating both the ServiceAccount
and the Secret objects, create the ServiceAccount object first.

Specifies a service account token secret type.

3. Generate the service account token by applying the file:

4. Get the service account token from the secret by running the following command:

Example output

$ oc create sa <service_account_name> -n <your_namespace>

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name> 1
 annotations:
 kubernetes.io/service-account.name: "sa-name" 2
type: kubernetes.io/service-account-token 3

$ oc apply -f service-account-token-secret.yaml

$ oc get secret <sa_token_secret> -o jsonpath='{.data.token}' | base64 --decode 1

ayJhbGciOiJSUzI1NiIsImtpZCI6IklOb2dtck1qZ3hCSWpoNnh5YnZhSE9QMkk3YnRZMVZoclFf
QTZfRFp1YlUifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5
pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZX
J2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImJ1aWxkZXItdG9rZW4tdHZrbnIiLCJrdWJlcm5l
dGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiYnVpbGRlciIsImt1

OpenShift Container Platform 4.15 Nodes

80

1

1

2

1

Replace <sa_token_secret> with the name of your service token secret.

5. Use your service account token to authenticate with the API of your cluster:

Replace <openshift_cluster_api> with the OpenShift cluster API.

Replace <token> with the service account token that is output in the preceding command.

2.6.5. About using signed certificates with secrets

To secure communication to your service, you can configure OpenShift Container Platform to generate
a signed serving certificate/key pair that you can add into a secret in a project.

A service serving certificate secret is intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Service Pod spec configured for a service serving certificates secret.

Specify the name for the certificate

Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by
using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is
automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

2.6.5.1. Generating signed certificates for use with secrets

To use a signed serving certificate/key pair with a pod, create or edit the service to add the
service.beta.openshift.io/serving-cert-secret-name annotation, then add the secret to the pod.

YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjNmZGU
2MGZmLTA1NGYtNDkyZi04YzhjLTNlZjE0NDk3MmFmNyIsInN1YiI6InN5c3RlbTpzZXJ2aWNl
YWNjb3VudDpkZWZhdWx0OmJ1aWxkZXIifQ.OmqFTDuMHC_lYvvEUrjr1x453hlEEHYcxS9VK
SzmRkP1SiVZWPNPkTWlfNRp6bIUZD3U6aN3N7dMSN0eI5hu36xPgpKTdvuckKLTCnelMx6c
xOdAbrcw1mCmOClNscwjS1KO1kzMtYnnq8rXHiMJELsNlhnRyyIXRTtNBsy4t64T3283s3SLsa
ncyx0gy0ujx-Ch3uKAKdZi5iT-I8jnnQ-ds5THDs2h65RJhgglQEmSxpHrLGZFmyHAQI-
_SjvmHZPXEc482x3SkaQHNLqpmrpJorNqh1M8ZHKzlujhZgVooMvJmWPXTb2vnvi3DGn2XI-
hZxl1yD2yGH1RBpYUHA

$ curl -X GET <openshift_cluster_api> --header "Authorization: Bearer <token>" 1 2

apiVersion: v1
kind: Service
metadata:
 name: registry
 annotations:
 service.beta.openshift.io/serving-cert-secret-name: registry-cert 1
...

CHAPTER 2. WORKING WITH PODS

81

Procedure

To create a service serving certificate secret :

1. Edit the Pod spec for your service.

2. Add the service.beta.openshift.io/serving-cert-secret-name annotation with the name you
want to use for your secret.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively.

3. Create the service:

4. View the secret to make sure it was created:

a. View a list of all secrets:

Example output

b. View details on your secret:

Example output

kind: Service
apiVersion: v1
metadata:
 name: my-service
 annotations:
 service.beta.openshift.io/serving-cert-secret-name: my-cert 1
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

$ oc create -f <file-name>.yaml

$ oc get secrets

NAME TYPE DATA AGE
my-cert kubernetes.io/tls 2 9m

$ oc describe secret my-cert

Name: my-cert
Namespace: openshift-console
Labels: <none>
Annotations: service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z
 service.beta.openshift.io/originating-service-name: my-service
 service.beta.openshift.io/originating-service-uid: 640f0ec3-afc2-4380-bf31-
a8c784846a11
 service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z

OpenShift Container Platform 4.15 Nodes

82

5. Edit your Pod spec with that secret.

When it is available, your pod will run. The certificate will be good for the internal service DNS
name, <service.name>.<service.namespace>.svc.

The certificate/key pair is automatically replaced when it gets close to expiration. View the
expiration date in the service.beta.openshift.io/expiry annotation on the secret, which is in
RFC3339 format.

NOTE

In most cases, the service DNS name <service.name>.
<service.namespace>.svc is not externally routable. The primary use of
<service.name>.<service.namespace>.svc is for intracluster or intraservice
communication, and with re-encrypt routes.

2.6.6. Troubleshooting secrets

If a service certificate generation fails with (service’s service.beta.openshift.io/serving-cert-

Type: kubernetes.io/tls

Data
====
tls.key: 1679 bytes
tls.crt: 2595 bytes

apiVersion: v1
kind: Pod
metadata:
 name: my-service-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: my-container
 mountPath: "/etc/my-path"
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: my-volume
 secret:
 secretName: my-cert
 items:
 - key: username
 path: my-group/my-username
 mode: 511

CHAPTER 2. WORKING WITH PODS

83

If a service certificate generation fails with (service’s service.beta.openshift.io/serving-cert-
generation-error annotation contains):

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on the
service service.beta.openshift.io/serving-cert-generation-error, service.beta.openshift.io/serving-
cert-generation-error-num:

1. Delete the secret:

2. Clear the annotations:

NOTE

The command removing annotation has a - after the annotation name to be removed.

2.7. PROVIDING SENSITIVE DATA TO PODS BY USING AN EXTERNAL
SECRETS STORE

Some applications need sensitive information, such as passwords and user names, that you do not want
developers to have.

As an alternative to using Kubernetes Secret objects to provide sensitive information, you can use an
external secrets store to store the sensitive information. You can use the Secrets Store CSI Driver
Operator to integrate with an external secrets store and mount the secret content as a pod volume.

IMPORTANT

The Secrets Store CSI Driver Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

2.7.1. About the Secrets Store CSI Driver Operator

Kubernetes secrets are stored with Base64 encoding. etcd provides encryption at rest for these secrets,
but when secrets are retrieved, they are decrypted and presented to the user. If role-based access

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

$ oc delete secret <secret_name>

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-
error-

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-
error-num-

OpenShift Container Platform 4.15 Nodes

84

https://access.redhat.com/support/offerings/techpreview/

control is not configured properly on your cluster, anyone with API or etcd access can retrieve or modify
a secret. Additionally, anyone who is authorized to create a pod in a namespace can use that access to
read any secret in that namespace.

To store and manage your secrets securely, you can configure the OpenShift Container Platform
Secrets Store Container Storage Interface (CSI) Driver Operator to mount secrets from an external
secret management system, such as Azure Key Vault, by using a provider plugin. Applications can then
use the secret, but the secret does not persist on the system after the application pod is destroyed.

The Secrets Store CSI Driver Operator, secrets-store.csi.k8s.io, enables OpenShift Container Platform
to mount multiple secrets, keys, and certificates stored in enterprise-grade external secrets stores into
pods as a volume. The Secrets Store CSI Driver Operator communicates with the provider using gRPC
to fetch the mount contents from the specified external secrets store. After the volume is attached, the
data in it is mounted into the container’s file system. Secrets store volumes are mounted in-line.

2.7.1.1. Secrets store providers

The following secrets store providers are available for use with the Secrets Store CSI Driver Operator:

AWS Secrets Manager

AWS Systems Manager Parameter Store

Azure Key Vault

2.7.1.2. Automatic rotation

The Secrets Store CSI driver periodically rotates the content in the mounted volume with the content
from the external secrets store. If a secret is updated in the external secrets store, the secret will be
updated in the mounted volume. The Secrets Store CSI Driver Operator polls for updates every 2
minutes.

If you enabled synchronization of mounted content as Kubernetes secrets, the Kubernetes secrets are
also rotated.

Applications consuming the secret data must watch for updates to the secrets.

2.7.2. Installing the Secrets Store CSI driver

Prerequisites

Access to the OpenShift Container Platform web console.

Administrator access to the cluster.

Procedure

To install the Secrets Store CSI driver:

1. Install the Secrets Store CSI Driver Operator:

a. Log in to the web console.

b. Click Operators → OperatorHub.

c. Locate the Secrets Store CSI Driver Operator by typing "Secrets Store CSI" in the filter box.

CHAPTER 2. WORKING WITH PODS

85

d. Click the Secrets Store CSI Driver Operator button.

e. On the Secrets Store CSI Driver Operator page, click Install.

f. On the Install Operator page, ensure that:

All namespaces on the cluster (default) is selected.

Installed Namespace is set to openshift-cluster-csi-drivers.

g. Click Install.
After the installation finishes, the Secrets Store CSI Driver Operator is listed in the Installed
Operators section of the web console.

2. Create the ClusterCSIDriver instance for the driver (secrets-store.csi.k8s.io):

a. Click Administration → CustomResourceDefinitions → ClusterCSIDriver.

b. On the Instances tab, click Create ClusterCSIDriver.
Use the following YAML file:

c. Click Create.

2.7.3. Mounting secrets from an external secrets store to a CSI volume

After installing the Secrets Store CSI Driver Operator, you can mount secrets from one of the following
external secrets stores to a CSI volume:

AWS Secrets Manager

AWS Systems Manager Parameter Store

Azure Key Vault

2.7.3.1. Mounting secrets from AWS Secrets Manager

You can use the Secrets Store CSI Driver Operator to mount secrets from AWS Secrets Manager to a
CSI volume in OpenShift Container Platform. To mount secrets from AWS Secrets Manager, your
cluster must be installed on AWS and use AWS Security Token Service (STS).

IMPORTANT

It is not supported to use the Secrets Store CSI Driver Operator with AWS Secrets
Manager in a hosted control plane cluster.

Prerequisites

Your cluster is installed on AWS and uses AWS Security Token Service (STS).

apiVersion: operator.openshift.io/v1
kind: ClusterCSIDriver
metadata:
 name: secrets-store.csi.k8s.io
spec:
 managementState: Managed

OpenShift Container Platform 4.15 Nodes

86

You have installed the Secrets Store CSI Driver Operator. See Installing the Secrets Store CSI
driver for instructions.

You have configured AWS Secrets Manager to store the required secrets.

You have extracted and prepared the ccoctl binary.

You have installed the jq CLI tool.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Install the AWS Secrets Manager provider:

a. Create a YAML file with the following configuration for the provider resources:

IMPORTANT

The AWS Secrets Manager provider for the Secrets Store CSI driver is an
upstream provider.

This configuration is modified from the configuration provided in the
upstream AWS documentation so that it works properly with OpenShift
Container Platform. Changes to this configuration might impact functionality.

Example aws-provider.yaml file

apiVersion: v1
kind: ServiceAccount
metadata:
 name: csi-secrets-store-provider-aws
 namespace: openshift-cluster-csi-drivers

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: csi-secrets-store-provider-aws-cluster-role
rules:
- apiGroups: [""]
 resources: ["serviceaccounts/token"]
 verbs: ["create"]
- apiGroups: [""]
 resources: ["serviceaccounts"]
 verbs: ["get"]
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get"]
- apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

CHAPTER 2. WORKING WITH PODS

87

https://github.com/aws/secrets-store-csi-driver-provider-aws#installing-the-aws-provider

 name: csi-secrets-store-provider-aws-cluster-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: csi-secrets-store-provider-aws-cluster-role
subjects:
- kind: ServiceAccount
 name: csi-secrets-store-provider-aws
 namespace: openshift-cluster-csi-drivers

apiVersion: apps/v1
kind: DaemonSet
metadata:
 namespace: openshift-cluster-csi-drivers
 name: csi-secrets-store-provider-aws
 labels:
 app: csi-secrets-store-provider-aws
spec:
 updateStrategy:
 type: RollingUpdate
 selector:
 matchLabels:
 app: csi-secrets-store-provider-aws
 template:
 metadata:
 labels:
 app: csi-secrets-store-provider-aws
 spec:
 serviceAccountName: csi-secrets-store-provider-aws
 hostNetwork: false
 containers:
 - name: provider-aws-installer
 image: public.ecr.aws/aws-secrets-manager/secrets-store-csi-driver-provider-
aws:1.0.r2-50-g5b4aca1-2023.06.09.21.19
 imagePullPolicy: Always
 args:
 - --provider-volume=/etc/kubernetes/secrets-store-csi-providers
 resources:
 requests:
 cpu: 50m
 memory: 100Mi
 limits:
 cpu: 50m
 memory: 100Mi
 securityContext:
 privileged: true
 volumeMounts:
 - mountPath: "/etc/kubernetes/secrets-store-csi-providers"
 name: providervol
 - name: mountpoint-dir
 mountPath: /var/lib/kubelet/pods
 mountPropagation: HostToContainer
 tolerations:
 - operator: Exists
 volumes:
 - name: providervol

OpenShift Container Platform 4.15 Nodes

88

b. Grant privileged access to the csi-secrets-store-provider-aws service account by running
the following command:

c. Create the provider resources by running the following command:

2. Grant permission to allow the service account to read the AWS secret object:

a. Create a directory to contain the credentials request by running the following command:

b. Create a YAML file with the following configuration for the credentials request:

Example credentialsrequest.yaml file

c. Retrieve the OIDC provider by running the following command:

 hostPath:
 path: "/etc/kubernetes/secrets-store-csi-providers"
 - name: mountpoint-dir
 hostPath:
 path: /var/lib/kubelet/pods
 type: DirectoryOrCreate
 nodeSelector:
 kubernetes.io/os: linux

$ oc adm policy add-scc-to-user privileged -z csi-secrets-store-provider-aws -n openshift-
cluster-csi-drivers

$ oc apply -f aws-provider.yaml

$ mkdir credentialsrequest-dir-aws

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: aws-provider-test
 namespace: openshift-cloud-credential-operator
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - action:
 - "secretsmanager:GetSecretValue"
 - "secretsmanager:DescribeSecret"
 effect: Allow
 resource: "arn:*:secretsmanager:*:*:secret:testSecret-??????"
 secretRef:
 name: aws-creds
 namespace: my-namespace
 serviceAccountNames:
 - aws-provider

$ oc get --raw=/.well-known/openid-configuration | jq -r '.issuer'

CHAPTER 2. WORKING WITH PODS

89

1 1

2

Example output

Copy the OIDC provider name <oidc_provider_name> from the output to use in the next
step.

d. Use the ccoctl tool to process the credentials request by running the following command:

Example output

Copy the <aws_role_arn> from the output to use in the next step. For example,
arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-aws-creds.

e. Bind the service account with the role ARN by running the following command:

3. Create a secret provider class to define your secrets store provider:

a. Create a YAML file that defines the SecretProviderClass object:

Example secret-provider-class-aws.yaml

Specify the name for the secret provider class.

Specify the namespace for the secret provider class.

https://<oidc_provider_name>

$ ccoctl aws create-iam-roles \
 --name my-role --region=<aws_region> \
 --credentials-requests-dir=credentialsrequest-dir-aws \
 --identity-provider-arn arn:aws:iam::<aws_account>:oidc-
provider/<oidc_provider_name> --output-dir=credrequests-ccoctl-output

2023/05/15 18:10:34 Role arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-
aws-creds created
2023/05/15 18:10:34 Saved credentials configuration to: credrequests-ccoctl-
output/manifests/my-namespace-aws-creds-credentials.yaml
2023/05/15 18:10:35 Updated Role policy for Role my-role-my-namespace-aws-creds

$ oc annotate -n my-namespace sa/aws-provider eks.amazonaws.com/role-arn="
<aws_role_arn>"

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: my-aws-provider 1
 namespace: my-namespace 2
spec:
 provider: aws 3
 parameters: 4
 objects: |
 - objectName: "testSecret"
 objectType: "secretsmanager"

OpenShift Container Platform 4.15 Nodes

90

3

4

1

2

3

Specify the provider as aws.

Specify the provider-specific configuration parameters.

b. Create the SecretProviderClass object by running the following command:

4. Create a deployment to use this secret provider class:

a. Create a YAML file that defines the Deployment object:

Example deployment.yaml

Specify the name for the deployment.

Specify the namespace for the deployment. This must be the same namespace as the
secret provider class.

Specify the name of the secret provider class.

$ oc create -f secret-provider-class-aws.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-aws-deployment 1
 namespace: my-namespace 2
spec:
 replicas: 1
 selector:
 matchLabels:
 app: my-storage
 template:
 metadata:
 labels:
 app: my-storage
 spec:
 containers:
 - name: busybox
 image: k8s.gcr.io/e2e-test-images/busybox:1.29
 command:
 - "/bin/sleep"
 - "10000"
 volumeMounts:
 - name: secrets-store-inline
 mountPath: "/mnt/secrets-store"
 readOnly: true
 volumes:
 - name: secrets-store-inline
 csi:
 driver: secrets-store.csi.k8s.io
 readOnly: true
 volumeAttributes:
 secretProviderClass: "my-aws-provider" 3

CHAPTER 2. WORKING WITH PODS

91

b. Create the Deployment object by running the following command:

Verification

Verify that you can access the secrets from AWS Secrets Manager in the pod volume mount:

a. List the secrets in the pod mount:

Example output

b. View a secret in the pod mount:

Example output

Additional resources

Configuring the Cloud Credential Operator utility

2.7.3.2. Mounting secrets from AWS Systems Manager Parameter Store

You can use the Secrets Store CSI Driver Operator to mount secrets from AWS Systems Manager
Parameter Store to a CSI volume in OpenShift Container Platform. To mount secrets from AWS
Systems Manager Parameter Store, your cluster must be installed on AWS and use AWS Security Token
Service (STS).

IMPORTANT

It is not supported to use the Secrets Store CSI Driver Operator with AWS Systems
Manager Parameter Store in a hosted control plane cluster.

Prerequisites

Your cluster is installed on AWS and uses AWS Security Token Service (STS).

You have installed the Secrets Store CSI Driver Operator. See Installing the Secrets Store CSI
driver for instructions.

You have configured AWS Systems Manager Parameter Store to store the required secrets.

You have extracted and prepared the ccoctl binary.

You have installed the jq CLI tool.

$ oc create -f deployment.yaml

$ oc exec busybox-<hash> -n my-namespace -- ls /mnt/secrets-store/

testSecret

$ oc exec busybox-<hash> -n my-namespace -- cat /mnt/secrets-store/testSecret

<secret_value>

OpenShift Container Platform 4.15 Nodes

92

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#cco-ccoctl-configuring_installing-aws-customizations

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Install the AWS Systems Manager Parameter Store provider:

a. Create a YAML file with the following configuration for the provider resources:

IMPORTANT

The AWS Systems Manager Parameter Store provider for the Secrets Store
CSI driver is an upstream provider.

This configuration is modified from the configuration provided in the
upstream AWS documentation so that it works properly with OpenShift
Container Platform. Changes to this configuration might impact functionality.

Example aws-provider.yaml file

apiVersion: v1
kind: ServiceAccount
metadata:
 name: csi-secrets-store-provider-aws
 namespace: openshift-cluster-csi-drivers

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: csi-secrets-store-provider-aws-cluster-role
rules:
- apiGroups: [""]
 resources: ["serviceaccounts/token"]
 verbs: ["create"]
- apiGroups: [""]
 resources: ["serviceaccounts"]
 verbs: ["get"]
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get"]
- apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: csi-secrets-store-provider-aws-cluster-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: csi-secrets-store-provider-aws-cluster-role
subjects:
- kind: ServiceAccount
 name: csi-secrets-store-provider-aws
 namespace: openshift-cluster-csi-drivers

CHAPTER 2. WORKING WITH PODS

93

https://github.com/aws/secrets-store-csi-driver-provider-aws#installing-the-aws-provider

apiVersion: apps/v1
kind: DaemonSet
metadata:
 namespace: openshift-cluster-csi-drivers
 name: csi-secrets-store-provider-aws
 labels:
 app: csi-secrets-store-provider-aws
spec:
 updateStrategy:
 type: RollingUpdate
 selector:
 matchLabels:
 app: csi-secrets-store-provider-aws
 template:
 metadata:
 labels:
 app: csi-secrets-store-provider-aws
 spec:
 serviceAccountName: csi-secrets-store-provider-aws
 hostNetwork: false
 containers:
 - name: provider-aws-installer
 image: public.ecr.aws/aws-secrets-manager/secrets-store-csi-driver-provider-
aws:1.0.r2-50-g5b4aca1-2023.06.09.21.19
 imagePullPolicy: Always
 args:
 - --provider-volume=/etc/kubernetes/secrets-store-csi-providers
 resources:
 requests:
 cpu: 50m
 memory: 100Mi
 limits:
 cpu: 50m
 memory: 100Mi
 securityContext:
 privileged: true
 volumeMounts:
 - mountPath: "/etc/kubernetes/secrets-store-csi-providers"
 name: providervol
 - name: mountpoint-dir
 mountPath: /var/lib/kubelet/pods
 mountPropagation: HostToContainer
 tolerations:
 - operator: Exists
 volumes:
 - name: providervol
 hostPath:
 path: "/etc/kubernetes/secrets-store-csi-providers"
 - name: mountpoint-dir
 hostPath:
 path: /var/lib/kubelet/pods
 type: DirectoryOrCreate
 nodeSelector:
 kubernetes.io/os: linux

OpenShift Container Platform 4.15 Nodes

94

b. Grant privileged access to the csi-secrets-store-provider-aws service account by running
the following command:

c. Create the provider resources by running the following command:

2. Grant permission to allow the service account to read the AWS secret object:

a. Create a directory to contain the credentials request by running the following command:

b. Create a YAML file with the following configuration for the credentials request:

Example credentialsrequest.yaml file

c. Retrieve the OIDC provider by running the following command:

Example output

Copy the OIDC provider name <oidc_provider_name> from the output to use in the next
step.

d. Use the ccoctl tool to process the credentials request by running the following command:

$ oc adm policy add-scc-to-user privileged -z csi-secrets-store-provider-aws -n openshift-
cluster-csi-drivers

$ oc apply -f aws-provider.yaml

$ mkdir credentialsrequest-dir-aws

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: aws-provider-test
 namespace: openshift-cloud-credential-operator
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - action:
 - "ssm:GetParameter"
 - "ssm:GetParameters"
 effect: Allow
 resource: "arn:*:ssm:*:*:parameter/testParameter*"
 secretRef:
 name: aws-creds
 namespace: my-namespace
 serviceAccountNames:
 - aws-provider

$ oc get --raw=/.well-known/openid-configuration | jq -r '.issuer'

https://<oidc_provider_name>

CHAPTER 2. WORKING WITH PODS

95

1

2

3

4

Example output

Copy the <aws_role_arn> from the output to use in the next step. For example,
arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-aws-creds.

e. Bind the service account with the role ARN by running the following command:

3. Create a secret provider class to define your secrets store provider:

a. Create a YAML file that defines the SecretProviderClass object:

Example secret-provider-class-aws.yaml

Specify the name for the secret provider class.

Specify the namespace for the secret provider class.

Specify the provider as aws.

Specify the provider-specific configuration parameters.

b. Create the SecretProviderClass object by running the following command:

4. Create a deployment to use this secret provider class:

$ ccoctl aws create-iam-roles \
 --name my-role --region=<aws_region> \
 --credentials-requests-dir=credentialsrequest-dir-aws \
 --identity-provider-arn arn:aws:iam::<aws_account>:oidc-
provider/<oidc_provider_name> --output-dir=credrequests-ccoctl-output

2023/05/15 18:10:34 Role arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-
aws-creds created
2023/05/15 18:10:34 Saved credentials configuration to: credrequests-ccoctl-
output/manifests/my-namespace-aws-creds-credentials.yaml
2023/05/15 18:10:35 Updated Role policy for Role my-role-my-namespace-aws-creds

$ oc annotate -n my-namespace sa/aws-provider eks.amazonaws.com/role-arn="
<aws_role_arn>"

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: my-aws-provider 1
 namespace: my-namespace 2
spec:
 provider: aws 3
 parameters: 4
 objects: |
 - objectName: "testParameter"
 objectType: "ssmparameter"

$ oc create -f secret-provider-class-aws.yaml

OpenShift Container Platform 4.15 Nodes

96

1

2

3

a. Create a YAML file that defines the Deployment object:

Example deployment.yaml

Specify the name for the deployment.

Specify the namespace for the deployment. This must be the same namespace as the
secret provider class.

Specify the name of the secret provider class.

b. Create the Deployment object by running the following command:

Verification

Verify that you can access the secrets from AWS Systems Manager Parameter Store in the pod
volume mount:

a. List the secrets in the pod mount:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-aws-deployment 1
 namespace: my-namespace 2
spec:
 replicas: 1
 selector:
 matchLabels:
 app: my-storage
 template:
 metadata:
 labels:
 app: my-storage
 spec:
 containers:
 - name: busybox
 image: k8s.gcr.io/e2e-test-images/busybox:1.29
 command:
 - "/bin/sleep"
 - "10000"
 volumeMounts:
 - name: secrets-store-inline
 mountPath: "/mnt/secrets-store"
 readOnly: true
 volumes:
 - name: secrets-store-inline
 csi:
 driver: secrets-store.csi.k8s.io
 readOnly: true
 volumeAttributes:
 secretProviderClass: "my-aws-provider" 3

$ oc create -f deployment.yaml

CHAPTER 2. WORKING WITH PODS

97

Example output

b. View a secret in the pod mount:

Example output

Additional resources

Configuring the Cloud Credential Operator utility

2.7.3.3. Mounting secrets from Azure Key Vault

You can use the Secrets Store CSI Driver Operator to mount secrets from Azure Key Vault to a CSI
volume in OpenShift Container Platform. To mount secrets from Azure Key Vault, your cluster must be
installed on Microsoft Azure.

Prerequisites

Your cluster is installed on Azure.

You have installed the Secrets Store CSI Driver Operator. See Installing the Secrets Store CSI
driver for instructions.

You have configured Azure Key Vault to store the required secrets.

You have installed the Azure CLI (az).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Install the Azure Key Vault provider:

a. Create a YAML file with the following configuration for the provider resources:

IMPORTANT

The Azure Key Vault provider for the Secrets Store CSI driver is an upstream
provider.

This configuration is modified from the configuration provided in the
upstream Azure documentation so that it works properly with OpenShift
Container Platform. Changes to this configuration might impact functionality.

Example azure-provider.yaml file

$ oc exec busybox-<hash> -n my-namespace -- ls /mnt/secrets-store/

testParameter

$ oc exec busybox-<hash> -n my-namespace -- cat /mnt/secrets-store/testSecret

<secret_value>

OpenShift Container Platform 4.15 Nodes

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#cco-ccoctl-configuring_installing-aws-customizations
https://azure.github.io/secrets-store-csi-driver-provider-azure/docs/getting-started/installation/

apiVersion: v1
kind: ServiceAccount
metadata:
 name: csi-secrets-store-provider-azure
 namespace: openshift-cluster-csi-drivers

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: csi-secrets-store-provider-azure-cluster-role
rules:
- apiGroups: [""]
 resources: ["serviceaccounts/token"]
 verbs: ["create"]
- apiGroups: [""]
 resources: ["serviceaccounts"]
 verbs: ["get"]
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get"]
- apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: csi-secrets-store-provider-azure-cluster-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: csi-secrets-store-provider-azure-cluster-role
subjects:
- kind: ServiceAccount
 name: csi-secrets-store-provider-azure
 namespace: openshift-cluster-csi-drivers

apiVersion: apps/v1
kind: DaemonSet
metadata:
 namespace: openshift-cluster-csi-drivers
 name: csi-secrets-store-provider-azure
 labels:
 app: csi-secrets-store-provider-azure
spec:
 updateStrategy:
 type: RollingUpdate
 selector:
 matchLabels:
 app: csi-secrets-store-provider-azure
 template:
 metadata:
 labels:
 app: csi-secrets-store-provider-azure
 spec:
 serviceAccountName: csi-secrets-store-provider-azure

CHAPTER 2. WORKING WITH PODS

99

b. Grant privileged access to the csi-secrets-store-provider-azure service account by
running the following command:

 hostNetwork: true
 containers:
 - name: provider-azure-installer
 image: mcr.microsoft.com/oss/azure/secrets-store/provider-azure:v1.4.1
 imagePullPolicy: IfNotPresent
 args:
 - --endpoint=unix:///provider/azure.sock
 - --construct-pem-chain=true
 - --healthz-port=8989
 - --healthz-path=/healthz
 - --healthz-timeout=5s
 livenessProbe:
 httpGet:
 path: /healthz
 port: 8989
 failureThreshold: 3
 initialDelaySeconds: 5
 timeoutSeconds: 10
 periodSeconds: 30
 resources:
 requests:
 cpu: 50m
 memory: 100Mi
 limits:
 cpu: 50m
 memory: 100Mi
 securityContext:
 allowPrivilegeEscalation: false
 readOnlyRootFilesystem: true
 runAsUser: 0
 capabilities:
 drop:
 - ALL
 volumeMounts:
 - mountPath: "/provider"
 name: providervol
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: type
 operator: NotIn
 values:
 - virtual-kubelet
 volumes:
 - name: providervol
 hostPath:
 path: "/var/run/secrets-store-csi-providers"
 tolerations:
 - operator: Exists
 nodeSelector:
 kubernetes.io/os: linux

OpenShift Container Platform 4.15 Nodes

100

c. Create the provider resources by running the following command:

2. Create a service principal to access the key vault:

a. Set the service principal client secret as an environment variable by running the following
command:

b. Set the service principal client ID as an environment variable by running the following
command:

c. Create a generic secret with the service principal client secret and ID by running the
following command:

d. Apply the secrets-store.csi.k8s.io/used=true label to allow the provider to find this
nodePublishSecretRef secret:

3. Create a secret provider class to define your secrets store provider:

a. Create a YAML file that defines the SecretProviderClass object:

Example secret-provider-class-azure.yaml

$ oc adm policy add-scc-to-user privileged -z csi-secrets-store-provider-azure -n
openshift-cluster-csi-drivers

$ oc apply -f azure-provider.yaml

$ SERVICE_PRINCIPAL_CLIENT_SECRET="$(az ad sp create-for-rbac --name
https://$KEYVAULT_NAME --query 'password' -otsv)"

$ SERVICE_PRINCIPAL_CLIENT_ID="$(az ad sp list --display-name
https://$KEYVAULT_NAME --query '[0].appId' -otsv)"

$ oc create secret generic secrets-store-creds -n my-namespace --from-literal
clientid=${SERVICE_PRINCIPAL_CLIENT_ID} --from-literal
clientsecret=${SERVICE_PRINCIPAL_CLIENT_SECRET}

$ oc -n my-namespace label secret secrets-store-creds secrets-
store.csi.k8s.io/used=true

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: my-azure-provider 1
 namespace: my-namespace 2
spec:
 provider: azure 3
 parameters: 4
 usePodIdentity: "false"
 useVMManagedIdentity: "false"
 userAssignedIdentityID: ""
 keyvaultName: "kvname"
 objects: |

CHAPTER 2. WORKING WITH PODS

101

1

2

3

4

Specify the name for the secret provider class.

Specify the namespace for the secret provider class.

Specify the provider as azure.

Specify the provider-specific configuration parameters.

b. Create the SecretProviderClass object by running the following command:

4. Create a deployment to use this secret provider class:

a. Create a YAML file that defines the Deployment object:

Example deployment.yaml

 array:
 - |
 objectName: secret1
 objectType: secret
 tenantId: "tid"

$ oc create -f secret-provider-class-azure.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-azure-deployment 1
 namespace: my-namespace 2
spec:
 replicas: 1
 selector:
 matchLabels:
 app: my-storage
 template:
 metadata:
 labels:
 app: my-storage
 spec:
 containers:
 - name: busybox
 image: k8s.gcr.io/e2e-test-images/busybox:1.29
 command:
 - "/bin/sleep"
 - "10000"
 volumeMounts:
 - name: secrets-store-inline
 mountPath: "/mnt/secrets-store"
 readOnly: true
 volumes:
 - name: secrets-store-inline
 csi:
 driver: secrets-store.csi.k8s.io
 readOnly: true

OpenShift Container Platform 4.15 Nodes

102

1

2

3

4

Specify the name for the deployment.

Specify the namespace for the deployment. This must be the same namespace as the
secret provider class.

Specify the name of the secret provider class.

Specify the name of the Kubernetes secret that contains the service principal
credentials to access Azure Key Vault.

b. Create the Deployment object by running the following command:

Verification

Verify that you can access the secrets from Azure Key Vault in the pod volume mount:

a. List the secrets in the pod mount:

Example output

b. View a secret in the pod mount:

Example output

2.7.4. Enabling synchronization of mounted content as Kubernetes secrets

You can enable synchronization to create Kubernetes secrets from the content on a mounted volume.
An example where you might want to enable synchronization is to use an environment variable in your
deployment to reference the Kubernetes secret.

 volumeAttributes:
 secretProviderClass: "my-azure-provider" 3
 nodePublishSecretRef:
 name: secrets-store-creds 4

$ oc create -f deployment.yaml

$ oc exec busybox-<hash> -n my-namespace -- ls /mnt/secrets-store/

secret1

$ oc exec busybox-<hash> -n my-namespace -- cat /mnt/secrets-store/secret1

my-secret-value

CHAPTER 2. WORKING WITH PODS

103

1

WARNING

Do not enable synchronization if you do not want to store your secrets on your
OpenShift Container Platform cluster and in etcd. Enable this functionality only if
you require it, such as when you want to use environment variables to refer to the
secret.

If you enable synchronization, the secrets from the mounted volume are synchronized as Kubernetes
secrets after you start a pod that mounts the secrets.

The synchronized Kubernetes secret is deleted when all pods that mounted the content are deleted.

Prerequisites

You have installed the Secrets Store CSI Driver Operator.

You have installed a secrets store provider.

You have created the secret provider class.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the SecretProviderClass resource by running the following command:

Replace my-azure-provider with the name of your secret provider class.

2. Add the secretsObjects section with the configuration for the synchronized Kubernetes
secrets:

$ oc edit secretproviderclass my-azure-provider 1

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: my-azure-provider
 namespace: my-namespace
spec:
 provider: azure
 secretObjects: 1
 - secretName: tlssecret 2
 type: kubernetes.io/tls 3
 labels:
 environment: "test"
 data:
 - objectName: tlskey 4
 key: tls.key 5
 - objectName: tlscrt

OpenShift Container Platform 4.15 Nodes

104

1

2

3

4

5

Specify the configuration for synchronized Kubernetes secrets.

Specify the name of the Kubernetes Secret object to create.

Specify the type of Kubernetes Secret object to create. For example, Opaque or
kubernetes.io/tls.

Specify the object name or alias of the mounted content to synchronize.

Specify the data field from the specified objectName to populate the Kubernetes secret
with.

3. Save the file to apply the changes.

2.7.5. Viewing the status of secrets in the pod volume mount

You can view detailed information, including the versions, of the secrets in the pod volume mount.

The Secrets Store CSI Driver Operator creates a SecretProviderClassPodStatus resource in the same
namespace as the pod. You can review this resource to see detailed information, including versions,
about the secrets in the pod volume mount.

Prerequisites

You have installed the Secrets Store CSI Driver Operator.

You have installed a secrets store provider.

You have created the secret provider class.

You have deployed a pod that mounts a volume from the Secrets Store CSI Driver Operator.

You have access to the cluster as a user with the cluster-admin role.

Procedure

View detailed information about the secrets in a pod volume mount by running the following
command:

 key: tls.crt
 parameters:
 usePodIdentity: "false"
 keyvaultName: "kvname"
 objects: |
 array:
 - |
 objectName: tlskey
 objectType: secret
 - |
 objectName: tlscrt
 objectType: secret
 tenantId: "tid"

$ oc get secretproviderclasspodstatus <secret_provider_class_pod_status_name> -o yaml
1

CHAPTER 2. WORKING WITH PODS

105

1 The name of the secret provider class pod status object is in the format of <pod_name>-
<namespace>-<secret_provider_class_name>.

Example output

2.7.6. Uninstalling the Secrets Store CSI Driver Operator

Prerequisites

Access to the OpenShift Container Platform web console.

Administrator access to the cluster.

Procedure

To uninstall the Secrets Store CSI Driver Operator:

1. Stop all application pods that use the secrets-store.csi.k8s.io provider.

2. Remove any third-party provider plug-in for your chosen secret store.

3. Remove the Container Storage Interface (CSI) driver and associated manifests:

a. Click Administration → CustomResourceDefinitions → ClusterCSIDriver.

b. On the Instances tab, for secrets-store.csi.k8s.io, on the far left side, click the drop-down
menu, and then click Delete ClusterCSIDriver.

c. When prompted, click Delete.

4. Verify that the CSI driver pods are no longer running.

5. Uninstall the Secrets Store CSI Driver Operator:

NOTE

Before you can uninstall the Operator, you must remove the CSI driver first.

a. Click Operators → Installed Operators.

b. On the Installed Operators page, scroll or type "Secrets Store CSI" into the Search by

...
status:
 mounted: true
 objects:
 - id: secret/tlscrt
 version: f352293b97da4fa18d96a9528534cb33
 - id: secret/tlskey
 version: 02534bc3d5df481cb138f8b2a13951ef
 podName: busybox-<hash>
 secretProviderClassName: my-azure-provider
 targetPath: /var/lib/kubelet/pods/f0d49c1e-c87a-4beb-888f-
37798456a3e7/volumes/kubernetes.io~csi/secrets-store-inline/mount

OpenShift Container Platform 4.15 Nodes

106

1

2

b. On the Installed Operators page, scroll or type "Secrets Store CSI" into the Search by
name box to find the Operator, and then click it.

c. On the upper, right of the Installed Operators > Operator details page, click Actions →
Uninstall Operator.

d. When prompted on the Uninstall Operator window, click the Uninstall button to remove
the Operator from the namespace. Any applications deployed by the Operator on the
cluster need to be cleaned up manually.
After uninstalling, the Secrets Store CSI Driver Operator is no longer listed in the Installed
Operators section of the web console.

2.8. CREATING AND USING CONFIG MAPS

The following sections define config maps and how to create and use them.

2.8.1. Understanding config maps

Many applications require configuration by using some combination of configuration files, command line
arguments, and environment variables. In OpenShift Container Platform, these configuration artifacts
are decoupled from image content to keep containerized applications portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while keeping
containers agnostic of OpenShift Container Platform. A config map can be used to store fine-grained
information like individual properties or coarse-grained information like entire configuration files or
JSON blobs.

The ConfigMap object holds key-value pairs of configuration data that can be consumed in pods or
used to store configuration data for system components such as controllers. For example:

ConfigMap Object Definition

Contains the configuration data.

Points to a file that contains non-UTF8 data, for example, a binary Java keystore file. Enter the file
data in Base 64.

NOTE

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: my-namespace
data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3
binaryData:
 bar: L3Jvb3QvMTAw 2

CHAPTER 2. WORKING WITH PODS

107

NOTE

You can use the binaryData field when you create a config map from a binary file, such as
an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used to:

Populate environment variable values in containers

Set command-line arguments in a container

Populate configuration files in a volume

Users and system components can store configuration data in a config map.

A config map is similar to a secret, but designed to more conveniently support working with strings that
do not contain sensitive information.

Config map restrictions
A config map must be created before its contents can be consumed in pods.

Controllers can be written to tolerate missing configuration data. Consult individual components
configured by using config maps on a case-by-case basis.

ConfigMap objects reside in a project.

They can only be referenced by pods in the same project.

The Kubelet only supports the use of a config map for pods it gets from the API server.

This includes any pods created by using the CLI, or indirectly from a replication controller. It does not
include pods created by using the OpenShift Container Platform node’s --manifest-url flag, its --config
flag, or its REST API because these are not common ways to create pods.

2.8.2. Creating a config map in the OpenShift Container Platform web console

You can create a config map in the OpenShift Container Platform web console.

Procedure

To create a config map as a cluster administrator:

1. In the Administrator perspective, select Workloads → Config Maps.

2. At the top right side of the page, select Create Config Map.

3. Enter the contents of your config map.

4. Select Create.

To create a config map as a developer:

1. In the Developer perspective, select Config Maps.

2. At the top right side of the page, select Create Config Map.

3. Enter the contents of your config map.

OpenShift Container Platform 4.15 Nodes

108

4. Select Create.

2.8.3. Creating a config map by using the CLI

You can use the following command to create a config map from directories, specific files, or literal
values.

Procedure

Create a config map:

2.8.3.1. Creating a config map from a directory

You can create a config map from a directory by using the --from-file flag. This method allows you to
use multiple files within a directory to create a config map.

Each file in the directory is used to populate a key in the config map, where the name of the key is the
file name, and the value of the key is the content of the file.

For example, the following command creates a config map with the contents of the example-files
directory:

View the keys in the config map:

Example output

You can see that the two keys in the map are created from the file names in the directory specified in
the command. The content of those keys might be large, so the output of oc describe only shows the
names of the keys and their sizes.

Prerequisite

You must have a directory with files that contain the data you want to populate a config map
with.
The following procedure uses these example files: game.properties and ui.properties:

$ oc create configmap <configmap_name> [options]

$ oc create configmap game-config --from-file=example-files/

$ oc describe configmaps game-config

Name: game-config
Namespace: default
Labels: <none>
Annotations: <none>

Data

game.properties: 158 bytes
ui.properties: 83 bytes

$ cat example-files/game.properties

CHAPTER 2. WORKING WITH PODS

109

Example output

Example output

Procedure

Create a config map holding the content of each file in this directory by entering the following
command:

Verification

Enter the oc get command for the object with the -o option to see the values of the keys:

Example output

enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

$ cat example-files/ui.properties

color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice

$ oc create configmap game-config \
 --from-file=example-files/

$ oc get configmaps game-config -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap

OpenShift Container Platform 4.15 Nodes

110

2.8.3.2. Creating a config map from a file

You can create a config map from a file by using the --from-file flag. You can pass the --from-file option
multiple times to the CLI.

You can also specify the key to set in a config map for content imported from a file by passing a
key=value expression to the --from-file option. For example:

NOTE

If you create a config map from a file, you can include files containing non-UTF8 data
that are placed in this field without corrupting the non-UTF8 data. OpenShift Container
Platform detects binary files and transparently encodes the file as MIME. On the server,
the MIME payload is decoded and stored without corrupting the data.

Prerequisite

You must have a directory with files that contain the data you want to populate a config map
with.
The following procedure uses these example files: game.properties and ui.properties:

Example output

Example output

metadata:
 creationTimestamp: 2016-02-18T18:34:05Z
 name: game-config
 namespace: default
 resourceVersion: "407"
 selflink: /api/v1/namespaces/default/configmaps/game-config
 uid: 30944725-d66e-11e5-8cd0-68f728db1985

$ oc create configmap game-config-3 --from-file=game-special-key=example-files/game.properties

$ cat example-files/game.properties

enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

$ cat example-files/ui.properties

color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice

CHAPTER 2. WORKING WITH PODS

111

Procedure

Create a config map by specifying a specific file:

Create a config map by specifying a key-value pair:

Verification

Enter the oc get command for the object with the -o option to see the values of the keys from
the file:

Example output

Enter the oc get command for the object with the -o option to see the values of the keys from
the key-value pair:

Example output

$ oc create configmap game-config-2 \
 --from-file=example-files/game.properties \
 --from-file=example-files/ui.properties

$ oc create configmap game-config-3 \
 --from-file=game-special-key=example-files/game.properties

$ oc get configmaps game-config-2 -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:52:05Z
 name: game-config-2
 namespace: default
 resourceVersion: "516"
 selflink: /api/v1/namespaces/default/configmaps/game-config-2
 uid: b4952dc3-d670-11e5-8cd0-68f728db1985

$ oc get configmaps game-config-3 -o yaml

OpenShift Container Platform 4.15 Nodes

112

1 This is the key that you set in the preceding step.

2.8.3.3. Creating a config map from literal values

You can supply literal values for a config map.

The --from-literal option takes a key=value syntax, which allows literal values to be supplied directly on
the command line.

Procedure

Create a config map by specifying a literal value:

Verification

Enter the oc get command for the object with the -o option to see the values of the keys:

Example output

apiVersion: v1
data:
 game-special-key: |- 1
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:54:22Z
 name: game-config-3
 namespace: default
 resourceVersion: "530"
 selflink: /api/v1/namespaces/default/configmaps/game-config-3
 uid: 05f8da22-d671-11e5-8cd0-68f728db1985

$ oc create configmap special-config \
 --from-literal=special.how=very \
 --from-literal=special.type=charm

$ oc get configmaps special-config -o yaml

apiVersion: v1
data:
 special.how: very
 special.type: charm
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: special-config
 namespace: default

CHAPTER 2. WORKING WITH PODS

113

1

2

3 4

1

2

2.8.4. Use cases: Consuming config maps in pods

The following sections describe some uses cases when consuming ConfigMap objects in pods.

2.8.4.1. Populating environment variables in containers by using config maps

You can use config maps to populate individual environment variables in containers or to populate
environment variables in containers from all keys that form valid environment variable names.

As an example, consider the following config map:

ConfigMap with two environment variables

Name of the config map.

The project in which the config map resides. Config maps can only be referenced by pods in the
same project.

Environment variables to inject.

ConfigMap with one environment variable

Name of the config map.

Environment variable to inject.

Procedure

You can consume the keys of this ConfigMap in a pod using configMapKeyRef sections.

 resourceVersion: "651"
 selflink: /api/v1/namespaces/default/configmaps/special-config
 uid: dadce046-d673-11e5-8cd0-68f728db1985

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config 1
 namespace: default 2
data:
 special.how: very 3
 special.type: charm 4

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config 1
 namespace: default
data:
 log_level: INFO 2

OpenShift Container Platform 4.15 Nodes

114

1

2

3 5

4 6

7

8

9

Sample Pod specification configured to inject specific environment variables

Stanza to pull the specified environment variables from a ConfigMap.

Name of a pod environment variable that you are injecting a key’s value into.

Name of the ConfigMap to pull specific environment variables from.

Environment variable to pull from the ConfigMap.

Makes the environment variable optional. As optional, the pod will be started even if the
specified ConfigMap and keys do not exist.

Stanza to pull all environment variables from a ConfigMap.

Name of the ConfigMap to pull all environment variables from.

When this pod is run, the pod logs will include the following output:

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env: 1
 - name: SPECIAL_LEVEL_KEY 2
 valueFrom:
 configMapKeyRef:
 name: special-config 3
 key: special.how 4
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 5
 key: special.type 6
 optional: true 7
 envFrom: 8
 - configMapRef:
 name: env-config 9
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

CHAPTER 2. WORKING WITH PODS

115

SPECIAL_LEVEL_KEY=very
log_level=INFO

NOTE

SPECIAL_TYPE_KEY=charm is not listed in the example output because optional: true
is set.

2.8.4.2. Setting command-line arguments for container commands with config maps

You can use a config map to set the value of the commands or arguments in a container by using the
Kubernetes substitution syntax $(VAR_NAME).

As an example, consider the following config map:

Procedure

To inject values into a command in a container, you must consume the keys you want to use as
environment variables. Then you can refer to them in a container’s command using the
$(VAR_NAME) syntax.

Sample pod specification configured to inject specific environment variables

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]
1

 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:

OpenShift Container Platform 4.15 Nodes

116

1 Inject the values into a command in a container using the keys you want to use as
environment variables.

When this pod is run, the output from the echo command run in the test-container container is
as follows:

very charm

2.8.4.3. Injecting content into a volume by using config maps

You can inject content into a volume by using config maps.

Example ConfigMap custom resource (CR)

Procedure

You have a couple different options for injecting content into a volume by using config maps.

The most basic way to inject content into a volume by using a config map is to populate the
volume with files where the key is the file name and the content of the file is the value of the
key:

 configMapKeyRef:
 name: special-config
 key: special.type
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "cat", "/etc/config/special.how"]
 volumeMounts:

CHAPTER 2. WORKING WITH PODS

117

1

1

File containing key.

When this pod is run, the output of the cat command will be:

very

You can also control the paths within the volume where config map keys are projected:

Path to config map key.

When this pod is run, the output of the cat command will be:

 - name: config-volume
 mountPath: /etc/config
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: config-volume
 configMap:
 name: special-config 1
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key 1
 restartPolicy: Never

OpenShift Container Platform 4.15 Nodes

118

very

2.9. USING DEVICE PLUGINS TO ACCESS EXTERNAL RESOURCES
WITH PODS

Device plugins allow you to use a particular device type (GPU, InfiniBand, or other similar computing
resources that require vendor-specific initialization and setup) in your OpenShift Container Platform
pod without needing to write custom code.

2.9.1. Understanding device plugins

The device plugin provides a consistent and portable solution to consume hardware devices across
clusters. The device plugin provides support for these devices through an extension mechanism, which
makes these devices available to Containers, provides health checks of these devices, and securely
shares them.

IMPORTANT

OpenShift Container Platform supports the device plugin API, but the device plugin
Containers are supported by individual vendors.

A device plugin is a gRPC service running on the nodes (external to the kubelet) that is responsible for
managing specific hardware resources. Any device plugin must support following remote procedure calls
(RPCs):

Example device plugins

Nvidia GPU device plugin for COS-based operating system

Nvidia official GPU device plugin

service DevicePlugin {
 // GetDevicePluginOptions returns options to be communicated with Device
 // Manager
 rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}

 // ListAndWatch returns a stream of List of Devices
 // Whenever a Device state change or a Device disappears, ListAndWatch
 // returns the new list
 rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

 // Allocate is called during container creation so that the Device
 // Plug-in can run device specific operations and instruct Kubelet
 // of the steps to make the Device available in the container
 rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

 // PreStartcontainer is called, if indicated by Device Plug-in during
 // registration phase, before each container start. Device plug-in
 // can run device specific operations such as resetting the device
 // before making devices available to the container
 rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {}
}

CHAPTER 2. WORKING WITH PODS

119

https://github.com/GoogleCloudPlatform/Container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://github.com/NVIDIA/k8s-device-plugin

Solarflare device plugin

KubeVirt device plugins: vfio and kvm

Kubernetes device plugin for IBM® Crypto Express (CEX) cards

NOTE

For easy device plugin reference implementation, there is a stub device plugin in the
Device Manager code:
vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.

2.9.1.1. Methods for deploying a device plugin

Daemon sets are the recommended approach for device plugin deployments.

Upon start, the device plugin will try to create a UNIX domain socket at
/var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.

Since device plugins must manage hardware resources, access to the host file system, as well as
socket creation, they must be run in a privileged security context.

More specific details regarding deployment steps can be found with each device plugin
implementation.

2.9.2. Understanding the Device Manager

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plugins known as device plugins.

You can advertise specialized hardware without requiring any upstream code changes.

IMPORTANT

OpenShift Container Platform supports the device plugin API, but the device plugin
Containers are supported by individual vendors.

Device Manager advertises devices as Extended Resources. User pods can consume devices,
advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting
any other Extended Resource.

Upon start, the device plugin registers itself with Device Manager invoking Register on the
/var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-
plugins/<plugin>.sock for serving Device Manager requests.

Device Manager, while processing a new registration request, invokes ListAndWatch remote procedure
call (RPC) at the device plugin service. In response, Device Manager gets a list of Device objects from
the plugin over a gRPC stream. Device Manager will keep watching on the stream for new updates from
the plugin. On the plugin side, the plugin will also keep the stream open and whenever there is a change
in the state of any of the devices, a new device list is sent to the Device Manager over the same
streaming connection.

While handling a new pod admission request, Kubelet passes requested Extended Resources to the
Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding
plugin exists or not. If the plugin exists and there are free allocatable devices as well as per local cache,

OpenShift Container Platform 4.15 Nodes

120

https://github.com/vikaschoudhary16/sfc-device-plugin
https://github.com/kubevirt/kubernetes-device-plugins
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin

1

1

Allocate RPC is invoked at that particular device plugin.

Additionally, device plugins can also perform several other device-specific operations, such as driver
installation, device initialization, and device resets. These functionalities vary from implementation to
implementation.

2.9.3. Enabling Device Manager

Enable Device Manager to implement a device plugin to advertise specialized hardware without any
upstream code changes.

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plugins known as device plugins.

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command. Perform one of the following steps:

a. View the machine config:

For example:

Example output

Label required for the Device Manager.

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a Device Manager CR

Assign a name to CR.

oc describe machineconfig <name>

oc describe machineconfig 00-worker

Name: 00-worker
Namespace:
Labels: machineconfiguration.openshift.io/role=worker 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: devicemgr 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 machineconfiguration.openshift.io: devicemgr 2
 kubeletConfig:
 feature-gates:
 - DevicePlugins=true 3

CHAPTER 2. WORKING WITH PODS

121

2

3

Enter the label from the Machine Config Pool.

Set DevicePlugins to 'true`.

2. Create the Device Manager:

Example output

3. Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-
plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the
Device Manager gRPC server listens for new plugin registrations. This sock file is created when
the Kubelet is started only if Device Manager is enabled.

2.10. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS

You can enable pod priority and preemption in your cluster. Pod priority indicates the importance of a
pod relative to other pods and queues the pods based on that priority. pod preemption allows the
cluster to evict, or preempt, lower-priority pods so that higher-priority pods can be scheduled if there is
no available space on a suitable node pod priority also affects the scheduling order of pods and out-of-
resource eviction ordering on the node.

To use priority and preemption, you create priority classes that define the relative weight of your pods.
Then, reference a priority class in the pod specification to apply that weight for scheduling.

2.10.1. Understanding pod priority

When you use the Pod Priority and Preemption feature, the scheduler orders pending pods by their
priority, and a pending pod is placed ahead of other pending pods with lower priority in the scheduling
queue. As a result, the higher priority pod might be scheduled sooner than pods with lower priority if its
scheduling requirements are met. If a pod cannot be scheduled, scheduler continues to schedule other
lower priority pods.

2.10.1.1. Pod priority classes

You can assign pods a priority class, which is a non-namespaced object that defines a mapping from a
name to the integer value of the priority. The higher the value, the higher the priority.

A priority class object can take any 32-bit integer value smaller than or equal to 1000000000 (one
billion). Reserve numbers larger than or equal to one billion for critical pods that must not be preempted
or evicted. By default, OpenShift Container Platform has two reserved priority classes for critical system
pods to have guaranteed scheduling.

Example output

$ oc create -f devicemgr.yaml

kubeletconfig.machineconfiguration.openshift.io/devicemgr created

$ oc get priorityclasses

NAME VALUE GLOBAL-DEFAULT AGE
system-node-critical 2000001000 false 72m

OpenShift Container Platform 4.15 Nodes

122

system-node-critical - This priority class has a value of 2000001000 and is used for all pods
that should never be evicted from a node. Examples of pods that have this priority class are
sdn-ovs, sdn, and so forth. A number of critical components include the system-node-critical
priority class by default, for example:

master-api

master-controller

master-etcd

sdn

sdn-ovs

sync

system-cluster-critical - This priority class has a value of 2000000000 (two billion) and is
used with pods that are important for the cluster. Pods with this priority class can be evicted
from a node in certain circumstances. For example, pods configured with the system-node-
critical priority class can take priority. However, this priority class does ensure guaranteed
scheduling. Examples of pods that can have this priority class are fluentd, add-on components
like descheduler, and so forth. A number of critical components include the system-cluster-
critical priority class by default, for example:

fluentd

metrics-server

descheduler

openshift-user-critical - You can use the priorityClassName field with important pods that
cannot bind their resource consumption and do not have predictable resource consumption
behavior. Prometheus pods under the openshift-monitoring and openshift-user-workload-
monitoring namespaces use the openshift-user-critical priorityClassName. Monitoring
workloads use system-critical as their first priorityClass, but this causes problems when
monitoring uses excessive memory and the nodes cannot evict them. As a result, monitoring
drops priority to give the scheduler flexibility, moving heavy workloads around to keep critical
nodes operating.

cluster-logging - This priority is used by Fluentd to make sure Fluentd pods are scheduled to
nodes over other apps.

2.10.1.2. Pod priority names

After you have one or more priority classes, you can create pods that specify a priority class name in a
Pod spec. The priority admission controller uses the priority class name field to populate the integer
value of the priority. If the named priority class is not found, the pod is rejected.

2.10.2. Understanding pod preemption

When a developer creates a pod, the pod goes into a queue. If the developer configured the pod for pod

system-cluster-critical 2000000000 false 72m
openshift-user-critical 1000000000 false 3d13h
cluster-logging 1000000 false 29s

CHAPTER 2. WORKING WITH PODS

123

priority or preemption, the scheduler picks a pod from the queue and tries to schedule the pod on a
node. If the scheduler cannot find space on an appropriate node that satisfies all the specified
requirements of the pod, preemption logic is triggered for the pending pod.

When the scheduler preempts one or more pods on a node, the nominatedNodeName field of higher-
priority Pod spec is set to the name of the node, along with the nodename field. The scheduler uses the
nominatedNodeName field to keep track of the resources reserved for pods and also provides
information to the user about preemptions in the clusters.

After the scheduler preempts a lower-priority pod, the scheduler honors the graceful termination period
of the pod. If another node becomes available while scheduler is waiting for the lower-priority pod to
terminate, the scheduler can schedule the higher-priority pod on that node. As a result, the
nominatedNodeName field and nodeName field of the Pod spec might be different.

Also, if the scheduler preempts pods on a node and is waiting for termination, and a pod with a higher-
priority pod than the pending pod needs to be scheduled, the scheduler can schedule the higher-priority
pod instead. In such a case, the scheduler clears the nominatedNodeName of the pending pod, making
the pod eligible for another node.

Preemption does not necessarily remove all lower-priority pods from a node. The scheduler can
schedule a pending pod by removing a portion of the lower-priority pods.

The scheduler considers a node for pod preemption only if the pending pod can be scheduled on the
node.

2.10.2.1. Non-preempting priority classes

Pods with the preemption policy set to Never are placed in the scheduling queue ahead of lower-priority
pods, but they cannot preempt other pods. A non-preempting pod waiting to be scheduled stays in the
scheduling queue until sufficient resources are free and it can be scheduled. Non-preempting pods, like
other pods, are subject to scheduler back-off. This means that if the scheduler tries unsuccessfully to
schedule these pods, they are retried with lower frequency, allowing other pods with lower priority to be
scheduled before them.

Non-preempting pods can still be preempted by other, high-priority pods.

2.10.2.2. Pod preemption and other scheduler settings

If you enable pod priority and preemption, consider your other scheduler settings:

Pod priority and pod disruption budget

A pod disruption budget specifies the minimum number or percentage of replicas that must be up at
a time. If you specify pod disruption budgets, OpenShift Container Platform respects them when
preempting pods at a best effort level. The scheduler attempts to preempt pods without violating
the pod disruption budget. If no such pods are found, lower-priority pods might be preempted
despite their pod disruption budget requirements.

Pod priority and pod affinity

Pod affinity requires a new pod to be scheduled on the same node as other pods with the same label.

If a pending pod has inter-pod affinity with one or more of the lower-priority pods on a node, the
scheduler cannot preempt the lower-priority pods without violating the affinity requirements. In this
case, the scheduler looks for another node to schedule the pending pod. However, there is no guarantee
that the scheduler can find an appropriate node and pending pod might not be scheduled.

To prevent this situation, carefully configure pod affinity with equal-priority pods.

OpenShift Container Platform 4.15 Nodes

124

1

2

3

4

5

2.10.2.3. Graceful termination of preempted pods

When preempting a pod, the scheduler waits for the pod graceful termination period to expire, allowing
the pod to finish working and exit. If the pod does not exit after the period, the scheduler kills the pod.
This graceful termination period creates a time gap between the point that the scheduler preempts the
pod and the time when the pending pod can be scheduled on the node.

To minimize this gap, configure a small graceful termination period for lower-priority pods.

2.10.3. Configuring priority and preemption

You apply pod priority and preemption by creating a priority class object and associating pods to the
priority by using the priorityClassName in your pod specs.

NOTE

You cannot add a priority class directly to an existing scheduled pod.

Procedure

To configure your cluster to use priority and preemption:

1. Create one or more priority classes:

a. Create a YAML file similar to the following:

The name of the priority class object.

The priority value of the object.

Optional. Specifies whether this priority class is preempting or non-preempting. The
preemption policy defaults to PreemptLowerPriority, which allows pods of that
priority class to preempt lower-priority pods. If the preemption policy is set to Never,
pods in that priority class are non-preempting.

Optional. Specifies whether this priority class should be used for pods without a
priority class name specified. This field is false by default. Only one priority class with
globalDefault set to true can exist in the cluster. If there is no priority class with
globalDefault:true, the priority of pods with no priority class name is zero. Adding a
priority class with globalDefault:true affects only pods created after the priority class
is added and does not change the priorities of existing pods.

Optional. Describes which pods developers should use with this priority class. Enter an
arbitrary text string.

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: high-priority 1
value: 1000000 2
preemptionPolicy: PreemptLowerPriority 3
globalDefault: false 4
description: "This priority class should be used for XYZ service pods only." 5

CHAPTER 2. WORKING WITH PODS

125

1

b. Create the priority class:

2. Create a pod spec to include the name of a priority class:

a. Create a YAML file similar to the following:

Specify the priority class to use with this pod.

b. Create the pod:

You can add the priority name directly to the pod configuration or to a pod template.

2.11. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes
and selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the indicated key-value pairs as the label
on the node.

If you are using node affinity and node selectors in the same pod configuration, see the important
considerations below.

2.11.1. Using node selectors to control pod placement

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching
labels.

$ oc create -f <file-name>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 priorityClassName: high-priority 1

$ oc create -f <file-name>.yaml

OpenShift Container Platform 4.15 Nodes

126

You add labels to a node, a compute machine set, or a machine config. Adding the label to the compute
machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to
a node or machine config do not persist if the node or machine goes down.

To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such
as a ReplicaSet object, DaemonSet object, StatefulSet object, Deployment object, or
DeploymentConfig object. Any existing pods under that controlling object are recreated on a node with
a matching label. If you are creating a new pod, you can add the node selector directly to the pod spec. If
the pod does not have a controlling object, you must delete the pod, edit the pod spec, and recreate the
pod.

NOTE

You cannot add a node selector directly to an existing scheduled pod.

Prerequisites

To add a node selector to existing pods, determine the controlling object for that pod. For example, the
router-default-66d5cf9464-m2g75 pod is controlled by the router-default-66d5cf9464 replica set:

Example output

The web console lists the controlling object under ownerReferences in the pod YAML:

Procedure

1. Add labels to a node by using a compute machine set or editing the node directly:

$ oc describe pod router-default-66d5cf9464-7pwkc

kind: Pod
apiVersion: v1
metadata:
...
Name: router-default-66d5cf9464-7pwkc
Namespace: openshift-ingress
...
Controlled By: ReplicaSet/router-default-66d5cf9464
...

apiVersion: v1
kind: Pod
metadata:
 name: router-default-66d5cf9464-7pwkc
...
 ownerReferences:
 - apiVersion: apps/v1
 kind: ReplicaSet
 name: router-default-66d5cf9464
 uid: d81dd094-da26-11e9-a48a-128e7edf0312
 controller: true
 blockOwnerDeletion: true
...

CHAPTER 2. WORKING WITH PODS

127

Use a MachineSet object to add labels to nodes managed by the compute machine set
when a node is created:

a. Run the following command to add labels to a MachineSet object:

For example:

TIP

You can alternatively apply the following YAML to add labels to a compute machine set:

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

Example MachineSet object

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: xf2bd-infra-us-east-2a
 namespace: openshift-machine-api
spec:
 template:
 spec:
 metadata:
 labels:
 region: "east"
 type: "user-node"
...

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet

...

spec:
...
 template:
 metadata:
...
 spec:
 metadata:

OpenShift Container Platform 4.15 Nodes

128

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

TIP

You can alternatively apply the following YAML to add labels to a node:

b. Verify that the labels are added to the node:

Example output

2. Add the matching node selector to a pod:

To add a node selector to existing and future pods, add a node selector to the controlling
object for the pods:

Example ReplicaSet object with labels

 labels:
 region: east
 type: user-node
...

$ oc label nodes <name> <key>=<value>

$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east

kind: Node
apiVersion: v1
metadata:
 name: hello-node-6fbccf8d9
 labels:
 type: "user-node"
 region: "east"
...

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ip-10-0-142-25.ec2.internal Ready worker 17m v1.28.5

kind: ReplicaSet
apiVersion: apps/v1
metadata:
 name: hello-node-6fbccf8d9
...
spec:
...
 template:
 metadata:

CHAPTER 2. WORKING WITH PODS

129

1 Add the node selector.

To add a node selector to a specific, new pod, add the selector to the Pod object directly:

Example Pod object with a node selector

NOTE

You cannot add a node selector directly to an existing scheduled pod.

2.12. RUN ONCE DURATION OVERRIDE OPERATOR

2.12.1. Run Once Duration Override Operator overview

You can use the Run Once Duration Override Operator to specify a maximum time limit that run-once
pods can be active for.

IMPORTANT

The Run Once Duration Override Operator is not currently available for OpenShift
Container Platform 4.15. The Operator is planned to be released in the near future.

2.12.1.1. About the Run Once Duration Override Operator

OpenShift Container Platform relies on run-once pods to perform tasks such as deploying a pod or
performing a build. Run-once pods are pods that have a RestartPolicy of Never or OnFailure.

Cluster administrators can use the Run Once Duration Override Operator to force a limit on the time
that those run-once pods can be active. After the time limit expires, the cluster will try to actively
terminate those pods. The main reason to have such a limit is to prevent tasks such as builds to run for

 creationTimestamp: null
 labels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 pod-template-hash: 66d5cf9464
 spec:
 nodeSelector:
 kubernetes.io/os: linux
 node-role.kubernetes.io/worker: ''
 type: user-node 1
...

apiVersion: v1
kind: Pod
metadata:
 name: hello-node-6fbccf8d9
...
spec:
 nodeSelector:
 region: east
 type: user-node
...

OpenShift Container Platform 4.15 Nodes

130

an excessive amount of time.

To apply the run-once duration override from the Run Once Duration Override Operator to run-once
pods, you must enable it on each applicable namespace.

If both the run-once pod and the Run Once Duration Override Operator have their
activeDeadlineSeconds value set, the lower of the two values is used.

2.12.2. Run Once Duration Override Operator release notes

Cluster administrators can use the Run Once Duration Override Operator to force a limit on the time
that run-once pods can be active. After the time limit expires, the cluster tries to terminate the run-
once pods. The main reason to have such a limit is to prevent tasks such as builds to run for an excessive
amount of time.

To apply the run-once duration override from the Run Once Duration Override Operator to run-once
pods, you must enable it on each applicable namespace.

These release notes track the development of the Run Once Duration Override Operator for OpenShift
Container Platform.

For an overview of the Run Once Duration Override Operator, see About the Run Once Duration
Override Operator.

2.12.2.1. Run Once Duration Override Operator 1.1.0

Issued: 2024-02-28

The following advisory is available for the Run Once Duration Override Operator 1.1.0:

RHSA-2024:0269

2.12.2.1.1. Bug fixes

This release of the Run Once Duration Override Operator addresses several Common
Vulnerabilities and Exposures (CVEs).

2.12.3. Overriding the active deadline for run-once pods

You can use the Run Once Duration Override Operator to specify a maximum time limit that run-once
pods can be active for. By enabling the run-once duration override on a namespace, all future run-once
pods created or updated in that namespace have their activeDeadlineSeconds field set to the value
specified by the Run Once Duration Override Operator.

IMPORTANT

The Run Once Duration Override Operator is not currently available for OpenShift
Container Platform 4.15. The Operator is planned to be released in the near future.

2.12.3.1. Installing the Run Once Duration Override Operator

You can use the web console to install the Run Once Duration Override Operator.

Prerequisites

CHAPTER 2. WORKING WITH PODS

131

https://access.redhat.com/errata/RHSA-2024:0269

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create the required namespace for the Run Once Duration Override Operator.

a. Navigate to Administration → Namespaces and click Create Namespace.

b. Enter openshift-run-once-duration-override-operator in the Name field and click Create.

3. Install the Run Once Duration Override Operator.

a. Navigate to Operators → OperatorHub.

b. Enter Run Once Duration Override Operator into the filter box.

c. Select the Run Once Duration Override Operator and click Install.

d. On the Install Operator page:

i. The Update channel is set to stable, which installs the latest stable release of the Run
Once Duration Override Operator.

ii. Select A specific namespace on the cluster.

iii. Choose openshift-run-once-duration-override-operator from the dropdown menu
under Installed namespace.

iv. Select an Update approval strategy.

The Automatic strategy allows Operator Lifecycle Manager (OLM) to automatically
update the Operator when a new version is available.

The Manual strategy requires a user with appropriate credentials to approve the
Operator update.

v. Click Install.

4. Create a RunOnceDurationOverride instance.

a. From the Operators → Installed Operators page, click Run Once Duration Override
Operator.

b. Select the Run Once Duration Override tab and click Create RunOnceDurationOverride.

c. Edit the settings as necessary.
Under the runOnceDurationOverride section, you can update the
spec.activeDeadlineSeconds value, if required. The predefined value is 3600 seconds, or 1
hour.

d. Click Create.

Verification

OpenShift Container Platform 4.15 Nodes

132

1

1. Log in to the OpenShift CLI.

2. Verify all pods are created and running properly.

Example output

2.12.3.2. Enabling the run-once duration override on a namespace

To apply the run-once duration override from the Run Once Duration Override Operator to run-once
pods, you must enable it on each applicable namespace.

Prerequisites

The Run Once Duration Override Operator is installed.

Procedure

1. Log in to the OpenShift CLI.

2. Add the label to enable the run-once duration override to your namespace:

Specify the namespace to enable the run-once duration override on.

After you enable the run-once duration override on this namespace, future run-once pods that are
created in this namespace will have their activeDeadlineSeconds field set to the override value from
the Run Once Duration Override Operator. Existing pods in this namespace will also have their
activeDeadlineSeconds value set when they are updated next.

Verification

1. Create a test run-once pod in the namespace that you enabled the run-once duration override
on:

$ oc get pods -n openshift-run-once-duration-override-operator

NAME READY STATUS RESTARTS AGE
run-once-duration-override-operator-7b88c676f6-lcxgc 1/1 Running 0 7m46s
runoncedurationoverride-62blp 1/1 Running 0 41s
runoncedurationoverride-h8h8b 1/1 Running 0 41s
runoncedurationoverride-tdsqk 1/1 Running 0 41s

$ oc label namespace <namespace> \ 1
 runoncedurationoverrides.admission.runoncedurationoverride.openshift.io/enabled=true

apiVersion: v1
kind: Pod
metadata:
 name: example
 namespace: <namespace> 1
spec:
 restartPolicy: Never 2
 securityContext:

CHAPTER 2. WORKING WITH PODS

133

1

2

Replace <namespace> with the name of your namespace.

The restartPolicy must be Never or OnFailure to be a run-once pod.

2. Verify that the pod has its activeDeadlineSeconds field set:

Example output

2.12.3.3. Updating the run-once active deadline override value

You can customize the override value that the Run Once Duration Override Operator applies to run-
once pods. The predefined value is 3600 seconds, or 1 hour.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have installed the Run Once Duration Override Operator.

Procedure

1. Log in to the OpenShift CLI.

2. Edit the RunOnceDurationOverride resource:

3. Update the activeDeadlineSeconds field:

 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: busybox
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 image: busybox:1.25
 command:
 - /bin/sh
 - -ec
 - |
 while sleep 5; do date; done

$ oc get pods -n <namespace> -o yaml | grep activeDeadlineSeconds

 activeDeadlineSeconds: 3600

$ oc edit runoncedurationoverride cluster

apiVersion: operator.openshift.io/v1
kind: RunOnceDurationOverride
metadata:
...

OpenShift Container Platform 4.15 Nodes

134

1 Set the activeDeadlineSeconds field to the desired value, in seconds.

4. Save the file to apply the changes.

Any future run-once pods created in namespaces where the run-once duration override is enabled will
have their activeDeadlineSeconds field set to this new value. Existing run-once pods in these
namespaces will receive this new value when they are updated.

2.12.4. Uninstalling the Run Once Duration Override Operator

You can remove the Run Once Duration Override Operator from OpenShift Container Platform by
uninstalling the Operator and removing its related resources.

IMPORTANT

The Run Once Duration Override Operator is not currently available for OpenShift
Container Platform 4.15. The Operator is planned to be released in the near future.

2.12.4.1. Uninstalling the Run Once Duration Override Operator

You can use the web console to uninstall the Run Once Duration Override Operator. Uninstalling the
Run Once Duration Override Operator does not unset the activeDeadlineSeconds field for run-once
pods, but it will no longer apply the override value to future run-once pods.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

You have installed the Run Once Duration Override Operator.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. Select openshift-run-once-duration-override-operator from the Project dropdown list.

4. Delete the RunOnceDurationOverride instance.

a. Click Run Once Duration Override Operator and select the Run Once Duration Override
tab.

b. Click the Options menu next to the cluster entry and select Delete
RunOnceDurationOverride.

spec:
 runOnceDurationOverride:
 spec:
 activeDeadlineSeconds: 1800 1
...

CHAPTER 2. WORKING WITH PODS

135

c. In the confirmation dialog, click Delete.

5. Uninstall the Run Once Duration Override Operator Operator.

a. Navigate to Operators → Installed Operators.

b. Click the Options menu next to the Run Once Duration Override Operator entry
and click Uninstall Operator.

c. In the confirmation dialog, click Uninstall.

2.12.4.2. Uninstalling Run Once Duration Override Operator resources

Optionally, after uninstalling the Run Once Duration Override Operator, you can remove its related
resources from your cluster.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

You have uninstalled the Run Once Duration Override Operator.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Remove CRDs that were created when the Run Once Duration Override Operator was installed:

a. Navigate to Administration → CustomResourceDefinitions.

b. Enter RunOnceDurationOverride in the Name field to filter the CRDs.

c. Click the Options menu next to the RunOnceDurationOverride CRD and select
Delete CustomResourceDefinition.

d. In the confirmation dialog, click Delete.

3. Delete the openshift-run-once-duration-override-operator namespace.

a. Navigate to Administration → Namespaces.

b. Enter openshift-run-once-duration-override-operator into the filter box.

c. Click the Options menu next to the openshift-run-once-duration-override-
operator entry and select Delete Namespace.

d. In the confirmation dialog, enter openshift-run-once-duration-override-operator and click
Delete.

4. Remove the run-once duration override label from the namespaces that it was enabled on.

OpenShift Container Platform 4.15 Nodes

136

a. Navigate to Administration → Namespaces.

b. Select your namespace.

c. Click Edit next to the Labels field.

d. Remove the
runoncedurationoverrides.admission.runoncedurationoverride.openshift.io/enabled=true
label and click Save.

CHAPTER 2. WORKING WITH PODS

137

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE
CUSTOM METRICS AUTOSCALER OPERATOR

3.1. RELEASE NOTES

3.1.1. Custom Metrics Autoscaler Operator release notes

The release notes for the Custom Metrics Autoscaler Operator for Red Hat OpenShift describe new
features and enhancements, deprecated features, and known issues.

The Custom Metrics Autoscaler Operator uses the Kubernetes-based Event Driven Autoscaler (KEDA)
and is built on top of the OpenShift Container Platform horizontal pod autoscaler (HPA).

NOTE

The Custom Metrics Autoscaler Operator for Red Hat OpenShift is provided as an
installable component, with a distinct release cycle from the core OpenShift Container
Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release
compatibility.

3.1.1.1. Supported versions

The following table defines the Custom Metrics Autoscaler Operator versions for each OpenShift
Container Platform version.

Version OpenShift Container Platform version General availability

2.12.1 4.15 General availability

2.12.1 4.14 General availability

2.12.1 4.13 General availability

2.12.1 4.12 General availability

3.1.1.2. Custom Metrics Autoscaler Operator 2.12.1-384 release notes

This release of the Custom Metrics Autoscaler Operator 2.12.1-384 provides a bug fix for running the
Operator in an OpenShift Container Platform cluster. The following advisory is available for the RHBA-
2024:2043.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.1.2.1. Bug fixes

Previously, the custom-metrics-autoscaler and custom-metrics-autoscaler-adapter images

OpenShift Container Platform 4.15 Nodes

138

https://access.redhat.com/support/policy/updates/openshift#cma
https://access.redhat.com/errata/RHBA-2024:2043

were missing time zone information. As a consequence, scaled objects with cron triggers failed
to work because the controllers were unable to find time zone information. With this fix, the
image builds are updated to include time zone information. As a result, scaled objects
containing cron triggers now function properly. (OCPBUGS-32395)

3.1.2. Release notes for past releases of the Custom Metrics Autoscaler Operator

The following release notes are for previous versions of the Custom Metrics Autoscaler Operator.

For the current version, see Custom Metrics Autoscaler Operator release notes .

3.1.2.1. Custom Metrics Autoscaler Operator 2.12.1-376 release notes

This release of the Custom Metrics Autoscaler Operator 2.12.1-376 provides security updates and bug
fixes for running the Operator in an OpenShift Container Platform cluster. The following advisory is
available for the RHSA-2024:1812.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.1.1. Bug fixes

Previously, if invalid values such as nonexistent namespaces were specified in scaled object
metadata, the underlying scaler clients would not free, or close, their client descriptors, resulting
in a slow memory leak. This fix properly closes the underlying client descriptors when there are
errors, preventing memory from leaking. (OCPBUGS-30145)

Previously the ServiceMonitor custom resource (CR) for the keda-metrics-apiserver pod was
not functioning, because the CR referenced an incorrect metrics port name of http. This fix
corrects the ServiceMonitor CR to reference the proper port name of metrics. As a result, the
Service Monitor functions properly. (OCPBUGS-25806)

3.1.2.2. Custom Metrics Autoscaler Operator 2.11.2-322 release notes

This release of the Custom Metrics Autoscaler Operator 2.11.2-322 provides security updates and bug
fixes for running the Operator in an OpenShift Container Platform cluster. The following advisory is
available for the RHSA-2023:6144.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.2.1. Bug fixes

Because the Custom Metrics Autoscaler Operator version 3.11.2-311 was released without a
required volume mount in the Operator deployment, the Custom Metrics Autoscaler Operator
pod would restart every 15 minutes. This fix adds the required volume mount to the Operator
deployment. As a result, the Operator no longer restarts every 15 minutes. (OCPBUGS-22361)

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

139

https://issues.redhat.com/browse/OCPBUGS-32395
https://access.redhat.com/errata/RHSA-2024:1812
https://issues.redhat.com/browse/OCPBUGS-30145
https://issues.redhat.com/browse/OCPBUGS-25806
https://access.redhat.com/errata/RHSA-2023:6144
https://issues.redhat.com/browse/OCPBUGS-22361

3.1.2.3. Custom Metrics Autoscaler Operator 2.11.2-311 release notes

This release of the Custom Metrics Autoscaler Operator 2.11.2-311 provides new features and bug fixes
for running the Operator in an OpenShift Container Platform cluster. The components of the Custom
Metrics Autoscaler Operator 2.11.2-311 were released in RHBA-2023:5981.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.3.1. New features and enhancements

3.1.2.3.1.1. Red Hat OpenShift Service on AWS (ROSA) and OpenShift Dedicated are now supported

The Custom Metrics Autoscaler Operator 2.11.2-311 can be installed on OpenShift ROSA and OpenShift
Dedicated managed clusters. Previous versions of the Custom Metrics Autoscaler Operator could be
installed only in the openshift-keda namespace. This prevented the Operator from being installed on
OpenShift ROSA and OpenShift Dedicated clusters. This version of Custom Metrics Autoscaler allows
installation to other namespaces such as openshift-operators or keda, enabling installation into ROSA
and Dedicated clusters.

3.1.2.3.2. Bug fixes

Previously, if the Custom Metrics Autoscaler Operator was installed and configured, but not in
use, the OpenShift CLI reported the couldn’t get resource list for
external.metrics.k8s.io/v1beta1: Got empty response for: external.metrics.k8s.io/v1beta1
error after any oc command was entered. The message, although harmless, could have caused
confusion. With this fix, the Got empty response for: external.metrics… error no longer
appears inappropriately. (OCPBUGS-15779)

Previously, any annotation or label change to objects managed by the Custom Metrics
Autoscaler were reverted by Custom Metrics Autoscaler Operator any time the Keda Controller
was modified, for example after a configuration change. This caused continuous changing of
labels in your objects. The Custom Metrics Autoscaler now uses its own annotation to manage
labels and annotations, and annotation or label are no longer inappropriately reverted.
(OCPBUGS-15590)

3.1.2.4. Custom Metrics Autoscaler Operator 2.10.1-267 release notes

This release of the Custom Metrics Autoscaler Operator 2.10.1-267 provides new features and bug fixes
for running the Operator in an OpenShift Container Platform cluster. The components of the Custom
Metrics Autoscaler Operator 2.10.1-267 were released in RHBA-2023:4089.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.4.1. Bug fixes

Previously, the custom-metrics-autoscaler and custom-metrics-autoscaler-adapter images

OpenShift Container Platform 4.15 Nodes

140

https://access.redhat.com/errata/RHBA-2023:5981
https://issues.redhat.com/browse/OCPBUGS-15779
https://issues.redhat.com/browse/OCPBUGS-15590
https://access.redhat.com/errata/RHBA-2023:4089

did not contain time zone information. Because of this, scaled objects with cron triggers failed
to work because the controllers were unable to find time zone information. With this fix, the
image builds now include time zone information. As a result, scaled objects containing cron
triggers now function properly. (OCPBUGS-15264)

Previously, the Custom Metrics Autoscaler Operator would attempt to take ownership of all
managed objects, including objects in other namespaces and cluster-scoped objects. Because
of this, the Custom Metrics Autoscaler Operator was unable to create the role binding for
reading the credentials necessary to be an API server. This caused errors in the kube-system
namespace. With this fix, the Custom Metrics Autoscaler Operator skips adding the
ownerReference field to any object in another namespace or any cluster-scoped object. As a
result, the role binding is now created without any errors. (OCPBUGS-15038)

Previously, the Custom Metrics Autoscaler Operator added an ownerReferences field to the
openshift-keda namespace. While this did not cause functionality problems, the presence of
this field could have caused confusion for cluster administrators. With this fix, the Custom
Metrics Autoscaler Operator does not add the ownerReference field to the openshift-keda
namespace. As a result, the openshift-keda namespace no longer has a superfluous
ownerReference field. (OCPBUGS-15293)

Previously, if you used a Prometheus trigger configured with authentication method other than
pod identity, and the podIdentity parameter was set to none, the trigger would fail to scale.
With this fix, the Custom Metrics Autoscaler for OpenShift now properly handles the none pod
identity provider type. As a result, a Prometheus trigger configured with authentication method
other than pod identity, and the podIdentity parameter sset to none now properly scales.
(OCPBUGS-15274)

3.1.2.5. Custom Metrics Autoscaler Operator 2.10.1 release notes

This release of the Custom Metrics Autoscaler Operator 2.10.1 provides new features and bug fixes for
running the Operator in an OpenShift Container Platform cluster. The components of the Custom
Metrics Autoscaler Operator 2.10.1 were released in RHEA-2023:3199.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.5.1. New features and enhancements

3.1.2.5.1.1. Custom Metrics Autoscaler Operator general availability

The Custom Metrics Autoscaler Operator is now generally available as of Custom Metrics Autoscaler
Operator version 2.10.1.

IMPORTANT

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

141

https://issues.redhat.com/browse/OCPBUGS-15264
https://issues.redhat.com/browse/OCPBUGS-15038
https://issues.redhat.com/browse/OCPBUGS-15293
https://issues.redhat.com/browse/OCPBUGS-15274
https://access.redhat.com/errata/RHEA-2023:3199

IMPORTANT

Scaling by using a scaled job is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.1.2.5.1.2. Performance metrics

You can now use the Prometheus Query Language (PromQL) to query metrics on the Custom Metrics
Autoscaler Operator.

3.1.2.5.1.3. Pausing the custom metrics autoscaling for scaled objects

You can now pause the autoscaling of a scaled object, as needed, and resume autoscaling when ready.

3.1.2.5.1.4. Replica fall back for scaled objects

You can now specify the number of replicas to fall back to if a scaled object fails to get metrics from the
source.

3.1.2.5.1.5. Customizable HPA naming for scaled objects

You can now specify a custom name for the horizontal pod autoscaler in scaled objects.

3.1.2.5.1.6. Activation and scaling thresholds

Because the horizontal pod autoscaler (HPA) cannot scale to or from 0 replicas, the Custom Metrics
Autoscaler Operator does that scaling, after which the HPA performs the scaling. You can now specify
when the HPA takes over autoscaling, based on the number of replicas. This allows for more flexibility
with your scaling policies.

3.1.2.6. Custom Metrics Autoscaler Operator 2.8.2-174 release notes

This release of the Custom Metrics Autoscaler Operator 2.8.2-174 provides new features and bug fixes
for running the Operator in an OpenShift Container Platform cluster. The components of the Custom
Metrics Autoscaler Operator 2.8.2-174 were released in RHEA-2023:1683.

IMPORTANT

The Custom Metrics Autoscaler Operator version 2.8.2-174 is a Technology Preview
feature.

3.1.2.6.1. New features and enhancements

3.1.2.6.1.1. Operator upgrade support

You can now upgrade from a prior version of the Custom Metrics Autoscaler Operator. See "Changing
the update channel for an Operator" in the "Additional resources" for information on upgrading an
Operator.

OpenShift Container Platform 4.15 Nodes

142

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/errata/RHEA-2023:1683
https://access.redhat.com/support/offerings/techpreview/

3.1.2.6.1.2. must-gather support

You can now collect data about the Custom Metrics Autoscaler Operator and its components by using
the OpenShift Container Platform must-gather tool. Currently, the process for using the must-gather
tool with the Custom Metrics Autoscaler is different than for other operators. See "Gathering debugging
data in the "Additional resources" for more information.

3.1.2.7. Custom Metrics Autoscaler Operator 2.8.2 release notes

This release of the Custom Metrics Autoscaler Operator 2.8.2 provides new features and bug fixes for
running the Operator in an OpenShift Container Platform cluster. The components of the Custom
Metrics Autoscaler Operator 2.8.2 were released in RHSA-2023:1042.

IMPORTANT

The Custom Metrics Autoscaler Operator version 2.8.2 is a Technology Preview feature.

3.1.2.7.1. New features and enhancements

3.1.2.7.1.1. Audit Logging

You can now gather and view audit logs for the Custom Metrics Autoscaler Operator and its associated
components. Audit logs are security-relevant chronological sets of records that document the sequence
of activities that have affected the system by individual users, administrators, or other components of
the system.

3.1.2.7.1.2. Scale applications based on Apache Kafka metrics

You can now use the KEDA Apache kafka trigger/scaler to scale deployments based on an Apache Kafka
topic.

3.1.2.7.1.3. Scale applications based on CPU metrics

You can now use the KEDA CPU trigger/scaler to scale deployments based on CPU metrics.

3.1.2.7.1.4. Scale applications based on memory metrics

You can now use the KEDA memory trigger/scaler to scale deployments based on memory metrics.

3.2. CUSTOM METRICS AUTOSCALER OPERATOR OVERVIEW

As a developer, you can use Custom Metrics Autoscaler Operator for Red Hat OpenShift to specify how
OpenShift Container Platform should automatically increase or decrease the number of pods for a
deployment, stateful set, custom resource, or job based on custom metrics that are not based only on
CPU or memory.

The Custom Metrics Autoscaler Operator is an optional operator, based on the Kubernetes Event Driven
Autoscaler (KEDA), that allows workloads to be scaled using additional metrics sources other than pod
metrics.

The custom metrics autoscaler currently supports only the Prometheus, CPU, memory, and Apache
Kafka metrics.

The Custom Metrics Autoscaler Operator scales your pods up and down based on custom, external

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

143

https://access.redhat.com/errata/RHSA-2023:1042
https://access.redhat.com/support/offerings/techpreview/

metrics from specific applications. Your other applications continue to use other scaling methods. You
configure triggers, also known as scalers, which are the source of events and metrics that the custom
metrics autoscaler uses to determine how to scale. The custom metrics autoscaler uses a metrics API to
convert the external metrics to a form that OpenShift Container Platform can use. The custom metrics
autoscaler creates a horizontal pod autoscaler (HPA) that performs the actual scaling.

To use the custom metrics autoscaler, you create a ScaledObject or ScaledJob object for a workload,
which is a custom resource (CR) that defines the scaling metadata. You specify the deployment or job
to scale, the source of the metrics to scale on (trigger), and other parameters such as the minimum and
maximum replica counts allowed.

NOTE

You can create only one scaled object or scaled job for each workload that you want to
scale. Also, you cannot use a scaled object or scaled job and the horizontal pod
autoscaler (HPA) on the same workload.

The custom metrics autoscaler, unlike the HPA, can scale to zero. If you set the minReplicaCount value
in the custom metrics autoscaler CR to 0, the custom metrics autoscaler scales the workload down from
1 to 0 replicas to or up from 0 replicas to 1. This is known as the activation phase. After scaling up to 1
replica, the HPA takes control of the scaling. This is known as the scaling phase .

Some triggers allow you to change the number of replicas that are scaled by the cluster metrics
autoscaler. In all cases, the parameter to configure the activation phase always uses the same phrase,
prefixed with activation. For example, if the threshold parameter configures scaling,
activationThreshold would configure activation. Configuring the activation and scaling phases allows
you more flexibility with your scaling policies. For example, you can configure a higher activation phase
to prevent scaling up or down if the metric is particularly low.

The activation value has more priority than the scaling value in case of different decisions for each. For
example, if the threshold is set to 10, and the activationThreshold is 50, if the metric reports 40, the
scaler is not active and the pods are scaled to zero even if the HPA requires 4 instances.

Figure 3.1. Custom metrics autoscaler workflow

OpenShift Container Platform 4.15 Nodes

144

Figure 3.1. Custom metrics autoscaler workflow

1. You create or modify a scaled object custom resource for a workload on a cluster. The object
contains the scaling configuration for that workload. Prior to accepting the new object, the
OpenShift API server sends it to the custom metrics autoscaler admission webhooks process to
ensure that the object is valid. If validation succeeds, the API server persists the object.

2. The custom metrics autoscaler controller watches for new or modified scaled objects. When the
OpenShift API server notifies the controller of a change, the controller monitors any external
trigger sources, also known as data sources, that are specified in the object for changes to the
metrics data. One or more scalers request scaling data from the external trigger source. For
example, for a Kafka trigger type, the controller uses the Kafka scaler to communicate with a
Kafka instance to obtain the data requested by the trigger.

3. The controller creates a horizontal pod autoscaler object for the scaled object. As a result, the
Horizontal Pod Autoscaler (HPA) Operator starts monitoring the scaling data associated with
the trigger. The HPA requests scaling data from the cluster OpenShift API server endpoint.

4. The OpenShift API server endpoint is served by the custom metrics autoscaler metrics adapter.
When the metrics adapter receives a request for custom metrics, it uses a GRPC connection to
the controller to request it for the most recent trigger data received from the scaler.

5. The HPA makes scaling decisions based upon the data received from the metrics adapter and
scales the workload up or down by increasing or decreasing the replicas.

6. As a it operates, a workload can affect the scaling metrics. For example, if a workload is scaled
up to handle work in a Kafka queue, the queue size decreases after the workload processes all
the work. As a result, the workload is scaled down.

7. If the metrics are in a range specified by the minReplicaCount value, the custom metrics
autoscaler controller disables all scaling, and leaves the replica count at a fixed level. If the
metrics exceed that range, the custom metrics autoscaler controller enables scaling and allows
the HPA to scale the workload. While scaling is disabled, the HPA does not take any action.

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

145

3.3. INSTALLING THE CUSTOM METRICS AUTOSCALER

You can use the OpenShift Container Platform web console to install the Custom Metrics Autoscaler
Operator.

The installation creates the following five CRDs:

ClusterTriggerAuthentication

KedaController

ScaledJob

ScaledObject

TriggerAuthentication

3.3.1. Installing the custom metrics autoscaler

You can use the following procedure to install the Custom Metrics Autoscaler Operator.

Prerequisites

Remove any previously-installed Technology Preview versions of the Cluster Metrics Autoscaler
Operator.

Remove any versions of the community-based KEDA.
Also, remove the KEDA 1.x custom resource definitions by running the following commands:

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Custom Metrics Autoscaler from the list of available Operators, and click Install.

3. On the Install Operator page, ensure that the All namespaces on the cluster (default) option
is selected for Installation Mode. This installs the Operator in all namespaces.

4. Ensure that the openshift-keda namespace is selected for Installed Namespace. OpenShift
Container Platform creates the namespace, if not present in your cluster.

5. Click Install.

6. Verify the installation by listing the Custom Metrics Autoscaler Operator components:

a. Navigate to Workloads → Pods.

b. Select the openshift-keda project from the drop-down menu and verify that the custom-
metrics-autoscaler-operator-* pod is running.

c. Navigate to Workloads → Deployments to verify that the custom-metrics-autoscaler-

$ oc delete crd scaledobjects.keda.k8s.io

$ oc delete crd triggerauthentications.keda.k8s.io

OpenShift Container Platform 4.15 Nodes

146

c. Navigate to Workloads → Deployments to verify that the custom-metrics-autoscaler-
operator deployment is running.

7. Optional: Verify the installation in the OpenShift CLI using the following commands:

The output appears similar to the following:

Example output

8. Install the KedaController custom resource, which creates the required CRDs:

a. In the OpenShift Container Platform web console, click Operators → Installed Operators.

b. Click Custom Metrics Autoscaler.

c. On the Operator Details page, click the KedaController tab.

d. On the KedaController tab, click Create KedaController and edit the file.

$ oc get all -n openshift-keda

NAME READY STATUS RESTARTS AGE
pod/custom-metrics-autoscaler-operator-5fd8d9ffd8-xt4xp 1/1 Running 0 18m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/custom-metrics-autoscaler-operator 1/1 1 1 18m

NAME DESIRED CURRENT READY AGE
replicaset.apps/custom-metrics-autoscaler-operator-5fd8d9ffd8 1 1 1 18m

kind: KedaController
apiVersion: keda.sh/v1alpha1
metadata:
 name: keda
 namespace: openshift-keda
spec:
 watchNamespace: '' 1
 operator:
 logLevel: info 2
 logEncoder: console 3
 metricsServer:
 logLevel: '0' 4
 auditConfig: 5
 logFormat: "json"
 logOutputVolumeClaim: "persistentVolumeClaimName"
 policy:
 rules:
 - level: Metadata
 omitStages: ["RequestReceived"]
 omitManagedFields: false
 lifetime:
 maxAge: "2"
 maxBackup: "1"
 maxSize: "50"
 serviceAccount: {}

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

147

1

2

3

4

5

Specifies a single namespace in which the Custom Metrics Autoscaler Operator should
scale applications. Leave it blank or leave it empty to scale applications in all
namespaces. This field should have a namespace or be empty. The default value is
empty.

Specifies the level of verbosity for the Custom Metrics Autoscaler Operator log
messages. The allowed values are debug, info, error. The default is info.

Specifies the logging format for the Custom Metrics Autoscaler Operator log
messages. The allowed values are console or json. The default is console.

Specifies the logging level for the Custom Metrics Autoscaler Metrics Server. The
allowed values are 0 for info and 4 or debug. The default is 0.

Activates audit logging for the Custom Metrics Autoscaler Operator and specifies the
audit policy to use, as described in the "Configuring audit logging" section.

e. Click Create to create the KEDA controller.

3.4. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGERS

Triggers, also known as scalers, provide the metrics that the Custom Metrics Autoscaler Operator uses
to scale your pods.

The custom metrics autoscaler currently supports only the Prometheus, CPU, memory, and Apache
Kafka triggers.

You use a ScaledObject or ScaledJob custom resource to configure triggers for specific objects, as
described in the sections that follow.

3.4.1. Understanding the Prometheus trigger

You can scale pods based on Prometheus metrics, which can use the installed OpenShift Container
Platform monitoring or an external Prometheus server as the metrics source. See "Additional resources"
for information on the configurations required to use the OpenShift Container Platform monitoring as a
source for metrics.

NOTE

If Prometheus is collecting metrics from the application that the custom metrics
autoscaler is scaling, do not set the minimum replicas to 0 in the custom resource. If there
are no application pods, the custom metrics autoscaler does not have any metrics to scale
on.

Example scaled object with a Prometheus target

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: prom-scaledobject
 namespace: my-namespace
spec:
...
 triggers:

OpenShift Container Platform 4.15 Nodes

148

1

2

3

4

5

6

7

8

9

10

Specifies Prometheus as the trigger type.

Specifies the address of the Prometheus server. This example uses OpenShift Container Platform
monitoring.

Optional: Specifies the namespace of the object you want to scale. This parameter is mandatory if
using OpenShift Container Platform monitoring as a source for the metrics.

Specifies the name to identify the metric in the external.metrics.k8s.io API. If you are using more
than one trigger, all metric names must be unique.

Specifies the value that triggers scaling. Must be specified as a quoted string value.

Specifies the Prometheus query to use.

Specifies the authentication method to use. Prometheus scalers support bearer authentication
(bearer), basic authentication (basic), or TLS authentication (tls). You configure the specific
authentication parameters in a trigger authentication, as discussed in a following section. As
needed, you can also use a secret.

Optional: Passes the X-Scope-OrgID header to multi-tenant Cortex or Mimir storage for
Prometheus. This parameter is required only with multi-tenant Prometheus storage, to indicate
which data Prometheus should return.

Optional: Specifies how the trigger should proceed if the Prometheus target is lost.

If true, the trigger continues to operate if the Prometheus target is lost. This is the default
behavior.

If false, the trigger returns an error if the Prometheus target is lost.

Optional: Specifies whether the certificate check should be skipped. For example, you might skip
the check if you use self-signed certificates at the Prometheus endpoint.

If true, the certificate check is performed.

If false, the certificate check is not performed. This is the default behavior.

3.4.1.1. Configuring the custom metrics autoscaler to use OpenShift Container Platform
monitoring

You can use the installed OpenShift Container Platform Prometheus monitoring as a source for the

 - type: prometheus 1
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092 2
 namespace: kedatest 3
 metricName: http_requests_total 4
 threshold: '5' 5
 query: sum(rate(http_requests_total{job="test-app"}[1m])) 6
 authModes: basic 7
 cortexOrgID: my-org 8
 ignoreNullValues: "false" 9
 unsafeSsl: "false" 10

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

149

https://cortexmetrics.io/
https://grafana.com/oss/mimir/

You can use the installed OpenShift Container Platform Prometheus monitoring as a source for the
metrics used by the custom metrics autoscaler. However, there are some additional configurations you
must perform.

NOTE

These steps are not required for an external Prometheus source.

You must perform the following tasks, as described in this section:

Create a service account to get a token.

Create a role.

Add that role to the service account.

Reference the token in the trigger authentication object used by Prometheus.

Prerequisites

OpenShift Container Platform monitoring must be installed.

Monitoring of user-defined workloads must be enabled in OpenShift Container Platform
monitoring, as described in the Creating a user-defined workload monitoring config map
section.

The Custom Metrics Autoscaler Operator must be installed.

Procedure

1. Change to the project with the object you want to scale:

2. Use the following command to create a service account, if your cluster does not have one:

where:

<service_account>

Specifies the name of the service account.

3. Use the following command to locate the token assigned to the service account:

where:

<service_account>

Specifies the name of the service account.

Example output

$ oc project my-project

$ oc create serviceaccount <service_account>

$ oc describe serviceaccount <service_account>

OpenShift Container Platform 4.15 Nodes

150

1

1

2

3

4

Use this token in the trigger authentication.

4. Create a trigger authentication with the service account token:

a. Create a YAML file similar to the following:

Specifies that this object uses a secret for authorization.

Specifies the authentication parameter to supply by using the token.

Specifies the name of the token to use.

Specifies the key in the token to use with the specified parameter.

b. Create the CR object:

5. Create a role for reading Thanos metrics:

a. Create a YAML file with the following parameters:

Name: thanos
Namespace: my-project
Labels: <none>
Annotations: <none>
Image pull secrets: thanos-dockercfg-nnwgj
Mountable secrets: thanos-dockercfg-nnwgj
Tokens: thanos-token-9g4n5 1
Events: <none>

apiVersion: keda.sh/v1alpha1
kind: TriggerAuthentication
metadata:
 name: keda-trigger-auth-prometheus
spec:
 secretTargetRef: 1
 - parameter: bearerToken 2
 name: thanos-token-9g4n5 3
 key: token 4
 - parameter: ca
 name: thanos-token-9g4n5
 key: ca.crt

$ oc create -f <file-name>.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: thanos-metrics-reader
rules:
- apiGroups:
 - ""
 resources:
 - pods

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

151

1

2

3

4

b. Create the CR object:

6. Create a role binding for reading Thanos metrics:

a. Create a YAML file similar to the following:

Specifies the name of the role you created.

Specifies the namespace of the object you want to scale.

Specifies the name of the service account to bind to the role.

Specifies the namespace of the object you want to scale.

b. Create the CR object:

You can now deploy a scaled object or scaled job to enable autoscaling for your application, as
described in "Understanding how to add custom metrics autoscalers". To use OpenShift Container
Platform monitoring as the source, in the trigger, or scaler, you must include the following parameters:

triggers.type must be prometheus

triggers.metadata.serverAddress must be https://thanos-querier.openshift-
monitoring.svc.cluster.local:9092

 verbs:
 - get
- apiGroups:
 - metrics.k8s.io
 resources:
 - pods
 - nodes
 verbs:
 - get
 - list
 - watch

$ oc create -f <file-name>.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: thanos-metrics-reader 1
 namespace: my-project 2
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: thanos-metrics-reader
subjects:
- kind: ServiceAccount
 name: thanos 3
 namespace: my-project 4

$ oc create -f <file-name>.yaml

OpenShift Container Platform 4.15 Nodes

152

1

2

3

4

triggers.metadata.authModes must be bearer

triggers.metadata.namespace must be set to the namespace of the object to scale

triggers.authenticationRef must point to the trigger authentication resource specified in the
previous step

3.4.2. Understanding the CPU trigger

You can scale pods based on CPU metrics. This trigger uses cluster metrics as the source for metrics.

The custom metrics autoscaler scales the pods associated with an object to maintain the CPU usage
that you specify. The autoscaler increases or decreases the number of replicas between the minimum
and maximum numbers to maintain the specified CPU utilization across all pods. The memory trigger
considers the memory utilization of the entire pod. If the pod has multiple containers, the memory
trigger considers the total memory utilization of all containers in the pod.

NOTE

This trigger cannot be used with the ScaledJob custom resource.

When using a memory trigger to scale an object, the object does not scale to 0,
even if you are using multiple triggers.

Example scaled object with a CPU target

Specifies CPU as the trigger type.

Specifies the type of metric to use, either Utilization or AverageValue.

Specifies the value that triggers scaling. Must be specified as a quoted string value.

When using Utilization, the target value is the average of the resource metrics across all
relevant pods, represented as a percentage of the requested value of the resource for the
pods.

When using AverageValue, the target value is the average of the metrics across all
relevant pods.

Specifies the minimum number of replicas when scaling down. For a CPU trigger, enter a value of 1
or greater, because the HPA cannot scale to zero if you are using only CPU metrics.

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: cpu-scaledobject
 namespace: my-namespace
spec:
...
 triggers:
 - type: cpu 1
 metricType: Utilization 2
 metadata:
 value: '60' 3
 minReplicaCount: 1 4

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

153

1

2

3

4

or greater, because the HPA cannot scale to zero if you are using only CPU metrics.

3.4.3. Understanding the memory trigger

You can scale pods based on memory metrics. This trigger uses cluster metrics as the source for
metrics.

The custom metrics autoscaler scales the pods associated with an object to maintain the average
memory usage that you specify. The autoscaler increases and decreases the number of replicas
between the minimum and maximum numbers to maintain the specified memory utilization across all
pods. The memory trigger considers the memory utilization of entire pod. If the pod has multiple
containers, the memory utilization is the sum of all of the containers.

NOTE

This trigger cannot be used with the ScaledJob custom resource.

When using a memory trigger to scale an object, the object does not scale to 0,
even if you are using multiple triggers.

Example scaled object with a memory target

Specifies memory as the trigger type.

Specifies the type of metric to use, either Utilization or AverageValue.

Specifies the value that triggers scaling. Must be specified as a quoted string value.

When using Utilization, the target value is the average of the resource metrics across all
relevant pods, represented as a percentage of the requested value of the resource for the
pods.

When using AverageValue, the target value is the average of the metrics across all
relevant pods.

Optional: Specifies an individual container to scale, based on the memory utilization of only that
container, rather than the entire pod. In this example, only the container named api is to be scaled.

3.4.4. Understanding the Kafka trigger

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: memory-scaledobject
 namespace: my-namespace
spec:
...
 triggers:
 - type: memory 1
 metricType: Utilization 2
 metadata:
 value: '60' 3
 containerName: api 4

OpenShift Container Platform 4.15 Nodes

154

1

2

3

4

5

You can scale pods based on an Apache Kafka topic or other services that support the Kafka protocol.
The custom metrics autoscaler does not scale higher than the number of Kafka partitions, unless you set
the allowIdleConsumers parameter to true in the scaled object or scaled job.

NOTE

If the number of consumer groups exceeds the number of partitions in a topic, the extra
consumer groups remain idle. To avoid this, by default the number of replicas does not
exceed:

The number of partitions on a topic, if a topic is specified

The number of partitions of all topics in the consumer group, if no topic is
specified

The maxReplicaCount specified in scaled object or scaled job CR

You can use the allowIdleConsumers parameter to disable these default behaviors.

Example scaled object with a Kafka target

Specifies Kafka as the trigger type.

Specifies the name of the Kafka topic on which Kafka is processing the offset lag.

Specifies a comma-separated list of Kafka brokers to connect to.

Specifies the name of the Kafka consumer group used for checking the offset on the topic and
processing the related lag.

Optional: Specifies the average target value that triggers scaling. Must be specified as a quoted
string value. The default is 5.

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: kafka-scaledobject
 namespace: my-namespace
spec:
...
 triggers:
 - type: kafka 1
 metadata:
 topic: my-topic 2
 bootstrapServers: my-cluster-kafka-bootstrap.openshift-operators.svc:9092 3
 consumerGroup: my-group 4
 lagThreshold: '10' 5
 activationLagThreshold: '5' 6
 offsetResetPolicy: latest 7
 allowIdleConsumers: true 8
 scaleToZeroOnInvalidOffset: false 9
 excludePersistentLag: false 10
 version: '1.0.0' 11
 partitionLimitation: '1,2,10-20,31' 12

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

155

6

7

8

9

10

11

12

Optional: Specifies the target value for the activation phase. Must be specified as a quoted string
value.

Optional: Specifies the Kafka offset reset policy for the Kafka consumer. The available values are:
latest and earliest. The default is latest.

Optional: Specifies whether the number of Kafka replicas can exceed the number of partitions on a
topic.

If true, the number of Kafka replicas can exceed the number of partitions on a topic. This
allows for idle Kafka consumers.

If false, the number of Kafka replicas cannot exceed the number of partitions on a topic.
This is the default.

Specifies how the trigger behaves when a Kafka partition does not have a valid offset.

If true, the consumers are scaled to zero for that partition.

If false, the scaler keeps a single consumer for that partition. This is the default.

Optional: Specifies whether the trigger includes or excludes partition lag for partitions whose
current offset is the same as the current offset of the previous polling cycle.

If true, the scaler excludes partition lag in these partitions.

If false, the trigger includes all consumer lag in all partitions. This is the default.

Optional: Specifies the version of your Kafka brokers. Must be specified as a quoted string value.
The default is 1.0.0.

Optional: Specifies a comma-separated list of partition IDs to scope the scaling on. If set, only the
listed IDs are considered when calculating lag. Must be specified as a quoted string value. The
default is to consider all partitions.

3.5. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGER
AUTHENTICATIONS

A trigger authentication allows you to include authentication information in a scaled object or a scaled
job that can be used by the associated containers. You can use trigger authentications to pass
OpenShift Container Platform secrets, platform-native pod authentication mechanisms, environment
variables, and so on.

You define a TriggerAuthentication object in the same namespace as the object that you want to
scale. That trigger authentication can be used only by objects in that namespace.

Alternatively, to share credentials between objects in multiple namespaces, you can create a
ClusterTriggerAuthentication object that can be used across all namespaces.

Trigger authentications and cluster trigger authentication use the same configuration. However, a
cluster trigger authentication requires an additional kind parameter in the authentication reference of
the scaled object.

Example trigger authentication with a secret

OpenShift Container Platform 4.15 Nodes

156

1

2

3

4

5

1

2

3

4

5

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a secret for authorization.

Specifies the authentication parameter to supply by using the secret.

Specifies the name of the secret to use.

Specifies the key in the secret to use with the specified parameter.

Example cluster trigger authentication with a secret

Note that no namespace is used with a cluster trigger authentication.

Specifies that this trigger authentication uses a secret for authorization.

Specifies the authentication parameter to supply by using the secret.

Specifies the name of the secret to use.

Specifies the key in the secret to use with the specified parameter.

Example trigger authentication with a token

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: secret-triggerauthentication
 namespace: my-namespace 1
spec:
 secretTargetRef: 2
 - parameter: user-name 3
 name: my-secret 4
 key: USER_NAME 5
 - parameter: password
 name: my-secret
 key: USER_PASSWORD

kind: ClusterTriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata: 1
 name: secret-cluster-triggerauthentication
spec:
 secretTargetRef: 2
 - parameter: user-name 3
 name: secret-name 4
 key: USER_NAME 5
 - parameter: user-password
 name: secret-name
 key: USER_PASSWORD

kind: TriggerAuthentication

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

157

1

2

3

4

5

1

2

3

4

5

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a secret for authorization.

Specifies the authentication parameter to supply by using the token.

Specifies the name of the token to use.

Specifies the key in the token to use with the specified parameter.

Example trigger authentication with an environment variable

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses environment variables for authorization.

Specify the parameter to set with this variable.

Specify the name of the environment variable.

Optional: Specify a container that requires authentication. The container must be in the same
resource as referenced by scaleTargetRef in the scaled object.

Example trigger authentication with pod authentication providers

apiVersion: keda.sh/v1alpha1
metadata:
 name: token-triggerauthentication
 namespace: my-namespace 1
spec:
 secretTargetRef: 2
 - parameter: bearerToken 3
 name: my-token-2vzfq 4
 key: token 5
 - parameter: ca
 name: my-token-2vzfq
 key: ca.crt

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: env-var-triggerauthentication
 namespace: my-namespace 1
spec:
 env: 2
 - parameter: access_key 3
 name: ACCESS_KEY 4
 containerName: my-container 5

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:

OpenShift Container Platform 4.15 Nodes

158

1

2

3

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a platform-native pod authentication method for
authorization.

Specifies a pod identity. Supported values are none, azure, aws-eks, or aws-kiam. The default is
none.

Additional resources

For information about OpenShift Container Platform secrets, see Providing sensitive data to
pods.

3.5.1. Using trigger authentications

You use trigger authentications and cluster trigger authentications by using a custom resource to create
the authentication, then add a reference to a scaled object or scaled job.

Prerequisites

The Custom Metrics Autoscaler Operator must be installed.

If you are using a secret, the Secret object must exist, for example:

Example secret

Procedure

1. Create the TriggerAuthentication or ClusterTriggerAuthentication object.

a. Create a YAML file that defines the object:

Example trigger authentication with a secret

 name: pod-id-triggerauthentication
 namespace: my-namespace 1
spec:
 podIdentity: 2
 provider: aws-eks 3

apiVersion: v1
kind: Secret
metadata:
 name: my-secret
data:
 user-name: <base64_USER_NAME>
 password: <base64_USER_PASSWORD>

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: prom-triggerauthentication
 namespace: my-namespace

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

159

1

2

b. Create the TriggerAuthentication object:

2. Create or edit a ScaledObject YAML file that uses the trigger authentication:

a. Create a YAML file that defines the object by running the following command:

Example scaled object with a trigger authentication

Specify the name of your trigger authentication object.

Specify TriggerAuthentication. TriggerAuthentication is the default.

Example scaled object with a cluster trigger authentication

spec:
 secretTargetRef:
 - parameter: user-name
 name: my-secret
 key: USER_NAME
 - parameter: password
 name: my-secret
 key: USER_PASSWORD

$ oc create -f <filename>.yaml

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: scaledobject
 namespace: my-namespace
spec:
 scaleTargetRef:
 name: example-deployment
 maxReplicaCount: 100
 minReplicaCount: 0
 pollingInterval: 30
 triggers:
 - type: prometheus
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
 namespace: kedatest # replace <NAMESPACE>
 metricName: http_requests_total
 threshold: '5'
 query: sum(rate(http_requests_total{job="test-app"}[1m]))
 authModes: "basic"
 authenticationRef:
 name: prom-triggerauthentication 1
 kind: TriggerAuthentication 2

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: scaledobject
 namespace: my-namespace

OpenShift Container Platform 4.15 Nodes

160

1

2

Specify the name of your trigger authentication object.

Specify ClusterTriggerAuthentication.

b. Create the scaled object by running the following command:

3.6. PAUSING THE CUSTOM METRICS AUTOSCALER FOR A SCALED
OBJECT

You can pause and restart the autoscaling of a workload, as needed.

For example, you might want to pause autoscaling before performing cluster maintenance or to avoid
resource starvation by removing non-mission-critical workloads.

3.6.1. Pausing a custom metrics autoscaler

You can pause the autoscaling of a scaled object by adding the autoscaling.keda.sh/paused-replicas
annotation to the custom metrics autoscaler for that scaled object. The custom metrics autoscaler
scales the replicas for that workload to the specified value and pauses autoscaling until the annotation is
removed.

Procedure

1. Use the following command to edit the ScaledObject CR for your workload:

spec:
 scaleTargetRef:
 name: example-deployment
 maxReplicaCount: 100
 minReplicaCount: 0
 pollingInterval: 30
 triggers:
 - type: prometheus
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
 namespace: kedatest # replace <NAMESPACE>
 metricName: http_requests_total
 threshold: '5'
 query: sum(rate(http_requests_total{job="test-app"}[1m]))
 authModes: "basic"
 authenticationRef:
 name: prom-cluster-triggerauthentication 1
 kind: ClusterTriggerAuthentication 2

$ oc apply -f <filename>

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "4"
...

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

161

1

1

2. Add the autoscaling.keda.sh/paused-replicas annotation with any value:

Specifies that the Custom Metrics Autoscaler Operator is to scale the replicas to the
specified value and stop autoscaling.

3.6.2. Restarting the custom metrics autoscaler for a scaled object

You can restart a paused custom metrics autoscaler by removing the autoscaling.keda.sh/paused-
replicas annotation for that ScaledObject.

Procedure

1. Use the following command to edit the ScaledObject CR for your workload:

2. Remove the autoscaling.keda.sh/paused-replicas annotation.

Remove this annotation to restart a paused custom metrics autoscaler.

$ oc edit ScaledObject scaledobject

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "4" 1
 creationTimestamp: "2023-02-08T14:41:01Z"
 generation: 1
 name: scaledobject
 namespace: my-project
 resourceVersion: '65729'
 uid: f5aec682-acdf-4232-a783-58b5b82f5dd0

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "4"
...

$ oc edit ScaledObject scaledobject

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "4" 1
 creationTimestamp: "2023-02-08T14:41:01Z"
 generation: 1
 name: scaledobject
 namespace: my-project
 resourceVersion: '65729'
 uid: f5aec682-acdf-4232-a783-58b5b82f5dd0

OpenShift Container Platform 4.15 Nodes

162

1

2

3

3.7. GATHERING AUDIT LOGS

You can gather audit logs, which are a security-relevant chronological set of records documenting the
sequence of activities that have affected the system by individual users, administrators, or other
components of the system.

For example, audit logs can help you understand where an autoscaling request is coming from. This is
key information when backends are getting overloaded by autoscaling requests made by user
applications and you need to determine which is the troublesome application.

3.7.1. Configuring audit logging

You can configure auditing for the Custom Metrics Autoscaler Operator by editing the KedaController
custom resource. The logs are sent to an audit log file on a volume that is secured by using a persistent
volume claim in the KedaController CR.

Prerequisites

The Custom Metrics Autoscaler Operator must be installed.

Procedure

1. Edit the KedaController custom resource to add the auditConfig stanza:

Specifies the output format of the audit log, either legacy or json.

Specifies an existing persistent volume claim for storing the log data. All requests coming
to the API server are logged to this persistent volume claim. If you leave this field empty,
the log data is sent to stdout.

Specifies which events should be recorded and what data they should include:

kind: KedaController
apiVersion: keda.sh/v1alpha1
metadata:
 name: keda
 namespace: openshift-keda
spec:
...
 metricsServer:
...
 auditConfig:
 logFormat: "json" 1
 logOutputVolumeClaim: "pvc-audit-log" 2
 policy:
 rules: 3
 - level: Metadata
 omitStages: "RequestReceived" 4
 omitManagedFields: false 5
 lifetime: 6
 maxAge: "2"
 maxBackup: "1"
 maxSize: "50"

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

163

4

5

6

1

None: Do not log events.

Metadata: Log only the metadata for the request, such as user, timestamp, and so
forth. Do not log the request text and the response text. This is the default.

Request: Log only the metadata and the request text but not the response text. This
option does not apply for non-resource requests.

RequestResponse: Log event metadata, request text, and response text. This option
does not apply for non-resource requests.

Specifies stages for which no event is created.

Specifies whether to omit the managed fields of the request and response bodies from
being written to the API audit log, either true to omit the fields or false to include the
fields.

Specifies the size and lifespan of the audit logs.

maxAge: The maximum number of days to retain audit log files, based on the
timestamp encoded in their filename.

maxBackup: The maximum number of audit log files to retain. Set to 0 to retain all
audit log files.

maxSize: The maximum size in megabytes of an audit log file before it gets rotated.

Verification

1. View the audit log file directly:

a. Obtain the name of the keda-metrics-apiserver-* pod:

Example output

b. View the log data by using a command similar to the following:

Optional: You can use the grep command to specify the log level to display: Metadata,
Request, RequestResponse.

For example:

oc get pod -n openshift-keda

NAME READY STATUS RESTARTS AGE
custom-metrics-autoscaler-operator-5cb44cd75d-9v4lv 1/1 Running 0 8m20s
keda-metrics-apiserver-65c7cc44fd-rrl4r 1/1 Running 0 2m55s
keda-operator-776cbb6768-zpj5b 1/1 Running 0 2m55s

$ oc logs keda-metrics-apiserver-<hash>|grep -i metadata 1

$ oc logs keda-metrics-apiserver-65c7cc44fd-rrl4r|grep -i metadata

OpenShift Container Platform 4.15 Nodes

164

1

Example output

2. Alternatively, you can view a specific log:

a. Use a command similar to the following to log into the keda-metrics-apiserver-* pod:

For example:

b. Change to the /var/audit-policy/ directory:

c. List the available logs:

Example output

d. View the log, as needed:

Optional: You can use the grep command to specify the log level to display: Metadata,
Request, RequestResponse.

For example:

Example output

 ...
{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Request","auditID":"63e7f68c-04ec-

 ...
{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"4c81d41b-
3dab-4675-90ce-
20b87ce24013","stage":"ResponseComplete","requestURI":"/healthz","verb":"get","user":
{"username":"system:anonymous","groups":["system:unauthenticated"]},"sourceIPs":
["10.131.0.1"],"userAgent":"kube-probe/1.28","responseStatus":{"metadata":
{},"code":200},"requestReceivedTimestamp":"2023-02-
16T13:00:03.554567Z","stageTimestamp":"2023-02-
16T13:00:03.555032Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":""}}
 ...

$ oc rsh pod/keda-metrics-apiserver-<hash> -n openshift-keda

$ oc rsh pod/keda-metrics-apiserver-65c7cc44fd-rrl4r -n openshift-keda

sh-4.4$ cd /var/audit-policy/

sh-4.4$ ls

log-2023.02.17-14:50 policy.yaml

sh-4.4$ cat <log_name>/<pvc_name>|grep -i <log_level> 1

sh-4.4$ cat log-2023.02.17-14:50/pvc-audit-log|grep -i Request

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

165

4f4d-8749-
bf1656572a41","stage":"ResponseComplete","requestURI":"/openapi/v2","verb":"get","user
":{"username":"system:aggregator","groups":["system:authenticated"]},"sourceIPs":
["10.128.0.1"],"responseStatus":{"metadata":
{},"code":304},"requestReceivedTimestamp":"2023-02-
17T13:12:55.035478Z","stageTimestamp":"2023-02-
17T13:12:55.038346Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"system:discovery\" of ClusterRole \"system:discovery\" to Group
\"system:authenticated\""}}
 ...

3.8. GATHERING DEBUGGING DATA

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

To help troubleshoot your issue, provide the following information:

Data gathered using the must-gather tool.

The unique cluster ID.

You can use the must-gather tool to collect data about the Custom Metrics Autoscaler Operator and its
components, including the following items:

The openshift-keda namespace and its child objects.

The Custom Metric Autoscaler Operator installation objects.

The Custom Metric Autoscaler Operator CRD objects.

3.8.1. Gathering debugging data

The following command runs the must-gather tool for the Custom Metrics Autoscaler Operator:

NOTE

The standard OpenShift Container Platform must-gather command, oc adm must-
gather, does not collect Custom Metrics Autoscaler Operator data.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

Procedure

$ oc adm must-gather --image="$(oc get packagemanifests openshift-custom-metrics-autoscaler-
operator \
-n openshift-marketplace \
-o jsonpath='{.status.channels[?
(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"

OpenShift Container Platform 4.15 Nodes

166

1. Navigate to the directory where you want to store the must-gather data.

NOTE

If your cluster is using a restricted network, you must take additional steps. If your
mirror registry has a trusted CA, you must first add the trusted CA to the cluster.
For all clusters on restricted networks, you must import the default must-gather
image as an image stream by running the following command.

2. Perform one of the following:

To get only the Custom Metrics Autoscaler Operator must-gather data, use the following
command:

The custom image for the must-gather command is pulled directly from the Operator
package manifests, so that it works on any cluster where the Custom Metric Autoscaler
Operator is available.

To gather the default must-gather data in addition to the Custom Metric Autoscaler
Operator information:

a. Use the following command to obtain the Custom Metrics Autoscaler Operator image
and set it as an environment variable:

b. Use the oc adm must-gather with the Custom Metrics Autoscaler Operator image:

Example 3.1. Example must-gather output for the Custom Metric Autoscaler:

$ oc import-image is/must-gather -n openshift

$ oc adm must-gather --image="$(oc get packagemanifests openshift-custom-metrics-
autoscaler-operator \
-n openshift-marketplace \
-o jsonpath='{.status.channels[?
(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"

$ IMAGE="$(oc get packagemanifests openshift-custom-metrics-autoscaler-operator
\
 -n openshift-marketplace \
 -o jsonpath='{.status.channels[?
(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"

$ oc adm must-gather --image-stream=openshift/must-gather --image=${IMAGE}

└── openshift-keda
 ├── apps
 │ ├── daemonsets.yaml
 │ ├── deployments.yaml
 │ ├── replicasets.yaml
 │ └── statefulsets.yaml
 ├── apps.openshift.io
 │ └── deploymentconfigs.yaml
 ├── autoscaling
 │ └── horizontalpodautoscalers.yaml

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

167

 ├── batch
 │ ├── cronjobs.yaml
 │ └── jobs.yaml
 ├── build.openshift.io
 │ ├── buildconfigs.yaml
 │ └── builds.yaml
 ├── core
 │ ├── configmaps.yaml
 │ ├── endpoints.yaml
 │ ├── events.yaml
 │ ├── persistentvolumeclaims.yaml
 │ ├── pods.yaml
 │ ├── replicationcontrollers.yaml
 │ ├── secrets.yaml
 │ └── services.yaml
 ├── discovery.k8s.io
 │ └── endpointslices.yaml
 ├── image.openshift.io
 │ └── imagestreams.yaml
 ├── k8s.ovn.org
 │ ├── egressfirewalls.yaml
 │ └── egressqoses.yaml
 ├── keda.sh
 │ ├── kedacontrollers
 │ │ └── keda.yaml
 │ ├── scaledobjects
 │ │ └── example-scaledobject.yaml
 │ └── triggerauthentications
 │ └── example-triggerauthentication.yaml
 ├── monitoring.coreos.com
 │ └── servicemonitors.yaml
 ├── networking.k8s.io
 │ └── networkpolicies.yaml
 ├── openshift-keda.yaml
 ├── pods
 │ ├── custom-metrics-autoscaler-operator-58bd9f458-ptgwx
 │ │ ├── custom-metrics-autoscaler-operator
 │ │ │ └── custom-metrics-autoscaler-operator
 │ │ │ └── logs
 │ │ │ ├── current.log
 │ │ │ ├── previous.insecure.log
 │ │ │ └── previous.log
 │ │ └── custom-metrics-autoscaler-operator-58bd9f458-ptgwx.yaml
 │ ├── custom-metrics-autoscaler-operator-58bd9f458-thbsh
 │ │ └── custom-metrics-autoscaler-operator
 │ │ └── custom-metrics-autoscaler-operator
 │ │ └── logs
 │ ├── keda-metrics-apiserver-65c7cc44fd-6wq4g
 │ │ ├── keda-metrics-apiserver
 │ │ │ └── keda-metrics-apiserver
 │ │ │ └── logs
 │ │ │ ├── current.log
 │ │ │ ├── previous.insecure.log
 │ │ │ └── previous.log
 │ │ └── keda-metrics-apiserver-65c7cc44fd-6wq4g.yaml
 │ └── keda-operator-776cbb6768-fb6m5

OpenShift Container Platform 4.15 Nodes

168

1

3. Create a compressed file from the must-gather directory that was created in your working
directory. For example, on a computer that uses a Linux operating system, run the following
command:

Replace must-gather-local.5421342344627712289/ with the actual directory name.

4. Attach the compressed file to your support case on the Red Hat Customer Portal .

3.9. VIEWING OPERATOR METRICS

The Custom Metrics Autoscaler Operator exposes ready-to-use metrics that it pulls from the on-cluster
monitoring component. You can query the metrics by using the Prometheus Query Language (PromQL)
to analyze and diagnose issues. All metrics are reset when the controller pod restarts.

3.9.1. Accessing performance metrics

You can access the metrics and run queries by using the OpenShift Container Platform web console.

Procedure

1. Select the Administrator perspective in the OpenShift Container Platform web console.

2. Select Observe → Metrics.

3. To create a custom query, add your PromQL query to the Expression field.

4. To add multiple queries, select Add Query.

3.9.1.1. Provided Operator metrics

The Custom Metrics Autoscaler Operator exposes the following metrics, which you can view by using the
OpenShift Container Platform web console.

Table 3.1. Custom Metric Autoscaler Operator metrics

 │ ├── keda-operator
 │ │ └── keda-operator
 │ │ └── logs
 │ │ ├── current.log
 │ │ ├── previous.insecure.log
 │ │ └── previous.log
 │ └── keda-operator-776cbb6768-fb6m5.yaml
 ├── policy
 │ └── poddisruptionbudgets.yaml
 └── route.openshift.io
 └── routes.yaml

$ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ 1

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

169

https://access.redhat.com

Metric name Description

keda_scaler_activity Whether the particular scaler is active or inactive. A value of 1 indicates the
scaler is active; a value of 0 indicates the scaler is inactive.

keda_scaler_metrics_valu
e

The current value for each scaler’s metric, which is used by the Horizontal
Pod Autoscaler (HPA) in computing the target average.

keda_scaler_metrics_late
ncy

The latency of retrieving the current metric from each scaler.

keda_scaler_errors The number of errors that have occurred for each scaler.

keda_scaler_errors_total The total number of errors encountered for all scalers.

keda_scaled_object_error
s

The number of errors that have occurred for each scaled obejct.

keda_resource_totals The total number of Custom Metrics Autoscaler custom resources in each
namespace for each custom resource type.

keda_trigger_totals The total number of triggers by trigger type.

Custom Metrics Autoscaler Admission webhook metrics

The Custom Metrics Autoscaler Admission webhook also exposes the following Prometheus metrics.

Metric name Description

keda_scaled_object_valid
ation_total

The number of scaled object validations.

keda_scaled_object_valid
ation_errors

The number of validation errors.

3.10. UNDERSTANDING HOW TO ADD CUSTOM METRICS
AUTOSCALERS

To add a custom metrics autoscaler, create a ScaledObject custom resource for a deployment, stateful
set, or custom resource. Create a ScaledJob custom resource for a job.

You can create only one scaled object for each workload that you want to scale. Also, you cannot use a
scaled object and the horizontal pod autoscaler (HPA) on the same workload.

3.10.1. Adding a custom metrics autoscaler to a workload

You can create a custom metrics autoscaler for a workload that is created by a Deployment,
StatefulSet, or custom resource object.

OpenShift Container Platform 4.15 Nodes

170

Prerequisites

The Custom Metrics Autoscaler Operator must be installed.

If you use a custom metrics autoscaler for scaling based on CPU or memory:

Your cluster administrator must have properly configured cluster metrics. You can use the
oc describe PodMetrics <pod-name> command to determine if metrics are configured. If
metrics are configured, the output appears similar to the following, with CPU and Memory
displayed under Usage.

Example output

The pods associated with the object you want to scale must include specified memory and
CPU limits. For example:

Example pod spec

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Memory: 0
 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2019-05-23T18:47:56Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-
scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>

apiVersion: v1
kind: Pod
...
spec:
 containers:
 - name: app
 image: images.my-company.example/app:v4
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
...

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

171

Procedure

1. Create a YAML file similar to the following. Only the name <2>, object name <4>, and object
kind <5> are required:

Example scaled object

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "0" 1
 name: scaledobject 2
 namespace: my-namespace
spec:
 scaleTargetRef:
 apiVersion: apps/v1 3
 name: example-deployment 4
 kind: Deployment 5
 envSourceContainerName: .spec.template.spec.containers[0] 6
 cooldownPeriod: 200 7
 maxReplicaCount: 100 8
 minReplicaCount: 0 9
 metricsServer: 10
 auditConfig:
 logFormat: "json"
 logOutputVolumeClaim: "persistentVolumeClaimName"
 policy:
 rules:
 - level: Metadata
 omitStages: "RequestReceived"
 omitManagedFields: false
 lifetime:
 maxAge: "2"
 maxBackup: "1"
 maxSize: "50"
 fallback: 11
 failureThreshold: 3
 replicas: 6
 pollingInterval: 30 12
 advanced:
 restoreToOriginalReplicaCount: false 13
 horizontalPodAutoscalerConfig:
 name: keda-hpa-scale-down 14
 behavior: 15
 scaleDown:
 stabilizationWindowSeconds: 300
 policies:
 - type: Percent
 value: 100
 periodSeconds: 15
 triggers:
 - type: prometheus 16
 metadata:

OpenShift Container Platform 4.15 Nodes

172

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Optional: Specifies that the Custom Metrics Autoscaler Operator is to scale the replicas to
the specified value and stop autoscaling, as described in the "Pausing the custom metrics
autoscaler for a workload" section.

Specifies a name for this custom metrics autoscaler.

Optional: Specifies the API version of the target resource. The default is apps/v1.

Specifies the name of the object that you want to scale.

Specifies the kind as Deployment, StatefulSet or CustomResource.

Optional: Specifies the name of the container in the target resource, from which the
custom metrics autoscaler gets environment variables holding secrets and so forth. The
default is .spec.template.spec.containers[0].

Optional. Specifies the period in seconds to wait after the last trigger is reported before
scaling the deployment back to 0 if the minReplicaCount is set to 0. The default is 300.

Optional: Specifies the maximum number of replicas when scaling up. The default is 100.

Optional: Specifies the minimum number of replicas when scaling down.

Optional: Specifies the parameters for audit logs. as described in the "Configuring audit
logging" section.

Optional: Specifies the number of replicas to fall back to if a scaler fails to get metrics from
the source for the number of times defined by the failureThreshold parameter. For more
information on fallback behavior, see the KEDA documentation.

Optional: Specifies the interval in seconds to check each trigger on. The default is 30.

Optional: Specifies whether to scale back the target resource to the original replica count
after the scaled object is deleted. The default is false, which keeps the replica count as it is
when the scaled object is deleted.

Optional: Specifies a name for the horizontal pod autoscaler. The default is keda-hpa-
{scaled-object-name}.

Optional: Specifies a scaling policy to use to control the rate to scale pods up or down, as
described in the "Scaling policies" section.

Specifies the trigger to use as the basis for scaling, as described in the "Understanding the
custom metrics autoscaler triggers" section. This example uses OpenShift Container
Platform monitoring.

Optional: Specifies a trigger authentication or a cluster trigger authentication. For more
information, see Understanding the custom metrics autoscaler trigger authentication in the

 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
 namespace: kedatest
 metricName: http_requests_total
 threshold: '5'
 query: sum(rate(http_requests_total{job="test-app"}[1m]))
 authModes: basic
 authenticationRef: 17
 name: prom-triggerauthentication
 kind: TriggerAuthentication

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

173

https://keda.sh/docs/2.7/concepts/scaling-deployments/#fallback

information, see Understanding the custom metrics autoscaler trigger authentication in the
Additional resources section.

Enter TriggerAuthentication to use a trigger authentication. This is the default.

Enter ClusterTriggerAuthentication to use a cluster trigger authentication.

2. Create the custom metrics autoscaler by running the following command:

Verification

View the command output to verify that the custom metrics autoscaler was created:

Example output

Note the following fields in the output:

TRIGGERS: Indicates the trigger, or scaler, that is being used.

AUTHENTICATION: Indicates the name of any trigger authentication being used.

READY: Indicates whether the scaled object is ready to start scaling:

If True, the scaled object is ready.

If False, the scaled object is not ready because of a problem in one or more of the
objects you created.

ACTIVE: Indicates whether scaling is taking place:

If True, scaling is taking place.

If False, scaling is not taking place because there are no metrics or there is a problem in
one or more of the objects you created.

FALLBACK: Indicates whether the custom metrics autoscaler is able to get metrics from
the source

If False, the custom metrics autoscaler is getting metrics.

If True, the custom metrics autoscaler is getting metrics because there are no metrics
or there is a problem in one or more of the objects you created.

3.10.2. Adding a custom metrics autoscaler to a job

You can create a custom metrics autoscaler for any Job object.

$ oc create -f <filename>.yaml

$ oc get scaledobject <scaled_object_name>

NAME SCALETARGETKIND SCALETARGETNAME MIN MAX TRIGGERS
AUTHENTICATION READY ACTIVE FALLBACK AGE
scaledobject apps/v1.Deployment example-deployment 0 50 prometheus prom-
triggerauthentication True True True 17s

OpenShift Container Platform 4.15 Nodes

174

IMPORTANT

Scaling by using a scaled job is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Prerequisites

The Custom Metrics Autoscaler Operator must be installed.

Procedure

1. Create a YAML file similar to the following:

kind: ScaledJob
apiVersion: keda.sh/v1alpha1
metadata:
 name: scaledjob
 namespace: my-namespace
spec:
 failedJobsHistoryLimit: 5
 jobTargetRef:
 activeDeadlineSeconds: 600 1
 backoffLimit: 6 2
 parallelism: 1 3
 completions: 1 4
 template: 5
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 maxReplicaCount: 100 6
 pollingInterval: 30 7
 successfulJobsHistoryLimit: 5 8
 failedJobsHistoryLimit: 5 9
 envSourceContainerName: 10
 rolloutStrategy: gradual 11
 scalingStrategy: 12
 strategy: "custom"
 customScalingQueueLengthDeduction: 1
 customScalingRunningJobPercentage: "0.5"
 pendingPodConditions:
 - "Ready"
 - "PodScheduled"
 - "AnyOtherCustomPodCondition"
 multipleScalersCalculation : "max"

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

175

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

7

8

9

10

11

12

Specifies the maximum duration the job can run.

Specifies the number of retries for a job. The default is 6.

Optional: Specifies how many pod replicas a job should run in parallel; defaults to 1.

For non-parallel jobs, leave unset. When unset, the default is 1.

Optional: Specifies how many successful pod completions are needed to mark a job
completed.

For non-parallel jobs, leave unset. When unset, the default is 1.

For parallel jobs with a fixed completion count, specify the number of completions.

For parallel jobs with a work queue, leave unset. When unset the default is the value of
the parallelism parameter.

Specifies the template for the pod the controller creates.

Optional: Specifies the maximum number of replicas when scaling up. The default is 100.

Optional: Specifies the interval in seconds to check each trigger on. The default is 30.

Optional: Specifies the number of successful finished jobs should be kept. The default is
100.

Optional: Specifies how many failed jobs should be kept. The default is 100.

Optional: Specifies the name of the container in the target resource, from which the
custom autoscaler gets environment variables holding secrets and so forth. The default is
.spec.template.spec.containers[0].

Optional: Specifies whether existing jobs are terminated whenever a scaled job is being
updated:

default: The autoscaler terminates an existing job if its associated scaled job is
updated. The autoscaler recreates the job with the latest specs.

gradual: The autoscaler does not terminate an existing job if its associated scaled job
is updated. The autoscaler creates new jobs with the latest specs.

Optional: Specifies a scaling strategy: default, custom, or accurate. The default is default.
For more information, see the link in the "Additional resources" section that follows.

 triggers:
 - type: prometheus 13
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
 namespace: kedatest
 metricName: http_requests_total
 threshold: '5'
 query: sum(rate(http_requests_total{job="test-app"}[1m]))
 authModes: "bearer"
 authenticationRef: 14
 name: prom-cluster-triggerauthentication

OpenShift Container Platform 4.15 Nodes

176

13

14

Specifies the trigger to use as the basis for scaling, as described in the "Understanding the
custom metrics autoscaler triggers" section.

Optional: Specifies a trigger authentication or a cluster trigger authentication. For more
information, see Understanding the custom metrics autoscaler trigger authentication in the
Additional resources section.

Enter TriggerAuthentication to use a trigger authentication. This is the default.

Enter ClusterTriggerAuthentication to use a cluster trigger authentication.

2. Create the custom metrics autoscaler by running the following command:

Verification

View the command output to verify that the custom metrics autoscaler was created:

Example output

Note the following fields in the output:

TRIGGERS: Indicates the trigger, or scaler, that is being used.

AUTHENTICATION: Indicates the name of any trigger authentication being used.

READY: Indicates whether the scaled object is ready to start scaling:

If True, the scaled object is ready.

If False, the scaled object is not ready because of a problem in one or more of the
objects you created.

ACTIVE: Indicates whether scaling is taking place:

If True, scaling is taking place.

If False, scaling is not taking place because there are no metrics or there is a problem in
one or more of the objects you created.

3.10.3. Additional resources

Understanding custom metrics autoscaler trigger authentications

3.11. REMOVING THE CUSTOM METRICS AUTOSCALER OPERATOR

You can remove the custom metrics autoscaler from your OpenShift Container Platform cluster. After

$ oc create -f <filename>.yaml

$ oc get scaledjob <scaled_job_name>

NAME MAX TRIGGERS AUTHENTICATION READY ACTIVE AGE
scaledjob 100 prometheus prom-triggerauthentication True True 8s

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

177

You can remove the custom metrics autoscaler from your OpenShift Container Platform cluster. After
removing the Custom Metrics Autoscaler Operator, remove other components associated with the
Operator to avoid potential issues.

NOTE

Delete the KedaController custom resource (CR) first. If you do not delete the
KedaController CR, OpenShift Container Platform can hang when you delete the
openshift-keda project. If you delete the Custom Metrics Autoscaler Operator before
deleting the CR, you are not able to delete the CR.

3.11.1. Uninstalling the Custom Metrics Autoscaler Operator

Use the following procedure to remove the custom metrics autoscaler from your OpenShift Container
Platform cluster.

Prerequisites

The Custom Metrics Autoscaler Operator must be installed.

Procedure

1. In the OpenShift Container Platform web console, click Operators → Installed Operators.

2. Switch to the openshift-keda project.

3. Remove the KedaController custom resource.

a. Find the CustomMetricsAutoscaler Operator and click the KedaController tab.

b. Find the custom resource, and then click Delete KedaController.

c. Click Uninstall.

4. Remove the Custom Metrics Autoscaler Operator:

a. Click Operators → Installed Operators.

b. Find the CustomMetricsAutoscaler Operator and click the Options menu and select
Uninstall Operator.

c. Click Uninstall.

5. Optional: Use the OpenShift CLI to remove the custom metrics autoscaler components:

a. Delete the custom metrics autoscaler CRDs:

clustertriggerauthentications.keda.sh

kedacontrollers.keda.sh

scaledjobs.keda.sh

scaledobjects.keda.sh

OpenShift Container Platform 4.15 Nodes

178

triggerauthentications.keda.sh

Deleting the CRDs removes the associated roles, cluster roles, and role bindings. However,
there might be a few cluster roles that must be manually deleted.

b. List any custom metrics autoscaler cluster roles:

c. Delete the listed custom metrics autoscaler cluster roles. For example:

d. List any custom metrics autoscaler cluster role bindings:

e. Delete the listed custom metrics autoscaler cluster role bindings. For example:

6. Delete the custom metrics autoscaler project:

7. Delete the Cluster Metric Autoscaler Operator:

$ oc delete crd clustertriggerauthentications.keda.sh kedacontrollers.keda.sh
scaledjobs.keda.sh scaledobjects.keda.sh triggerauthentications.keda.sh

$ oc get clusterrole | grep keda.sh

$ oc delete clusterrole.keda.sh-v1alpha1-admin

$ oc get clusterrolebinding | grep keda.sh

$ oc delete clusterrolebinding.keda.sh-v1alpha1-admin

$ oc delete project openshift-keda

$ oc delete operator/openshift-custom-metrics-autoscaler-operator.openshift-keda

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

179

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES
(SCHEDULING)

4.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER

Pod scheduling is an internal process that determines placement of new pods onto nodes within the
cluster.

The scheduler code has a clean separation that watches new pods as they get created and identifies the
most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the
master API.

Default pod scheduling

OpenShift Container Platform comes with a default scheduler that serves the needs of most users.
The default scheduler uses both inherent and customization tools to determine the best fit for a pod.

Advanced pod scheduling

In situations where you might want more control over where new pods are placed, the OpenShift
Container Platform advanced scheduling features allow you to configure a pod so that the pod is
required or has a preference to run on a particular node or alongside a specific pod.
You can control pod placement by using the following scheduling features:

Scheduler profiles

Pod affinity and anti-affinity rules

Node affinity

Node selectors

Taints and tolerations

Node overcommitment

4.1.1. About the default scheduler

The default OpenShift Container Platform pod scheduler is responsible for determining the placement
of new pods onto nodes within the cluster. It reads data from the pod and finds a node that is a good fit
based on configured profiles. It is completely independent and exists as a standalone solution. It does
not modify the pod; it creates a binding for the pod that ties the pod to the particular node.

4.1.1.1. Understanding default scheduling

The existing generic scheduler is the default platform-provided scheduler engine that selects a node to
host the pod in a three-step operation:

Filters the nodes

The available nodes are filtered based on the constraints or requirements specified. This is done by
running each node through the list of filter functions called predicates, or filters.

Prioritizes the filtered list of nodes

This is achieved by passing each node through a series of priority, or scoring, functions that assign it a
score between 0 - 10, with 0 indicating a bad fit and 10 indicating a good fit to host the pod. The

OpenShift Container Platform 4.15 Nodes

180

scheduler configuration can also take in a simple weight (positive numeric value) for each scoring
function. The node score provided by each scoring function is multiplied by the weight (default
weight for most scores is 1) and then combined by adding the scores for each node provided by all
the scores. This weight attribute can be used by administrators to give higher importance to some
scores.

Selects the best fit node

The nodes are sorted based on their scores and the node with the highest score is selected to host
the pod. If multiple nodes have the same high score, then one of them is selected at random.

4.1.2. Scheduler use cases

One of the important use cases for scheduling within OpenShift Container Platform is to support
flexible affinity and anti-affinity policies.

4.1.2.1. Infrastructure topological levels

Administrators can define multiple topological levels for their infrastructure (nodes) by specifying labels
on nodes. For example: region=r1, zone=z1, rack=s1.

These label names have no particular meaning and administrators are free to name their infrastructure
levels anything, such as city/building/room. Also, administrators can define any number of levels for their
infrastructure topology, with three levels usually being adequate (such as: regions → zones → racks).
Administrators can specify affinity and anti-affinity rules at each of these levels in any combination.

4.1.2.2. Affinity

Administrators should be able to configure the scheduler to specify affinity at any topological level, or
even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same
service are scheduled onto nodes that belong to the same level. This handles any latency requirements
of applications by allowing administrators to ensure that peer pods do not end up being too
geographically separated. If no node is available within the same affinity group to host the pod, then the
pod is not scheduled.

If you need greater control over where the pods are scheduled, see Controlling pod placement on nodes
using node affinity rules and Placing pods relative to other pods using affinity and anti-affinity rules .

These advanced scheduling features allow administrators to specify which node a pod can be scheduled
on and to force or reject scheduling relative to other pods.

4.1.2.3. Anti-affinity

Administrators should be able to configure the scheduler to specify anti-affinity at any topological level,
or even at multiple levels. Anti-affinity (or 'spread') at a particular level indicates that all pods that
belong to the same service are spread across nodes that belong to that level. This ensures that the
application is well spread for high availability purposes. The scheduler tries to balance the service pods
across all applicable nodes as evenly as possible.

If you need greater control over where the pods are scheduled, see Controlling pod placement on nodes
using node affinity rules and Placing pods relative to other pods using affinity and anti-affinity rules .

These advanced scheduling features allow administrators to specify which node a pod can be scheduled
on and to force or reject scheduling relative to other pods.

4.2. SCHEDULING PODS USING A SCHEDULER PROFILE

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

181

1

You can configure OpenShift Container Platform to use a scheduling profile to schedule pods onto
nodes within the cluster.

4.2.1. About scheduler profiles

You can specify a scheduler profile to control how pods are scheduled onto nodes.

The following scheduler profiles are available:

LowNodeUtilization

This profile attempts to spread pods evenly across nodes to get low resource usage per node. This
profile provides the default scheduler behavior.

HighNodeUtilization

This profile attempts to place as many pods as possible on to as few nodes as possible. This
minimizes node count and has high resource usage per node.

NoScoring

This is a low-latency profile that strives for the quickest scheduling cycle by disabling all score
plugins. This might sacrifice better scheduling decisions for faster ones.

4.2.2. Configuring a scheduler profile

You can configure the scheduler to use a scheduler profile.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the Scheduler object:

2. Specify the profile to use in the spec.profile field:

Set to LowNodeUtilization, HighNodeUtilization, or NoScoring.

3. Save the file to apply the changes.

4.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
#...
spec:
 mastersSchedulable: false
 profile: HighNodeUtilization 1
#...

OpenShift Container Platform 4.15 Nodes

182

4.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND
ANTI-AFFINITY RULES

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled. Anti-affinity
is a property of pods that prevents a pod from being scheduled on a node.

In OpenShift Container Platform, pod affinity and pod anti-affinity allow you to constrain which nodes
your pod is eligible to be scheduled on based on the key-value labels on other pods.

4.3.1. Understanding pod affinity

Pod affinity and pod anti-affinity allow you to constrain which nodes your pod is eligible to be scheduled
on based on the key/value labels on other pods.

Pod affinity can tell the scheduler to locate a new pod on the same node as other pods if the
label selector on the new pod matches the label on the current pod.

Pod anti-affinity can prevent the scheduler from locating a new pod on the same node as pods
with the same labels if the label selector on the new pod matches the label on the current pod.

For example, using affinity rules, you could spread or pack pods within a service or relative to pods in
other services. Anti-affinity rules allow you to prevent pods of a particular service from scheduling on the
same nodes as pods of another service that are known to interfere with the performance of the pods of
the first service. Or, you could spread the pods of a service across nodes, availability zones, or availability
sets to reduce correlated failures.

NOTE

A label selector might match pods with multiple pod deployments. Use unique
combinations of labels when configuring anti-affinity rules to avoid matching pods.

There are two types of pod affinity rules: required and preferred.

Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if
the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.

NOTE

Depending on your pod priority and preemption settings, the scheduler might not be able
to find an appropriate node for a pod without violating affinity requirements. If so, a pod
might not be scheduled.

To prevent this situation, carefully configure pod affinity with equal-priority pods.

You configure pod affinity/anti-affinity through the Pod spec files. You can specify a required rule, a
preferred rule, or both. If you specify both, the node must first meet the required rule, then attempts to
meet the preferred rule.

The following example shows a Pod spec configured for pod affinity and anti-affinity.

In this example, the pod affinity rule indicates that the pod can schedule onto a node only if that node
has at least one already-running pod with a label that has the key security and value S1. The pod anti-
affinity rule says that the pod prefers to not schedule onto a node if that node is already running a pod
with label having key security and value S2.

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

183

1

2

3 5

4

Sample Pod config file with pod affinity

Stanza to configure pod affinity.

Defines a required rule.

The key and value (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn,
Exists, or DoesNotExist.

Sample Pod config file with pod anti-affinity

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-affinity
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 - labelSelector:
 matchExpressions:
 - key: security 3
 operator: In 4
 values:
 - S1 5
 topologyKey: topology.kubernetes.io/zone
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-antiaffinity
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAntiAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2

OpenShift Container Platform 4.15 Nodes

184

1

2

3

4

5

Stanza to configure pod anti-affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with the highest weight is preferred.

Description of the pod label that determines when the anti-affinity rule applies. Specify a key and
value for the label.

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn,
Exists, or DoesNotExist.

NOTE

If labels on a node change at runtime such that the affinity rules on a pod are no longer
met, the pod continues to run on the node.

4.3.2. Configuring a pod affinity rule

The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod
that uses affinity to allow scheduling with that pod.

NOTE

You cannot add an affinity directly to a scheduled pod.

Procedure

1. Create a pod with a specific label in the pod spec:

a. Create a YAML file with the following content:

 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security 4
 operator: In 5
 values:
 - S2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

apiVersion: v1
kind: Pod
metadata:
 name: security-s1

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

185

1

2

3

4

5

b. Create the pod.

2. When creating other pods, configure the following parameters to add the affinity:

a. Create a YAML file with the following content:

Adds a pod affinity.

Configures the requiredDuringSchedulingIgnoredDuringExecution parameter or
the preferredDuringSchedulingIgnoredDuringExecution parameter.

Specifies the key and values that must be met. If you want the new pod to be
scheduled with the other pod, use the same key and values parameters as the label on
the first pod.

Specifies an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For
example, use the operator In to require the label to be in the node.

Specify a topologyKey, which is a prepopulated Kubernetes label that the system
uses to denote such a topology domain.

 labels:
 security: S1
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: security-s1
 image: docker.io/ocpqe/hello-pod
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault

$ oc create -f <pod-spec>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: security-s1-east
...
spec:
 affinity: 1
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution: 2
 - labelSelector:
 matchExpressions:
 - key: security 3
 values:
 - S1
 operator: In 4
 topologyKey: topology.kubernetes.io/zone 5
...

OpenShift Container Platform 4.15 Nodes

186

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

b. Create the pod.

4.3.3. Configuring a pod anti-affinity rule

The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod
that uses an anti-affinity preferred rule to attempt to prevent scheduling with that pod.

NOTE

You cannot add an affinity directly to a scheduled pod.

Procedure

1. Create a pod with a specific label in the pod spec:

a. Create a YAML file with the following content:

b. Create the pod.

2. When creating other pods, configure the following parameters:

a. Create a YAML file with the following content:

$ oc create -f <pod-spec>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: security-s1
 labels:
 security: S1
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: security-s1
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f <pod-spec>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: security-s2-east
...
spec:
...
 affinity: 1

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

187

1

2

3

4

5

6

Adds a pod anti-affinity.

Configures the requiredDuringSchedulingIgnoredDuringExecution parameter or
the preferredDuringSchedulingIgnoredDuringExecution parameter.

For a preferred rule, specifies a weight for the node, 1-100. The node that with highest
weight is preferred.

Specifies the key and values that must be met. If you want the new pod to not be
scheduled with the other pod, use the same key and values parameters as the label on
the first pod.

Specifies an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For
example, use the operator In to require the label to be in the node.

Specifies a topologyKey, which is a prepopulated Kubernetes label that the system
uses to denote such a topology domain.

b. Create the pod.

4.3.4. Sample pod affinity and anti-affinity rules

The following examples demonstrate pod affinity and pod anti-affinity.

4.3.4.1. Pod Affinity

The following example demonstrates pod affinity for pods with matching labels and label selectors.

The pod team4 has the label team:4.

 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security 4
 values:
 - S1
 operator: In 5
 topologyKey: kubernetes.io/hostname 6
...

$ oc create -f <pod-spec>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: team4
 labels:
 team: "4"
...
spec:
 securityContext:

OpenShift Container Platform 4.15 Nodes

188

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

The pod team4a has the label selector team:4 under podAffinity.

The team4a pod is scheduled on the same node as the team4 pod.

4.3.4.2. Pod Anti-affinity

The following example demonstrates pod anti-affinity for pods with matching labels and label selectors.

The pod pod-s1 has the label security:s1.

 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: team4a
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: team
 operator: In
 values:
 - "4"
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

189

The pod pod-s2 has the label selector security:s1 under podAntiAffinity.

The pod pod-s2 cannot be scheduled on the same node as pod-s1.

4.3.4.3. Pod Affinity with no Matching Labels

The following example demonstrates pod affinity for pods without matching labels and label selectors.

The pod pod-s1 has the label security:s1.

 labels:
 security: s1
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s1
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-antiaffinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

OpenShift Container Platform 4.15 Nodes

190

The pod pod-s2 has the label selector security:s2.

The pod pod-s2 is not scheduled unless there is a node with a pod that has the security:s2
label. If there is no other pod with that label, the new pod remains in a pending state:

Example output

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
 labels:
 security: s1
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

191

1

Example output

4.3.5. Using pod affinity and anti-affinity to control where an Operator is installed

By default, when you install an Operator, OpenShift Container Platform installs the Operator pod to one
of your worker nodes randomly. However, there might be situations where you want that pod scheduled
on a specific node or set of nodes.

The following examples describe situations where you might want to schedule an Operator pod to a
specific node or set of nodes:

If an Operator requires a particular platform, such as amd64 or arm64

If an Operator requires a particular operating system, such as Linux or Windows

If you want Operators that work together scheduled on the same host or on hosts located on
the same rack

If you want Operators dispersed throughout the infrastructure to avoid downtime due to
network or hardware issues

You can control where an Operator pod is installed by adding a pod affinity or anti-affinity to the
Operator’s Subscription object.

The following example shows how to use pod anti-affinity to prevent the installation the Custom Metrics
Autoscaler Operator from any node that has pods with a specific label:

Pod affinity example that places the Operator pod on one or more specific nodes

A pod affinity that places the Operator’s pod on a node that has pods with the app=test label.

NAME READY STATUS RESTARTS AGE IP NODE
pod-s2 0/1 Pending 0 32s <none>

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - test
 topologyKey: kubernetes.io/hostname
#...

OpenShift Container Platform 4.15 Nodes

192

1

Pod anti-affinity example that prevents the Operator pod from one or more specific nodes

A pod anti-affinity that prevents the Operator’s pod from being scheduled on a node that has pods
with the cpu=high label.

Procedure

To control the placement of an Operator pod, complete the following steps:

1. Install the Operator as usual.

2. If needed, ensure that your nodes are labeled to properly respond to the affinity.

3. Edit the Operator Subscription object to add an affinity:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAntiAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: cpu
 operator: In
 values:
 - high
 topologyKey: kubernetes.io/hostname
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAntiAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: kubernetes.io/hostname
 operator: In

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

193

1 Add a podAffinity or podAntiAffinity.

Verification

To ensure that the pod is deployed on the specific node, run the following command:

Example output

4.4. CONTROLLING POD PLACEMENT ON NODES USING NODE
AFFINITY RULES

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled.

In OpenShift Container Platform node affinity is a set of rules used by the scheduler to determine where
a pod can be placed. The rules are defined using custom labels on the nodes and label selectors
specified in pods.

4.4.1. Understanding node affinity

Node affinity allows a pod to specify an affinity towards a group of nodes it can be placed on. The node
does not have control over the placement.

For example, you could configure a pod to only run on a node with a specific CPU or in a specific
availability zone.

There are two types of node affinity rules: required and preferred.

Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if
the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.

NOTE

If labels on a node change at runtime that results in an node affinity rule on a pod no
longer being met, the pod continues to run on the node.

You configure node affinity through the Pod spec file. You can specify a required rule, a preferred rule,
or both. If you specify both, the node must first meet the required rule, then attempts to meet the
preferred rule.

The following example is a Pod spec with a rule that requires the pod be placed on a node with a label

 values:
 - ip-10-0-185-229.ec2.internal
 topologyKey: topology.kubernetes.io/zone
#...

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
custom-metrics-autoscaler-operator-5dcc45d656-bhshg 1/1 Running 0 50s
10.131.0.20 ip-10-0-185-229.ec2.internal <none> <none>

OpenShift Container Platform 4.15 Nodes

194

1

2

3 5 6

4

The following example is a Pod spec with a rule that requires the pod be placed on a node with a label
whose key is e2e-az-NorthSouth and whose value is either e2e-az-North or e2e-az-South:

Example pod configuration file with a node affinity required rule

The stanza to configure node affinity.

Defines a required rule.

The key/value pair (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the node and the set of values in
the matchExpression parameters in the Pod spec. This value can be In, NotIn, Exists, or
DoesNotExist, Lt, or Gt.

The following example is a node specification with a preferred rule that a node with a label whose key is
e2e-az-EastWest and whose value is either e2e-az-East or e2e-az-West is preferred for the pod:

Example pod configuration file with a node affinity preferred rule

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-NorthSouth 3
 operator: In 4
 values:
 - e2e-az-North 5
 - e2e-az-South 6
 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 securityContext:

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

195

1

2

3

4 6 7

5

The stanza to configure node affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with highest weight is preferred.

The key/value pair (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the node and the set of values in
the matchExpression parameters in the Pod spec. This value can be In, NotIn, Exists, or
DoesNotExist, Lt, or Gt.

There is no explicit node anti-affinity concept, but using the NotIn or DoesNotExist operator replicates
that behavior.

NOTE

If you are using node affinity and node selectors in the same pod configuration, note the
following:

If you configure both nodeSelector and nodeAffinity, both conditions must be
satisfied for the pod to be scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types,
then the pod can be scheduled onto a node if one of the nodeSelectorTerms is
satisfied.

If you specify multiple matchExpressions associated with nodeSelectorTerms,
then the pod can be scheduled onto a node only if all matchExpressions are
satisfied.

 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 nodeAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 1 3
 preference:
 matchExpressions:
 - key: e2e-az-EastWest 4
 operator: In 5
 values:
 - e2e-az-East 6
 - e2e-az-West 7
 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

OpenShift Container Platform 4.15 Nodes

196

1

4.4.2. Configuring a required node affinity rule

Required rules must be met before a pod can be scheduled on a node.

Procedure

The following steps demonstrate a simple configuration that creates a node and a pod that the
scheduler is required to place on the node.

1. Add a label to a node using the oc label node command:

TIP

You can alternatively apply the following YAML to add the label:

2. Create a pod with a specific label in the pod spec:

a. Create a YAML file with the following content:

NOTE

You cannot add an affinity directly to a scheduled pod.

Example output

Adds a pod affinity.

$ oc label node node1 e2e-az-name=e2e-az1

kind: Node
apiVersion: v1
metadata:
 name: <node_name>
 labels:
 e2e-az-name: e2e-az1
#...

apiVersion: v1
kind: Pod
metadata:
 name: s1
spec:
 affinity: 1
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-name 3
 values:
 - e2e-az1
 - e2e-az2
 operator: In 4
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

197

2

3

4

1

Configures the requiredDuringSchedulingIgnoredDuringExecution parameter.

Specifies the key and values that must be met. If you want the new pod to be
scheduled on the node you edited, use the same key and values parameters as the
label in the node.

Specifies an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For
example, use the operator In to require the label to be in the node.

b. Create the pod:

4.4.3. Configuring a preferred node affinity rule

Preferred rules specify that, if the rule is met, the scheduler tries to enforce the rules, but does not
guarantee enforcement.

Procedure

The following steps demonstrate a simple configuration that creates a node and a pod that the
scheduler tries to place on the node.

1. Add a label to a node using the oc label node command:

2. Create a pod with a specific label:

a. Create a YAML file with the following content:

NOTE

You cannot add an affinity directly to a scheduled pod.

Adds a pod affinity.

$ oc create -f <file-name>.yaml

$ oc label node node1 e2e-az-name=e2e-az3

apiVersion: v1
kind: Pod
metadata:
 name: s1
spec:
 affinity: 1
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 3
 preference:
 matchExpressions:
 - key: e2e-az-name 4
 values:
 - e2e-az3
 operator: In 5
#...

OpenShift Container Platform 4.15 Nodes

198

2

3

4

5

Configures the preferredDuringSchedulingIgnoredDuringExecution parameter.

Specifies a weight for the node, as a number 1-100. The node with highest weight is
preferred.

Specifies the key and values that must be met. If you want the new pod to be
scheduled on the node you edited, use the same key and values parameters as the
label in the node.

Specifies an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For
example, use the operator In to require the label to be in the node.

b. Create the pod.

4.4.4. Sample node affinity rules

The following examples demonstrate node affinity.

4.4.4.1. Node affinity with matching labels

The following example demonstrates node affinity for a node and pod with matching labels:

The Node1 node has the label zone:us:

TIP

You can alternatively apply the following YAML to add the label:

The pod-s1 pod has the zone and us key/value pair under a required node affinity rule:

Example output

$ oc create -f <file-name>.yaml

$ oc label node node1 zone=us

kind: Node
apiVersion: v1
metadata:
 name: <node_name>
 labels:
 zone: us
#...

$ cat pod-s1.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 securityContext:

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

199

The pod-s1 pod can be scheduled on Node1:

Example output

4.4.4.2. Node affinity with no matching labels

The following example demonstrates node affinity for a node and pod without matching labels:

The Node1 node has the label zone:emea:

TIP

You can alternatively apply the following YAML to add the label:

The pod-s1 pod has the zone and us key/value pair under a required node affinity rule:

 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us
#...

$ oc get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE
pod-s1 1/1 Running 0 4m IP1 node1

$ oc label node node1 zone=emea

kind: Node
apiVersion: v1
metadata:
 name: <node_name>
 labels:
 zone: emea
#...

OpenShift Container Platform 4.15 Nodes

200

Example output

The pod-s1 pod cannot be scheduled on Node1:

Example output

4.4.5. Using node affinity to control where an Operator is installed

By default, when you install an Operator, OpenShift Container Platform installs the Operator pod to one
of your worker nodes randomly. However, there might be situations where you want that pod scheduled
on a specific node or set of nodes.

The following examples describe situations where you might want to schedule an Operator pod to a
specific node or set of nodes:

$ cat pod-s1.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us
#...

$ oc describe pod pod-s1

...

Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
 --------- -------- ----- ---- ------------- -------- ------
 1m 33s 8 default-scheduler Warning FailedScheduling No nodes are
available that match all of the following predicates:: MatchNodeSelector (1).

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

201

1

If an Operator requires a particular platform, such as amd64 or arm64

If an Operator requires a particular operating system, such as Linux or Windows

If you want Operators that work together scheduled on the same host or on hosts located on
the same rack

If you want Operators dispersed throughout the infrastructure to avoid downtime due to
network or hardware issues

You can control where an Operator pod is installed by adding a node affinity constraints to the
Operator’s Subscription object.

The following examples show how to use node affinity to install an instance of the Custom Metrics
Autoscaler Operator to a specific node in the cluster:

Node affinity example that places the Operator pod on a specific node

A node affinity that requires the Operator’s pod to be scheduled on a node named ip-10-0-163-
94.us-west-2.compute.internal.

Node affinity example that places the Operator pod on a node with a specific platform

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-163-94.us-west-2.compute.internal
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:

OpenShift Container Platform 4.15 Nodes

202

1

1

A node affinity that requires the Operator’s pod to be scheduled on a node with the
kubernetes.io/arch=arm64 and kubernetes.io/os=linux labels.

Procedure

To control the placement of an Operator pod, complete the following steps:

1. Install the Operator as usual.

2. If needed, ensure that your nodes are labeled to properly respond to the affinity.

3. Edit the Operator Subscription object to add an affinity:

Add a nodeAffinity.

Verification

To ensure that the pod is deployed on the specific node, run the following command:

 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/arch
 operator: In
 values:
 - arm64
 - key: kubernetes.io/os
 operator: In
 values:
 - linux
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity: 1
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-185-229.ec2.internal
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

203

Example output

4.4.6. Additional resources

Understanding how to update labels on nodes

4.5. PLACING PODS ONTO OVERCOMMITED NODES

In an overcommited state, the sum of the container compute resource requests and limits exceeds the
resources available on the system. Overcommitment might be desirable in development environments
where a trade-off of guaranteed performance for capacity is acceptable.

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

4.5.1. Understanding overcommitment

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

OpenShift Container Platform administrators can control the level of overcommit and manage container
density on nodes by configuring masters to override the ratio between request and limit set on
developer containers. In conjunction with a per-project LimitRange object specifying limits and
defaults, this adjusts the container limit and request to achieve the desired level of overcommit.

NOTE

That these overrides have no effect if no limits have been set on containers. Create a
LimitRange object with default limits, per individual project, or in the project template, to
ensure that the overrides apply.

After these overrides, the container limits and requests must still be validated by any LimitRange object
in the project. It is possible, for example, for developers to specify a limit close to the minimum limit, and
have the request then be overridden below the minimum limit, causing the pod to be forbidden. This
unfortunate user experience should be addressed with future work, but for now, configure this capability
and LimitRange objects with caution.

4.5.2. Understanding nodes overcommitment

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
custom-metrics-autoscaler-operator-5dcc45d656-bhshg 1/1 Running 0 50s
10.131.0.20 ip-10-0-185-229.ec2.internal <none> <none>

OpenShift Container Platform 4.15 Nodes

204

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit
memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating
system setting.

OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by
setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call oom_killer in an
Out of Memory (OOM) condition, which kills processes based on priority

You can view the current setting by running the following commands on your nodes:

Example output

Example output

NOTE

The above flags should already be set on nodes, and no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

4.6. CONTROLLING POD PLACEMENT USING NODE TAINTS

Taints and tolerations allow the node to control which pods should (or should not) be scheduled on
them.

4.6.1. Understanding taints and tolerations

A taint allows a node to refuse a pod to be scheduled unless that pod has a matching toleration.

You apply taints to a node through the Node specification (NodeSpec) and apply tolerations to a pod
through the Pod specification (PodSpec). When you apply a taint a node, the scheduler cannot place a
pod on that node unless the pod can tolerate the taint.

Example taint in a node specification

$ sysctl -a |grep commit

#...
vm.overcommit_memory = 0
#...

$ sysctl -a |grep panic

#...
vm.panic_on_oom = 0
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

205

Example toleration in a Pod spec

Taints and tolerations consist of a key, value, and effect.

Table 4.1. Taint and toleration components

Parameter Description

key The key is any string, up to 253 characters. The key must begin with a letter or
number, and may contain letters, numbers, hyphens, dots, and underscores.

value The value is any string, up to 63 characters. The value must begin with a letter
or number, and may contain letters, numbers, hyphens, dots, and underscores.

apiVersion: v1
kind: Node
metadata:
 name: my-node
#...
spec:
 taints:
 - effect: NoExecute
 key: key1
 value: value1
#...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
 tolerationSeconds: 3600
#...

OpenShift Container Platform 4.15 Nodes

206

effect The effect is one of the following:

NoSchedule [1]
New pods that do not match the taint
are not scheduled onto that node.

Existing pods on the node remain.

PreferNoSchedule
New pods that do not match the taint
might be scheduled onto that node,
but the scheduler tries not to.

Existing pods on the node remain.

NoExecute
New pods that do not match the taint
cannot be scheduled onto that node.

Existing pods on the node that do not
have a matching toleration are
removed.

operator
Equal The key/value/effect parameters must

match. This is the default.

Exists The key/effect parameters must match. You
must leave a blank value parameter, which
matches any.

Parameter Description

1. If you add a NoSchedule taint to a control plane node, the node must have the node-
role.kubernetes.io/master=:NoSchedule taint, which is added by default.
For example:

apiVersion: v1
kind: Node
metadata:
 annotations:
 machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
 machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
 name: my-node
#...
spec:
 taints:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

207

A toleration matches a taint:

If the operator parameter is set to Equal:

the key parameters are the same;

the value parameters are the same;

the effect parameters are the same.

If the operator parameter is set to Exists:

the key parameters are the same;

the effect parameters are the same.

The following taints are built into OpenShift Container Platform:

node.kubernetes.io/not-ready: The node is not ready. This corresponds to the node condition
Ready=False.

node.kubernetes.io/unreachable: The node is unreachable from the node controller. This
corresponds to the node condition Ready=Unknown.

node.kubernetes.io/memory-pressure: The node has memory pressure issues. This
corresponds to the node condition MemoryPressure=True.

node.kubernetes.io/disk-pressure: The node has disk pressure issues. This corresponds to the
node condition DiskPressure=True.

node.kubernetes.io/network-unavailable: The node network is unavailable.

node.kubernetes.io/unschedulable: The node is unschedulable.

node.cloudprovider.kubernetes.io/uninitialized: When the node controller is started with an
external cloud provider, this taint is set on a node to mark it as unusable. After a controller from
the cloud-controller-manager initializes this node, the kubelet removes this taint.

node.kubernetes.io/pid-pressure: The node has pid pressure. This corresponds to the node
condition PIDPressure=True.

IMPORTANT

OpenShift Container Platform does not set a default pid.available evictionHard.

4.6.1.1. Understanding how to use toleration seconds to delay pod evictions

You can specify how long a pod can remain bound to a node before being evicted by specifying the
tolerationSeconds parameter in the Pod specification or MachineSet object. If a taint with the
NoExecute effect is added to a node, a pod that does tolerate the taint, which has the
tolerationSeconds parameter, the pod is not evicted until that time period expires.

Example output

apiVersion: v1
kind: Pod
metadata:

OpenShift Container Platform 4.15 Nodes

208

Here, if this pod is running but does not have a matching toleration, the pod stays bound to the node for
3,600 seconds and then be evicted. If the taint is removed before that time, the pod is not evicted.

4.6.1.2. Understanding how to use multiple taints

You can put multiple taints on the same node and multiple tolerations on the same pod. OpenShift
Container Platform processes multiple taints and tolerations as follows:

1. Process the taints for which the pod has a matching toleration.

2. The remaining unmatched taints have the indicated effects on the pod:

If there is at least one unmatched taint with effect NoSchedule, OpenShift Container
Platform cannot schedule a pod onto that node.

If there is no unmatched taint with effect NoSchedule but there is at least one unmatched
taint with effect PreferNoSchedule, OpenShift Container Platform tries to not schedule
the pod onto the node.

If there is at least one unmatched taint with effect NoExecute, OpenShift Container
Platform evicts the pod from the node if it is already running on the node, or the pod is not
scheduled onto the node if it is not yet running on the node.

Pods that do not tolerate the taint are evicted immediately.

Pods that tolerate the taint without specifying tolerationSeconds in their Pod
specification remain bound forever.

Pods that tolerate the taint with a specified tolerationSeconds remain bound for the
specified amount of time.

For example:

Add the following taints to the node:

The pod has the following tolerations:

 name: my-pod
#...
spec:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
 tolerationSeconds: 3600
#...

$ oc adm taint nodes node1 key1=value1:NoSchedule

$ oc adm taint nodes node1 key1=value1:NoExecute

$ oc adm taint nodes node1 key2=value2:NoSchedule

apiVersion: v1

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

209

In this case, the pod cannot be scheduled onto the node, because there is no toleration matching the
third taint. The pod continues running if it is already running on the node when the taint is added,
because the third taint is the only one of the three that is not tolerated by the pod.

4.6.1.3. Understanding pod scheduling and node conditions (taint node by condition)

The Taint Nodes By Condition feature, which is enabled by default, automatically taints nodes that
report conditions such as memory pressure and disk pressure. If a node reports a condition, a taint is
added until the condition clears. The taints have the NoSchedule effect, which means no pod can be
scheduled on the node unless the pod has a matching toleration.

The scheduler checks for these taints on nodes before scheduling pods. If the taint is present, the pod is
scheduled on a different node. Because the scheduler checks for taints and not the actual node
conditions, you configure the scheduler to ignore some of these node conditions by adding appropriate
pod tolerations.

To ensure backward compatibility, the daemon set controller automatically adds the following
tolerations to all daemons:

node.kubernetes.io/memory-pressure

node.kubernetes.io/disk-pressure

node.kubernetes.io/unschedulable (1.10 or later)

node.kubernetes.io/network-unavailable (host network only)

You can also add arbitrary tolerations to daemon sets.

NOTE

The control plane also adds the node.kubernetes.io/memory-pressure toleration on
pods that have a QoS class. This is because Kubernetes manages pods in the
Guaranteed or Burstable QoS classes. The new BestEffort pods do not get scheduled
onto the affected node.

4.6.1.4. Understanding evicting pods by condition (taint-based evictions)

The Taint-Based Evictions feature, which is enabled by default, evicts pods from a node that

kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
#...

OpenShift Container Platform 4.15 Nodes

210

1

experiences specific conditions, such as not-ready and unreachable. When a node experiences one of
these conditions, OpenShift Container Platform automatically adds taints to the node, and starts
evicting and rescheduling the pods on different nodes.

Taint Based Evictions have a NoExecute effect, where any pod that does not tolerate the taint is
evicted immediately and any pod that does tolerate the taint will never be evicted, unless the pod uses
the tolerationSeconds parameter.

The tolerationSeconds parameter allows you to specify how long a pod stays bound to a node that has
a node condition. If the condition still exists after the tolerationSeconds period, the taint remains on
the node and the pods with a matching toleration are evicted. If the condition clears before the
tolerationSeconds period, pods with matching tolerations are not removed.

If you use the tolerationSeconds parameter with no value, pods are never evicted because of the not
ready and unreachable node conditions.

NOTE

OpenShift Container Platform evicts pods in a rate-limited way to prevent massive pod
evictions in scenarios such as the master becoming partitioned from the nodes.

By default, if more than 55% of nodes in a given zone are unhealthy, the node lifecycle
controller changes that zone’s state to PartialDisruption and the rate of pod evictions is
reduced. For small clusters (by default, 50 nodes or less) in this state, nodes in this zone
are not tainted and evictions are stopped.

For more information, see Rate limits on eviction in the Kubernetes documentation.

OpenShift Container Platform automatically adds a toleration for node.kubernetes.io/not-ready and
node.kubernetes.io/unreachable with tolerationSeconds=300, unless the Pod configuration specifies
either toleration.

These tolerations ensure that the default pod behavior is to remain bound for five minutes after
one of these node conditions problems is detected.

You can configure these tolerations as needed. For example, if you have an application with a lot of local

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: node.kubernetes.io/not-ready
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 300 1
 - key: node.kubernetes.io/unreachable
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 300
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

211

https://kubernetes.io/docs/concepts/architecture/nodes/#rate-limits-on-eviction

You can configure these tolerations as needed. For example, if you have an application with a lot of local
state, you might want to keep the pods bound to node for a longer time in the event of network
partition, allowing for the partition to recover and avoiding pod eviction.

Pods spawned by a daemon set are created with NoExecute tolerations for the following taints with no
tolerationSeconds:

node.kubernetes.io/unreachable

node.kubernetes.io/not-ready

As a result, daemon set pods are never evicted because of these node conditions.

4.6.1.5. Tolerating all taints

You can configure a pod to tolerate all taints by adding an operator: "Exists" toleration with no key and
values parameters. Pods with this toleration are not removed from a node that has taints.

Pod spec for tolerating all taints

4.6.2. Adding taints and tolerations

You add tolerations to pods and taints to nodes to allow the node to control which pods should or
should not be scheduled on them. For existing pods and nodes, you should add the toleration to the pod
first, then add the taint to the node to avoid pods being removed from the node before you can add the
toleration.

Procedure

1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

Sample pod configuration file with an Equal operator

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - operator: "Exists"
#...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1" 1
 value: "value1"
 operator: "Equal"

OpenShift Container Platform 4.15 Nodes

212

1

2

1

The toleration parameters, as described in the Taint and toleration components table.

The tolerationSeconds parameter specifies how long a pod can remain bound to a node
before being evicted.

For example:

Sample pod configuration file with an Exists operator

The Exists operator does not take a value.

This example places a taint on node1 that has key key1, value value1, and taint effect
NoExecute.

2. Add a taint to a node by using the following command with the parameters described in the
Taint and toleration components table:

For example:

This command places a taint on node1 that has key key1, value value1, and effect NoExecute.

NOTE

 effect: "NoExecute"
 tolerationSeconds: 3600 2
#...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1"
 operator: "Exists" 1
 effect: "NoExecute"
 tolerationSeconds: 3600
#...

$ oc adm taint nodes <node_name> <key>=<value>:<effect>

$ oc adm taint nodes node1 key1=value1:NoExecute

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

213

1

NOTE

If you add a NoSchedule taint to a control plane node, the node must have the
node-role.kubernetes.io/master=:NoSchedule taint, which is added by default.

For example:

The tolerations on the pod match the taint on the node. A pod with either toleration can be
scheduled onto node1.

4.6.2.1. Adding taints and tolerations using a compute machine set

You can add taints to nodes using a compute machine set. All nodes associated with the MachineSet
object are updated with the taint. Tolerations respond to taints added by a compute machine set in the
same manner as taints added directly to the nodes.

Procedure

1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

Sample pod configuration file with Equal operator

The toleration parameters, as described in the Taint and toleration components table.

The tolerationSeconds parameter specifies how long a pod is bound to a node before

apiVersion: v1
kind: Node
metadata:
 annotations:
 machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-
v8jxv-master-0
 machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
 name: my-node
#...
spec:
 taints:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
#...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1" 1
 value: "value1"
 operator: "Equal"
 effect: "NoExecute"
 tolerationSeconds: 3600 2
#...

OpenShift Container Platform 4.15 Nodes

214

2 The tolerationSeconds parameter specifies how long a pod is bound to a node before
being evicted.

For example:

Sample pod configuration file with Exists operator

2. Add the taint to the MachineSet object:

a. Edit the MachineSet YAML for the nodes you want to taint or you can create a new
MachineSet object:

b. Add the taint to the spec.template.spec section:

Example taint in a compute machine set specification

This example places a taint that has the key key1, value value1, and taint effect NoExecute
on the nodes.

c. Scale down the compute machine set to 0:

TIP

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3600
#...

$ oc edit machineset <machineset>

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: my-machineset
#...
spec:
#...
 template:
#...
 spec:
 taints:
 - effect: NoExecute
 key: key1
 value: value1
#...

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

215

TIP

You can alternatively apply the following YAML to scale the compute machine set:

Wait for the machines to be removed.

d. Scale up the compute machine set as needed:

Or:

Wait for the machines to start. The taint is added to the nodes associated with the
MachineSet object.

4.6.2.2. Binding a user to a node using taints and tolerations

If you want to dedicate a set of nodes for exclusive use by a particular set of users, add a toleration to
their pods. Then, add a corresponding taint to those nodes. The pods with the tolerations are allowed to
use the tainted nodes or any other nodes in the cluster.

If you want ensure the pods are scheduled to only those tainted nodes, also add a label to the same set
of nodes and add a node affinity to the pods so that the pods can only be scheduled onto nodes with
that label.

Procedure

To configure a node so that users can use only that node:

1. Add a corresponding taint to those nodes:
For example:

TIP

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 0

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc adm taint nodes node1 dedicated=groupName:NoSchedule

OpenShift Container Platform 4.15 Nodes

216

1

2

TIP

You can alternatively apply the following YAML to add the taint:

2. Add a toleration to the pods by writing a custom admission controller.

4.6.2.3. Creating a project with a node selector and toleration

You can create a project that uses a node selector and toleration, which are set as annotations, to
control the placement of pods onto specific nodes. Any subsequent resources created in the project are
then scheduled on nodes that have a taint matching the toleration.

Prerequisites

A label for node selection has been added to one or more nodes by using a compute machine
set or editing the node directly.

A taint has been added to one or more nodes by using a compute machine set or editing the
node directly.

Procedure

1. Create a Project resource definition, specifying a node selector and toleration in the
metadata.annotations section:

Example project.yaml file

The project name.

The default node selector label.

kind: Node
apiVersion: v1
metadata:
 name: my-node
#...
spec:
 taints:
 - key: dedicated
 value: groupName
 effect: NoSchedule
#...

kind: Project
apiVersion: project.openshift.io/v1
metadata:
 name: <project_name> 1
 annotations:
 openshift.io/node-selector: '<label>' 2
 scheduler.alpha.kubernetes.io/defaultTolerations: >-
 [{"operator": "Exists", "effect": "NoSchedule", "key":
 "<key_name>"} 3
]

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

217

3 The toleration parameters, as described in the Taint and toleration components table.
This example uses the NoSchedule effect, which allows existing pods on the node to

2. Use the oc apply command to create the project:

Any subsequent resources created in the <project_name> namespace should now be scheduled on the
specified nodes.

Additional resources

Adding taints and tolerations manually to nodes or with compute machine sets

Creating project-wide node selectors

Pod placement of Operator workloads

4.6.2.4. Controlling nodes with special hardware using taints and tolerations

In a cluster where a small subset of nodes have specialized hardware, you can use taints and tolerations
to keep pods that do not need the specialized hardware off of those nodes, leaving the nodes for pods
that do need the specialized hardware. You can also require pods that need specialized hardware to use
specific nodes.

You can achieve this by adding a toleration to pods that need the special hardware and tainting the
nodes that have the specialized hardware.

Procedure

To ensure nodes with specialized hardware are reserved for specific pods:

1. Add a toleration to pods that need the special hardware.
For example:

2. Taint the nodes that have the specialized hardware using one of the following commands:

Or:

$ oc apply -f project.yaml

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "disktype"
 value: "ssd"
 operator: "Equal"
 effect: "NoSchedule"
 tolerationSeconds: 3600
#...

$ oc adm taint nodes <node-name> disktype=ssd:NoSchedule

OpenShift Container Platform 4.15 Nodes

218

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#olm-pod-placement_olm-adding-operators-to-a-cluster

TIP

You can alternatively apply the following YAML to add the taint:

4.6.3. Removing taints and tolerations

You can remove taints from nodes and tolerations from pods as needed. You should add the toleration
to the pod first, then add the taint to the node to avoid pods being removed from the node before you
can add the toleration.

Procedure

To remove taints and tolerations:

1. To remove a taint from a node:

For example:

Example output

2. To remove a toleration from a pod, edit the Pod spec to remove the toleration:

$ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule

kind: Node
apiVersion: v1
metadata:
 name: my_node
#...
spec:
 taints:
 - key: disktype
 value: ssd
 effect: PreferNoSchedule
#...

$ oc adm taint nodes <node-name> <key>-

$ oc adm taint nodes ip-10-0-132-248.ec2.internal key1-

node/ip-10-0-132-248.ec2.internal untainted

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key2"
 operator: "Exists"

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

219

4.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

A node selector specifies a map of key/value pairs that are defined using custom labels on nodes and
selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the
label on the node.

4.7.1. About node selectors

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching
labels.

You can use a node selector to place specific pods on specific nodes, cluster-wide node selectors to
place new pods on specific nodes anywhere in the cluster, and project node selectors to place new pods
in a project on specific nodes.

For example, as a cluster administrator, you can create an infrastructure where application developers
can deploy pods only onto the nodes closest to their geographical location by including a node selector
in every pod they create. In this example, the cluster consists of five data centers spread across two
regions. In the U.S., label the nodes as us-east, us-central, or us-west. In the Asia-Pacific region
(APAC), label the nodes as apac-east or apac-west. The developers can add a node selector to the
pods they create to ensure the pods get scheduled on those nodes.

A pod is not scheduled if the Pod object contains a node selector, but no node has a matching label.

IMPORTANT

If you are using node selectors and node affinity in the same pod configuration, the
following rules control pod placement onto nodes:

If you configure both nodeSelector and nodeAffinity, both conditions must be
satisfied for the pod to be scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types,
then the pod can be scheduled onto a node if one of the nodeSelectorTerms is
satisfied.

If you specify multiple matchExpressions associated with nodeSelectorTerms,
then the pod can be scheduled onto a node only if all matchExpressions are
satisfied.

Node selectors on specific pods and nodes

You can control which node a specific pod is scheduled on by using node selectors and labels.
To use node selectors and labels, first label the node to avoid pods being descheduled, then add the
node selector to the pod.

NOTE

 effect: "NoExecute"
 tolerationSeconds: 3600
#...

OpenShift Container Platform 4.15 Nodes

220

1

1

NOTE

You cannot add a node selector directly to an existing scheduled pod. You must label
the object that controls the pod, such as deployment config.

For example, the following Node object has the region: east label:

Sample Node object with a label

Labels to match the pod node selector.

A pod has the type: user-node,region: east node selector:

Sample Pod object with node selectors

Node selectors to match the node label. The node must have a label for each node selector.

When you create the pod using the example pod spec, it can be scheduled on the example node.

Default cluster-wide node selectors

kind: Node
apiVersion: v1
metadata:
 name: ip-10-0-131-14.ec2.internal
 selfLink: /api/v1/nodes/ip-10-0-131-14.ec2.internal
 uid: 7bc2580a-8b8e-11e9-8e01-021ab4174c74
 resourceVersion: '478704'
 creationTimestamp: '2019-06-10T14:46:08Z'
 labels:
 kubernetes.io/os: linux
 topology.kubernetes.io/zone: us-east-1a
 node.openshift.io/os_version: '4.5'
 node-role.kubernetes.io/worker: ''
 topology.kubernetes.io/region: us-east-1
 node.openshift.io/os_id: rhcos
 node.kubernetes.io/instance-type: m4.large
 kubernetes.io/hostname: ip-10-0-131-14
 kubernetes.io/arch: amd64
 region: east 1
 type: user-node
#...

apiVersion: v1
kind: Pod
metadata:
 name: s1
#...
spec:
 nodeSelector: 1
 region: east
 type: user-node
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

221

With default cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container
Platform adds the default node selectors to the pod and schedules the pod on nodes with matching
labels.
For example, the following Scheduler object has the default cluster-wide region=east and
type=user-node node selectors:

Example Scheduler Operator Custom Resource

A node in that cluster has the type=user-node,region=east labels:

Example Node object

Example Pod object with a node selector

When you create the pod using the example pod spec in the example cluster, the pod is created with
the cluster-wide node selector and is scheduled on the labeled node:

Example pod list with the pod on the labeled node

NOTE

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
#...
spec:
 defaultNodeSelector: type=user-node,region=east
#...

apiVersion: v1
kind: Node
metadata:
 name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
#...
 labels:
 region: east
 type: user-node
#...

apiVersion: v1
kind: Pod
metadata:
 name: s1
#...
spec:
 nodeSelector:
 region: east
#...

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
<none> <none>

OpenShift Container Platform 4.15 Nodes

222

NOTE

If the project where you create the pod has a project node selector, that selector
takes preference over a cluster-wide node selector. Your pod is not created or
scheduled if the pod does not have the project node selector.

Project node selectors

With project node selectors, when you create a pod in this project, OpenShift Container Platform
adds the node selectors to the pod and schedules the pods on a node with matching labels. If there is
a cluster-wide default node selector, a project node selector takes preference.
For example, the following project has the region=east node selector:

Example Namespace object

The following node has the type=user-node,region=east labels:

Example Node object

When you create the pod using the example pod spec in this example project, the pod is created with
the project node selectors and is scheduled on the labeled node:

Example Pod object

apiVersion: v1
kind: Namespace
metadata:
 name: east-region
 annotations:
 openshift.io/node-selector: "region=east"
#...

apiVersion: v1
kind: Node
metadata:
 name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
#...
 labels:
 region: east
 type: user-node
#...

apiVersion: v1
kind: Pod
metadata:
 namespace: east-region
#...
spec:
 nodeSelector:
 region: east
 type: user-node
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

223

Example pod list with the pod on the labeled node

A pod in the project is not created or scheduled if the pod contains different node selectors. For
example, if you deploy the following pod into the example project, it is not be created:

Example Pod object with an invalid node selector

4.7.2. Using node selectors to control pod placement

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching
labels.

You add labels to a node, a compute machine set, or a machine config. Adding the label to the compute
machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to
a node or machine config do not persist if the node or machine goes down.

To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such
as a ReplicaSet object, DaemonSet object, StatefulSet object, Deployment object, or
DeploymentConfig object. Any existing pods under that controlling object are recreated on a node with
a matching label. If you are creating a new pod, you can add the node selector directly to the pod spec. If
the pod does not have a controlling object, you must delete the pod, edit the pod spec, and recreate the
pod.

NOTE

You cannot add a node selector directly to an existing scheduled pod.

Prerequisites

To add a node selector to existing pods, determine the controlling object for that pod. For example, the
router-default-66d5cf9464-m2g75 pod is controlled by the router-default-66d5cf9464 replica set:

Example output

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
<none> <none>

apiVersion: v1
kind: Pod
metadata:
 name: west-region
#...
spec:
 nodeSelector:
 region: west
#...

$ oc describe pod router-default-66d5cf9464-7pwkc

OpenShift Container Platform 4.15 Nodes

224

The web console lists the controlling object under ownerReferences in the pod YAML:

Procedure

1. Add labels to a node by using a compute machine set or editing the node directly:

Use a MachineSet object to add labels to nodes managed by the compute machine set
when a node is created:

a. Run the following command to add labels to a MachineSet object:

For example:

TIP

kind: Pod
apiVersion: v1
metadata:
...
Name: router-default-66d5cf9464-7pwkc
Namespace: openshift-ingress
...
Controlled By: ReplicaSet/router-default-66d5cf9464
...

apiVersion: v1
kind: Pod
metadata:
 name: router-default-66d5cf9464-7pwkc
...
 ownerReferences:
 - apiVersion: apps/v1
 kind: ReplicaSet
 name: router-default-66d5cf9464
 uid: d81dd094-da26-11e9-a48a-128e7edf0312
 controller: true
 blockOwnerDeletion: true
...

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

225

TIP

You can alternatively apply the following YAML to add labels to a compute machine set:

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

Example MachineSet object

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

TIP

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: xf2bd-infra-us-east-2a
 namespace: openshift-machine-api
spec:
 template:
 spec:
 metadata:
 labels:
 region: "east"
 type: "user-node"
...

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet

...

spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:
 region: east
 type: user-node
...

$ oc label nodes <name> <key>=<value>

$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east

OpenShift Container Platform 4.15 Nodes

226

1

TIP

You can alternatively apply the following YAML to add labels to a node:

b. Verify that the labels are added to the node:

Example output

2. Add the matching node selector to a pod:

To add a node selector to existing and future pods, add a node selector to the controlling
object for the pods:

Example ReplicaSet object with labels

Add the node selector.

To add a node selector to a specific, new pod, add the selector to the Pod object directly:

Example Pod object with a node selector

kind: Node
apiVersion: v1
metadata:
 name: hello-node-6fbccf8d9
 labels:
 type: "user-node"
 region: "east"
...

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ip-10-0-142-25.ec2.internal Ready worker 17m v1.28.5

kind: ReplicaSet
apiVersion: apps/v1
metadata:
 name: hello-node-6fbccf8d9
...
spec:
...
 template:
 metadata:
 creationTimestamp: null
 labels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 pod-template-hash: 66d5cf9464
 spec:
 nodeSelector:
 kubernetes.io/os: linux
 node-role.kubernetes.io/worker: ''
 type: user-node 1
...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

227

Example Pod object with a node selector

NOTE

You cannot add a node selector directly to an existing scheduled pod.

4.7.3. Creating default cluster-wide node selectors

You can use default cluster-wide node selectors on pods together with labels on nodes to constrain all
pods created in a cluster to specific nodes.

With cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform
adds the default node selectors to the pod and schedules the pod on nodes with matching labels.

You configure cluster-wide node selectors by editing the Scheduler Operator custom resource (CR).
You add labels to a node, a compute machine set, or a machine config. Adding the label to the compute
machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to
a node or machine config do not persist if the node or machine goes down.

NOTE

You can add additional key/value pairs to a pod. But you cannot add a different value for
a default key.

Procedure

To add a default cluster-wide node selector:

1. Edit the Scheduler Operator CR to add the default cluster-wide node selectors:

Example Scheduler Operator CR with a node selector

apiVersion: v1
kind: Pod
metadata:
 name: hello-node-6fbccf8d9
...
spec:
 nodeSelector:
 region: east
 type: user-node
...

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
...
spec:
 defaultNodeSelector: type=user-node,region=east 1
 mastersSchedulable: false

OpenShift Container Platform 4.15 Nodes

228

1

1

Add a node selector with the appropriate <key>:<value> pairs.

After making this change, wait for the pods in the openshift-kube-apiserver project to
redeploy. This can take several minutes. The default cluster-wide node selector does not take
effect until the pods redeploy.

2. Add labels to a node by using a compute machine set or editing the node directly:

Use a compute machine set to add labels to nodes managed by the compute machine set
when a node is created:

a. Run the following command to add labels to a MachineSet object:

Add a <key>/<value> pair for each label.

For example:

TIP

You can alternatively apply the following YAML to add labels to a compute machine set:

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

Example MachineSet object

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api 1

$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 template:
 spec:
 metadata:
 labels:
 region: "east"
 type: "user-node"

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

229

c. Redeploy the nodes associated with that compute machine set by scaling down to 0
and scaling up the nodes:
For example:

d. When the nodes are ready and available, verify that the label is added to the nodes by
using the oc get command:

For example:

Example output

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

TIP

 ...
spec:
 ...
 template:
 metadata:
 ...
 spec:
 metadata:
 labels:
 region: east
 type: user-node
 ...

$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc get nodes -l <key>=<value>

$ oc get nodes -l type=user-node

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.28.5

$ oc label nodes <name> <key>=<value>

$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 type=user-node
region=east

OpenShift Container Platform 4.15 Nodes

230

TIP

You can alternatively apply the following YAML to add labels to a node:

b. Verify that the labels are added to the node using the oc get command:

For example:

Example output

4.7.4. Creating project-wide node selectors

You can use node selectors in a project together with labels on nodes to constrain all pods created in
that project to the labeled nodes.

When you create a pod in this project, OpenShift Container Platform adds the node selectors to the
pods in the project and schedules the pods on a node with matching labels in the project. If there is a
cluster-wide default node selector, a project node selector takes preference.

You add node selectors to a project by editing the Namespace object to add the openshift.io/node-
selector parameter. You add labels to a node, a compute machine set, or a machine config. Adding the
label to the compute machine set ensures that if the node or machine goes down, new nodes have the
label. Labels added to a node or machine config do not persist if the node or machine goes down.

A pod is not scheduled if the Pod object contains a node selector, but no project has a matching node
selector. When you create a pod from that spec, you receive an error similar to the following message:

Example error message

NOTE

You can add additional key/value pairs to a pod. But you cannot add a different value for
a project key.

kind: Node
apiVersion: v1
metadata:
 name: <node_name>
 labels:
 type: "user-node"
 region: "east"

$ oc get nodes -l <key>=<value>,<key>=<value>

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.28.5

Error from server (Forbidden): error when creating "pod.yaml": pods "pod-4" is forbidden: pod node
label selector conflicts with its project node label selector

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

231

1

Procedure

To add a default project node selector:

1. Create a namespace or edit an existing namespace to add the openshift.io/node-selector
parameter:

Example output

Add the openshift.io/node-selector with the appropriate <key>:<value> pairs.

2. Add labels to a node by using a compute machine set or editing the node directly:

Use a MachineSet object to add labels to nodes managed by the compute machine set
when a node is created:

a. Run the following command to add labels to a MachineSet object:

For example:

TIP

$ oc edit namespace <name>

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 openshift.io/node-selector: "type=user-node,region=east" 1
 openshift.io/description: ""
 openshift.io/display-name: ""
 openshift.io/requester: kube:admin
 openshift.io/sa.scc.mcs: s0:c30,c5
 openshift.io/sa.scc.supplemental-groups: 1000880000/10000
 openshift.io/sa.scc.uid-range: 1000880000/10000
 creationTimestamp: "2021-05-10T12:35:04Z"
 labels:
 kubernetes.io/metadata.name: demo
 name: demo
 resourceVersion: "145537"
 uid: 3f8786e3-1fcb-42e3-a0e3-e2ac54d15001
spec:
 finalizers:
 - kubernetes

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

OpenShift Container Platform 4.15 Nodes

232

TIP

You can alternatively apply the following YAML to add labels to a compute machine set:

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

Example output

c. Redeploy the nodes associated with that compute machine set:
For example:

d. When the nodes are ready and available, verify that the label is added to the nodes by
using the oc get command:

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 template:
 spec:
 metadata:
 labels:
 region: "east"
 type: "user-node"

$ oc edit MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
...
spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:
 region: east
 type: user-node

$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc get nodes -l <key>=<value>

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

233

For example:

Example output

Add labels directly to a node:

a. Edit the Node object to add labels:

For example, to label a node:

TIP

You can alternatively apply the following YAML to add labels to a node:

b. Verify that the labels are added to the Node object using the oc get command:

For example:

Example output

Additional resources

Creating a project with a node selector and toleration

4.8. CONTROLLING POD PLACEMENT BY USING POD TOPOLOGY

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.28.5

$ oc label <resource> <name> <key>=<value>

$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-c-tgq49 type=user-node
region=east

kind: Node
apiVersion: v1
metadata:
 name: <node_name>
 labels:
 type: "user-node"
 region: "east"

$ oc get nodes -l <key>=<value>

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.28.5

OpenShift Container Platform 4.15 Nodes

234

4.8. CONTROLLING POD PLACEMENT BY USING POD TOPOLOGY
SPREAD CONSTRAINTS

You can use pod topology spread constraints to control the placement of your pods across nodes,
zones, regions, or other user-defined topology domains.

4.8.1. About pod topology spread constraints

By using a pod topology spread constraint , you provide fine-grained control over the distribution of pods
across failure domains to help achieve high availability and more efficient resource utilization.

OpenShift Container Platform administrators can label nodes to provide topology information, such as
regions, zones, nodes, or other user-defined domains. After these labels are set on nodes, users can
then define pod topology spread constraints to control the placement of pods across these topology
domains.

You specify which pods to group together, which topology domains they are spread among, and the
acceptable skew. Only pods within the same namespace are matched and grouped together when
spreading due to a constraint.

4.8.2. Configuring pod topology spread constraints

The following steps demonstrate how to configure pod topology spread constraints to distribute pods
that match the specified labels based on their zone.

You can specify multiple pod topology spread constraints, but you must ensure that they do not conflict
with each other. All pod topology spread constraints must be satisfied for a pod to be placed.

Prerequisites

A user with the cluster-admin role has added the required labels to nodes.

Procedure

1. Create a Pod spec and specify a pod topology spread constraint:

Example pod-spec.yaml file

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 labels:
 region: us-east
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 topologySpreadConstraints:
 - maxSkew: 1 1
 topologyKey: topology.kubernetes.io/zone 2
 whenUnsatisfiable: DoNotSchedule 3
 labelSelector: 4

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

235

1

2

3

4

5

6

The maximum difference in number of pods between any two topology domains. The
default is 1, and you cannot specify a value of 0.

The key of a node label. Nodes with this key and identical value are considered to be in the
same topology.

How to handle a pod if it does not satisfy the spread constraint. The default is
DoNotSchedule, which tells the scheduler not to schedule the pod. Set to
ScheduleAnyway to still schedule the pod, but the scheduler prioritizes honoring the skew
to not make the cluster more imbalanced.

Pods that match this label selector are counted and recognized as a group when spreading
to satisfy the constraint. Be sure to specify a label selector, otherwise no pods can be
matched.

Be sure that this Pod spec also sets its labels to match this label selector if you want it to
be counted properly in the future.

A list of pod label keys to select which pods to calculate spreading over.

2. Create the pod:

4.8.3. Example pod topology spread constraints

The following examples demonstrate pod topology spread constraint configurations.

4.8.3.1. Single pod topology spread constraint example

This example Pod spec defines one pod topology spread constraint. It matches on pods labeled region:
us-east, distributes among zones, specifies a skew of 1, and does not schedule the pod if it does not
meet these requirements.

 matchLabels:
 region: us-east 5
 matchLabelKeys:
 - my-pod-label 6
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f pod-spec.yaml

kind: Pod
apiVersion: v1
metadata:
 name: my-pod
 labels:
 region: us-east
spec:
 securityContext:

OpenShift Container Platform 4.15 Nodes

236

4.8.3.2. Multiple pod topology spread constraints example

This example Pod spec defines two pod topology spread constraints. Both match on pods labeled
region: us-east, specify a skew of 1, and do not schedule the pod if it does not meet these
requirements.

The first constraint distributes pods based on a user-defined label node, and the second constraint
distributes pods based on a user-defined label rack. Both constraints must be met for the pod to be
scheduled.

 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: topology.kubernetes.io/zone
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 region: us-east
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

kind: Pod
apiVersion: v1
metadata:
 name: my-pod-2
 labels:
 region: us-east
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: node
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 region: us-east
 - maxSkew: 1
 topologyKey: rack
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 region: us-east
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

237

4.8.4. Additional resources

Understanding how to update labels on nodes

4.9. DESCHEDULER

4.9.1. Descheduler overview

While the scheduler is used to determine the most suitable node to host a new pod, the descheduler can
be used to evict a running pod so that the pod can be rescheduled onto a more suitable node.

4.9.1.1. About the descheduler

You can use the descheduler to evict pods based on specific strategies so that the pods can be
rescheduled onto more appropriate nodes.

You can benefit from descheduling running pods in situations such as the following:

Nodes are underutilized or overutilized.

Pod and node affinity requirements, such as taints or labels, have changed and the original
scheduling decisions are no longer appropriate for certain nodes.

Node failure requires pods to be moved.

New nodes are added to clusters.

Pods have been restarted too many times.

IMPORTANT

The descheduler does not schedule replacement of evicted pods. The scheduler
automatically performs this task for the evicted pods.

When the descheduler decides to evict pods from a node, it employs the following general mechanism:

Pods in the openshift-* and kube-system namespaces are never evicted.

Critical pods with priorityClassName set to system-cluster-critical or system-node-critical
are never evicted.

Static, mirrored, or stand-alone pods that are not part of a replication controller, replica set,
deployment, or job are never evicted because these pods will not be recreated.

Pods associated with daemon sets are never evicted.

Pods with local storage are never evicted.

Best effort pods are evicted before burstable and guaranteed pods.

All types of pods with the descheduler.alpha.kubernetes.io/evict annotation are eligible for

 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

OpenShift Container Platform 4.15 Nodes

238

All types of pods with the descheduler.alpha.kubernetes.io/evict annotation are eligible for
eviction. This annotation is used to override checks that prevent eviction, and the user can
select which pod is evicted. Users should know how and if the pod will be recreated.

Pods subject to pod disruption budget (PDB) are not evicted if descheduling violates its pod
disruption budget (PDB). The pods are evicted by using eviction subresource to handle PDB.

4.9.1.2. Descheduler profiles

The following descheduler profiles are available:

AffinityAndTaints

This profile evicts pods that violate inter-pod anti-affinity, node affinity, and node taints.
It enables the following strategies:

RemovePodsViolatingInterPodAntiAffinity: removes pods that are violating inter-pod
anti-affinity.

RemovePodsViolatingNodeAffinity: removes pods that are violating node affinity.

RemovePodsViolatingNodeTaints: removes pods that are violating NoSchedule taints on
nodes.
Pods with a node affinity type of requiredDuringSchedulingIgnoredDuringExecution are
removed.

TopologyAndDuplicates

This profile evicts pods in an effort to evenly spread similar pods, or pods of the same topology
domain, among nodes.
It enables the following strategies:

RemovePodsViolatingTopologySpreadConstraint: finds unbalanced topology domains
and tries to evict pods from larger ones when DoNotSchedule constraints are violated.

RemoveDuplicates: ensures that there is only one pod associated with a replica set,
replication controller, deployment, or job running on same node. If there are more, those
duplicate pods are evicted for better pod distribution in a cluster.

LifecycleAndUtilization

This profile evicts long-running pods and balances resource usage between nodes.
It enables the following strategies:

RemovePodsHavingTooManyRestarts: removes pods whose containers have been
restarted too many times.
Pods where the sum of restarts over all containers (including Init Containers) is more than
100.

LowNodeUtilization: finds nodes that are underutilized and evicts pods, if possible, from
overutilized nodes in the hope that recreation of evicted pods will be scheduled on these
underutilized nodes.
A node is considered underutilized if its usage is below 20% for all thresholds (CPU, memory,
and number of pods).

A node is considered overutilized if its usage is above 50% for any of the thresholds (CPU,
memory, and number of pods).

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

239

PodLifeTime: evicts pods that are too old.
By default, pods that are older than 24 hours are removed. You can customize the pod
lifetime value.

SoftTopologyAndDuplicates

This profile is the same as TopologyAndDuplicates, except that pods with soft topology constraints,
such as whenUnsatisfiable: ScheduleAnyway, are also considered for eviction.

NOTE

Do not enable both SoftTopologyAndDuplicates and TopologyAndDuplicates.
Enabling both results in a conflict.

EvictPodsWithLocalStorage

This profile allows pods with local storage to be eligible for eviction.

EvictPodsWithPVC

This profile allows pods with persistent volume claims to be eligible for eviction. If you are using
Kubernetes NFS Subdir External Provisioner, you must add an excluded namespace for the
namespace where the provisioner is installed.

4.9.2. Kube Descheduler Operator release notes

The Kube Descheduler Operator allows you to evict pods so that they can be rescheduled on more
appropriate nodes.

These release notes track the development of the Kube Descheduler Operator.

For more information, see About the descheduler.

4.9.2.1. Release notes for Kube Descheduler Operator 5.0.0

Issued: 2024-03-06

The following advisory is available for the Kube Descheduler Operator 5.0.0:

RHSA-2024:0302

4.9.2.1.1. Notable changes

With this release, the Kube Descheduler Operator delivers updates independent of the
OpenShift Container Platform minor version release stream.

With this release, the Kube Descheduler Operator is no longer supported on OpenShift
Kubernetes Engine.

4.9.2.1.2. Bug fixes

Previously, the descheduler pod logs showed the following warning about the Operator’s
version: failed to convert Descheduler minor version to float. With this update, the warning is
no longer shown. (OCPBUGS-14042)

4.9.3. Evicting pods using the descheduler

OpenShift Container Platform 4.15 Nodes

240

https://access.redhat.com/errata/RHSA-2024:0302
https://issues.redhat.com/browse/OCPBUGS-14042

You can run the descheduler in OpenShift Container Platform by installing the Kube Descheduler
Operator and setting the desired profiles and other customizations.

4.9.3.1. Installing the descheduler

The descheduler is not available by default. To enable the descheduler, you must install the Kube
Descheduler Operator from OperatorHub and enable one or more descheduler profiles.

By default, the descheduler runs in predictive mode, which means that it only simulates pod evictions.
You must change the mode to automatic for the descheduler to perform the pod evictions.

IMPORTANT

If you have enabled hosted control planes in your cluster, set a custom priority threshold
to lower the chance that pods in the hosted control plane namespaces are evicted. Set
the priority threshold class name to hypershift-control-plane, because it has the lowest
priority value (100000000) of the hosted control plane priority classes.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create the required namespace for the Kube Descheduler Operator.

a. Navigate to Administration → Namespaces and click Create Namespace.

b. Enter openshift-kube-descheduler-operator in the Name field, enter
openshift.io/cluster-monitoring=true in the Labels field to enable descheduler metrics,
and click Create.

3. Install the Kube Descheduler Operator.

a. Navigate to Operators → OperatorHub.

b. Type Kube Descheduler Operator into the filter box.

c. Select the Kube Descheduler Operator and click Install.

d. On the Install Operator page, select A specific namespace on the cluster. Select
openshift-kube-descheduler-operator from the drop-down menu.

e. Adjust the values for the Update Channel and Approval Strategy to the desired values.

f. Click Install.

4. Create a descheduler instance.

a. From the Operators → Installed Operators page, click the Kube Descheduler Operator.

b. Select the Kube Descheduler tab and click Create KubeDescheduler.

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

241

1

2

3

c. Edit the settings as necessary.

i. To evict pods instead of simulating the evictions, change the Mode field to Automatic.

4.9.3.2. Configuring descheduler profiles

You can configure which profiles the descheduler uses to evict pods.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

Procedure

1. Edit the KubeDescheduler object:

2. Specify one or more profiles in the spec.profiles section.

Optional: By default, the descheduler does not evict pods. To evict pods, set mode to
Automatic.

Optional: Set a list of user-created namespaces to include or exclude from descheduler
operations. Use excluded to set a list of namespaces to exclude or use included to set a
list of namespaces to include. Note that protected namespaces (openshift-*, kube-
system, hypershift) are excluded by default.

Optional: Enable a custom pod lifetime value for the LifecycleAndUtilization profile. Valid
units are s, m, or h. The default pod lifetime is 24 hours.

$ oc edit kubedeschedulers.operator.openshift.io cluster -n openshift-kube-descheduler-
operator

apiVersion: operator.openshift.io/v1
kind: KubeDescheduler
metadata:
 name: cluster
 namespace: openshift-kube-descheduler-operator
spec:
 deschedulingIntervalSeconds: 3600
 logLevel: Normal
 managementState: Managed
 operatorLogLevel: Normal
 mode: Predictive 1
 profileCustomizations:
 namespaces: 2
 excluded:
 - my-namespace
 podLifetime: 48h 3
 thresholdPriorityClassName: my-priority-class-name 4
 profiles: 5
 - AffinityAndTaints
 - TopologyAndDuplicates 6
 - LifecycleAndUtilization
 - EvictPodsWithLocalStorage
 - EvictPodsWithPVC

OpenShift Container Platform 4.15 Nodes

242

4

5

6

1

units are s, m, or h. The default pod lifetime is 24 hours.

Optional: Specify a priority threshold to consider pods for eviction only if their priority is
lower than the specified level. Use the thresholdPriority field to set a numerical priority
threshold (for example, 10000) or use the thresholdPriorityClassName field to specify a
certain priority class name (for example, my-priority-class-name). If you specify a priority
class name, it must already exist or the descheduler will throw an error. Do not set both
thresholdPriority and thresholdPriorityClassName.

Add one or more profiles to enable. Available profiles: AffinityAndTaints,
TopologyAndDuplicates, LifecycleAndUtilization, SoftTopologyAndDuplicates,
EvictPodsWithLocalStorage, and EvictPodsWithPVC.

Do not enable both TopologyAndDuplicates and SoftTopologyAndDuplicates. Enabling
both results in a conflict.

You can enable multiple profiles; the order that the profiles are specified in is not important.

3. Save the file to apply the changes.

4.9.3.3. Configuring the descheduler interval

You can configure the amount of time between descheduler runs. The default is 3600 seconds (one
hour).

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

Procedure

1. Edit the KubeDescheduler object:

2. Update the deschedulingIntervalSeconds field to the desired value:

Set the number of seconds between descheduler runs. A value of 0 in this field runs the
descheduler once and exits.

3. Save the file to apply the changes.

4.9.4. Uninstalling the Kube Descheduler Operator

$ oc edit kubedeschedulers.operator.openshift.io cluster -n openshift-kube-descheduler-
operator

apiVersion: operator.openshift.io/v1
kind: KubeDescheduler
metadata:
 name: cluster
 namespace: openshift-kube-descheduler-operator
spec:
 deschedulingIntervalSeconds: 3600 1
...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

243

You can remove the Kube Descheduler Operator from OpenShift Container Platform by uninstalling the
Operator and removing its related resources.

4.9.4.1. Uninstalling the descheduler

You can remove the descheduler from your cluster by removing the descheduler instance and
uninstalling the Kube Descheduler Operator. This procedure also cleans up the KubeDescheduler CRD
and openshift-kube-descheduler-operator namespace.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Delete the descheduler instance.

a. From the Operators → Installed Operators page, click Kube Descheduler Operator.

b. Select the Kube Descheduler tab.

c. Click the Options menu next to the cluster entry and select Delete
KubeDescheduler.

d. In the confirmation dialog, click Delete.

3. Uninstall the Kube Descheduler Operator.

a. Navigate to Operators → Installed Operators.

b. Click the Options menu next to the Kube Descheduler Operator entry and select
Uninstall Operator.

c. In the confirmation dialog, click Uninstall.

4. Delete the openshift-kube-descheduler-operator namespace.

a. Navigate to Administration → Namespaces.

b. Enter openshift-kube-descheduler-operator into the filter box.

c. Click the Options menu next to the openshift-kube-descheduler-operator entry
and select Delete Namespace.

d. In the confirmation dialog, enter openshift-kube-descheduler-operator and click Delete.

5. Delete the KubeDescheduler CRD.

OpenShift Container Platform 4.15 Nodes

244

a. Navigate to Administration → Custom Resource Definitions.

b. Enter KubeDescheduler into the filter box.

c. Click the Options menu next to the KubeDescheduler entry and select Delete
CustomResourceDefinition.

d. In the confirmation dialog, click Delete.

4.10. SECONDARY SCHEDULER

4.10.1. Secondary scheduler overview

You can install the Secondary Scheduler Operator to run a custom secondary scheduler alongside the
default scheduler to schedule pods.

4.10.1.1. About the Secondary Scheduler Operator

The Secondary Scheduler Operator for Red Hat OpenShift provides a way to deploy a custom
secondary scheduler in OpenShift Container Platform. The secondary scheduler runs alongside the
default scheduler to schedule pods. Pod configurations can specify which scheduler to use.

The custom scheduler must have the /bin/kube-scheduler binary and be based on the Kubernetes
scheduling framework.

IMPORTANT

You can use the Secondary Scheduler Operator to deploy a custom secondary scheduler
in OpenShift Container Platform, but Red Hat does not directly support the functionality
of the custom secondary scheduler.

The Secondary Scheduler Operator creates the default roles and role bindings required by the
secondary scheduler. You can specify which scheduling plugins to enable or disable by configuring the
KubeSchedulerConfiguration resource for the secondary scheduler.

4.10.2. Secondary Scheduler Operator for Red Hat OpenShift release notes

The Secondary Scheduler Operator for Red Hat OpenShift allows you to deploy a custom secondary
scheduler in your OpenShift Container Platform cluster.

These release notes track the development of the Secondary Scheduler Operator for Red Hat
OpenShift.

For more information, see About the Secondary Scheduler Operator .

4.10.2.1. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.2.1

Issued: 2024-03-06

The following advisory is available for the Secondary Scheduler Operator for Red Hat OpenShift 1.2.1:

RHSA-2024:0281

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

245

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://access.redhat.com/errata/RHSA-2024:0281

4.10.2.1.1. New features and enhancements

Resource limits removed to support large clusters
With this release, resource limits were removed to allow you to use the Secondary Scheduler Operator
for large clusters with many nodes and pods without failing due to out-of-memory errors.

4.10.2.1.2. Bug fixes

This release of the Secondary Scheduler Operator addresses several Common Vulnerabilities
and Exposures (CVEs).

4.10.2.1.3. Known issues

Currently, you cannot deploy additional resources, such as config maps, CRDs, or RBAC policies
through the Secondary Scheduler Operator. Any resources other than roles and role bindings
that are required by your custom secondary scheduler must be applied externally. (WRKLDS-
645)

4.10.2.2. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.2.0

Issued: 2023-11-01

The following advisory is available for the Secondary Scheduler Operator for Red Hat OpenShift 1.2.0:

RHSA-2023:6154

4.10.2.2.1. Bug fixes

This release of the Secondary Scheduler Operator addresses several Common Vulnerabilities
and Exposures (CVEs).

4.10.2.2.2. Known issues

Currently, you cannot deploy additional resources, such as config maps, CRDs, or RBAC policies
through the Secondary Scheduler Operator. Any resources other than roles and role bindings
that are required by your custom secondary scheduler must be applied externally. (WRKLDS-
645)

4.10.3. Scheduling pods using a secondary scheduler

You can run a custom secondary scheduler in OpenShift Container Platform by installing the Secondary
Scheduler Operator, deploying the secondary scheduler, and setting the secondary scheduler in the pod
definition.

4.10.3.1. Installing the Secondary Scheduler Operator

You can use the web console to install the Secondary Scheduler Operator for Red Hat OpenShift.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

OpenShift Container Platform 4.15 Nodes

246

https://issues.redhat.com/browse/WRKLDS-645
https://access.redhat.com/errata/RHSA-2023:6154
https://issues.redhat.com/browse/WRKLDS-645

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create the required namespace for the Secondary Scheduler Operator for Red Hat OpenShift.

a. Navigate to Administration → Namespaces and click Create Namespace.

b. Enter openshift-secondary-scheduler-operator in the Name field and click Create.

3. Install the Secondary Scheduler Operator for Red Hat OpenShift.

a. Navigate to Operators → OperatorHub.

b. Enter Secondary Scheduler Operator for Red Hat OpenShift into the filter box.

c. Select the Secondary Scheduler Operator for Red Hat OpenShift and click Install.

d. On the Install Operator page:

i. The Update channel is set to stable, which installs the latest stable release of the
Secondary Scheduler Operator for Red Hat OpenShift.

ii. Select A specific namespace on the cluster and select openshift-secondary-
scheduler-operator from the drop-down menu.

iii. Select an Update approval strategy.

The Automatic strategy allows Operator Lifecycle Manager (OLM) to automatically
update the Operator when a new version is available.

The Manual strategy requires a user with appropriate credentials to approve the
Operator update.

iv. Click Install.

Verification

1. Navigate to Operators → Installed Operators.

2. Verify that Secondary Scheduler Operator for Red Hat OpenShift is listed with a Status of
Succeeded.

4.10.3.2. Deploying a secondary scheduler

After you have installed the Secondary Scheduler Operator, you can deploy a secondary scheduler.

Prerequisities

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

The Secondary Scheduler Operator for Red Hat OpenShift is installed.

Procedure

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

247

1

2

3

4

5

1. Log in to the OpenShift Container Platform web console.

2. Create config map to hold the configuration for the secondary scheduler.

a. Navigate to Workloads → ConfigMaps.

b. Click Create ConfigMap.

c. In the YAML editor, enter the config map definition that contains the necessary
KubeSchedulerConfiguration configuration. For example:

The name of the config map. This is used in the Scheduler Config field when creating
the SecondaryScheduler CR.

The config map must be created in the openshift-secondary-scheduler-operator
namespace.

The KubeSchedulerConfiguration resource for the secondary scheduler. For more
information, see KubeSchedulerConfiguration in the Kubernetes API documentation.

The name of the secondary scheduler. Pods that set their spec.schedulerName field
to this value are scheduled with this secondary scheduler.

The plugins to enable or disable for the secondary scheduler. For a list default
scheduling plugins, see Scheduling plugins in the Kubernetes documentation.

d. Click Create.

3. Create the SecondaryScheduler CR:

a. Navigate to Operators → Installed Operators.

b. Select Secondary Scheduler Operator for Red Hat OpenShift.

c. Select the Secondary Scheduler tab and click Create SecondaryScheduler.

apiVersion: v1
kind: ConfigMap
metadata:
 name: "secondary-scheduler-config" 1
 namespace: "openshift-secondary-scheduler-operator" 2
data:
 "config.yaml": |
 apiVersion: kubescheduler.config.k8s.io/v1beta3
 kind: KubeSchedulerConfiguration 3
 leaderElection:
 leaderElect: false
 profiles:
 - schedulerName: secondary-scheduler 4
 plugins: 5
 score:
 disabled:
 - name: NodeResourcesBalancedAllocation
 - name: NodeResourcesLeastAllocated

OpenShift Container Platform 4.15 Nodes

248

https://kubernetes.io/docs/reference/config-api/kube-scheduler-config.v1beta3/#kubescheduler-config-k8s-io-v1beta3-KubeSchedulerConfiguration
https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins

d. The Name field defaults to cluster; do not change this name.

e. The Scheduler Config field defaults to secondary-scheduler-config. Ensure that this
value matches the name of the config map created earlier in this procedure.

f. In the Scheduler Image field, enter the image name for your custom scheduler.

IMPORTANT

Red Hat does not directly support the functionality of your custom
secondary scheduler.

g. Click Create.

4.10.3.3. Scheduling a pod using the secondary scheduler

To schedule a pod using the secondary scheduler, set the schedulerName field in the pod definition.

Prerequisities

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

The Secondary Scheduler Operator for Red Hat OpenShift is installed.

A secondary scheduler is configured.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Workloads → Pods.

3. Click Create Pod.

4. In the YAML editor, enter the desired pod configuration and add the schedulerName field:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 namespace: default
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80
 securityContext:
 allowPrivilegeEscalation: false

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

249

1 The schedulerName field must match the name that is defined in the config map when
you configured the secondary scheduler.

5. Click Create.

Verification

1. Log in to the OpenShift CLI.

2. Describe the pod using the following command:

Example output

3. In the events table, find the event with a message similar to Successfully assigned
<namespace>/<pod_name> to <node_name>.

4. In the "From" column, verify that the event was generated from the secondary scheduler and
not the default scheduler.

NOTE

You can also check the secondary-scheduler-* pod logs in the openshift-
secondary-scheduler-namespace to verify that the pod was scheduled by the
secondary scheduler.

4.10.4. Uninstalling the Secondary Scheduler Operator

You can remove the Secondary Scheduler Operator for Red Hat OpenShift from OpenShift Container
Platform by uninstalling the Operator and removing its related resources.

4.10.4.1. Uninstalling the Secondary Scheduler Operator

You can uninstall the Secondary Scheduler Operator for Red Hat OpenShift by using the web console.

 capabilities:
 drop: [ALL]
 schedulerName: secondary-scheduler 1

$ oc describe pod nginx -n default

Name: nginx
Namespace: default
Priority: 0
Node: ci-ln-t0w4r1k-72292-xkqs4-worker-b-xqkxp/10.0.128.3
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 12s secondary-scheduler Successfully assigned default/nginx to
ci-ln-t0w4r1k-72292-xkqs4-worker-b-xqkxp
...

OpenShift Container Platform 4.15 Nodes

250

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

The Secondary Scheduler Operator for Red Hat OpenShift is installed.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Uninstall the Secondary Scheduler Operator for Red Hat OpenShift Operator.

a. Navigate to Operators → Installed Operators.

b. Click the Options menu next to the Secondary Scheduler Operator entry and click
Uninstall Operator.

c. In the confirmation dialog, click Uninstall.

4.10.4.2. Removing Secondary Scheduler Operator resources

Optionally, after uninstalling the Secondary Scheduler Operator for Red Hat OpenShift, you can remove
its related resources from your cluster.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Remove CRDs that were installed by the Secondary Scheduler Operator:

a. Navigate to Administration → CustomResourceDefinitions.

b. Enter SecondaryScheduler in the Name field to filter the CRDs.

c. Click the Options menu next to the SecondaryScheduler CRD and select Delete
Custom Resource Definition:

3. Remove the openshift-secondary-scheduler-operator namespace.

a. Navigate to Administration → Namespaces.

b. Click the Options menu next to the openshift-secondary-scheduler-operator and
select Delete Namespace.

c. In the confirmation dialog, enter openshift-secondary-scheduler-operator in the field and

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

251

c. In the confirmation dialog, enter openshift-secondary-scheduler-operator in the field and
click Delete.

OpenShift Container Platform 4.15 Nodes

252

CHAPTER 5. USING JOBS AND DAEMONSETS

5.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY
WITH DAEMON SETS

As an administrator, you can create and use daemon sets to run replicas of a pod on specific or all nodes
in an OpenShift Container Platform cluster.

A daemon set ensures that all (or some) nodes run a copy of a pod. As nodes are added to the cluster,
pods are added to the cluster. As nodes are removed from the cluster, those pods are removed through
garbage collection. Deleting a daemon set will clean up the pods it created.

You can use daemon sets to create shared storage, run a logging pod on every node in your cluster, or
deploy a monitoring agent on every node.

For security reasons, the cluster administrators and the project administrators can create daemon sets.

For more information on daemon sets, see the Kubernetes documentation.

IMPORTANT

Daemon set scheduling is incompatible with project’s default node selector. If you fail to
disable it, the daemon set gets restricted by merging with the default node selector. This
results in frequent pod recreates on the nodes that got unselected by the merged node
selector, which in turn puts unwanted load on the cluster.

5.1.1. Scheduled by default scheduler

A daemon set ensures that all eligible nodes run a copy of a pod. Normally, the node that a pod runs on
is selected by the Kubernetes scheduler. However, daemon set pods are created and scheduled by the
daemon set controller. That introduces the following issues:

Inconsistent pod behavior: Normal pods waiting to be scheduled are created and in Pending
state, but daemon set pods are not created in Pending state. This is confusing to the user.

Pod preemption is handled by default scheduler. When preemption is enabled, the daemon set
controller will make scheduling decisions without considering pod priority and preemption.

The ScheduleDaemonSetPods feature, enabled by default in OpenShift Container Platform, lets you
schedule daemon sets using the default scheduler instead of the daemon set controller, by adding the
NodeAffinity term to the daemon set pods, instead of the spec.nodeName term. The default scheduler
is then used to bind the pod to the target host. If node affinity of the daemon set pod already exists, it is
replaced. The daemon set controller only performs these operations when creating or modifying
daemon set pods, and no changes are made to the spec.template of the daemon set.

kind: Pod
apiVersion: v1
metadata:
 name: hello-node-6fbccf8d9-9tmzr
#...
spec:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:

CHAPTER 5. USING JOBS AND DAEMONSETS

253

http://kubernetes.io/docs/admin/daemons/

In addition, a node.kubernetes.io/unschedulable:NoSchedule toleration is added automatically to
daemon set pods. The default scheduler ignores unschedulable Nodes when scheduling daemon set
pods.

5.1.2. Creating daemonsets

When creating daemon sets, the nodeSelector field is used to indicate the nodes on which the daemon
set should deploy replicas.

Prerequisites

Before you start using daemon sets, disable the default project-wide node selector in your
namespace, by setting the namespace annotation openshift.io/node-selector to an empty
string:

TIP

You can alternatively apply the following YAML to disable the default project-wide node
selector for a namespace:

If you are creating a new project, overwrite the default node selector:

Procedure

To create a daemon set:

1. Define the daemon set yaml file:

 - matchFields:
 - key: metadata.name
 operator: In
 values:
 - target-host-name
#...

$ oc patch namespace myproject -p \
 '{"metadata": {"annotations": {"openshift.io/node-selector": ""}}}'

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 openshift.io/node-selector: ''
#...

$ oc adm new-project <name> --node-selector=""

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: hello-daemonset
spec:

OpenShift Container Platform 4.15 Nodes

254

1

2

3

The label selector that determines which pods belong to the daemon set.

The pod template’s label selector. Must match the label selector above.

The node selector that determines on which nodes pod replicas should be deployed. A
matching label must be present on the node.

2. Create the daemon set object:

3. To verify that the pods were created, and that each node has a pod replica:

a. Find the daemonset pods:

Example output

b. View the pods to verify the pod has been placed onto the node:

Example output

 selector:
 matchLabels:
 name: hello-daemonset 1
 template:
 metadata:
 labels:
 name: hello-daemonset 2
 spec:
 nodeSelector: 3
 role: worker
 containers:
 - image: openshift/hello-openshift
 imagePullPolicy: Always
 name: registry
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 serviceAccount: default
 terminationGracePeriodSeconds: 10
#...

$ oc create -f daemonset.yaml

$ oc get pods

hello-daemonset-cx6md 1/1 Running 0 2m
hello-daemonset-e3md9 1/1 Running 0 2m

$ oc describe pod/hello-daemonset-cx6md|grep Node

Node: openshift-node01.hostname.com/10.14.20.134

CHAPTER 5. USING JOBS AND DAEMONSETS

255

1

Example output

IMPORTANT

If you update a daemon set pod template, the existing pod replicas are not
affected.

If you delete a daemon set and then create a new daemon set with a different
template but the same label selector, it recognizes any existing pod replicas as
having matching labels and thus does not update them or create new replicas
despite a mismatch in the pod template.

If you change node labels, the daemon set adds pods to nodes that match the
new labels and deletes pods from nodes that do not match the new labels.

To update a daemon set, force new pod replicas to be created by deleting the old replicas
or nodes.

5.2. RUNNING TASKS IN PODS USING JOBS

A job executes a task in your OpenShift Container Platform cluster.

A job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a job will clean up any pod replicas it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

Sample Job specification

The pod replicas a job should run in parallel.

$ oc describe pod/hello-daemonset-e3md9|grep Node

Node: openshift-node02.hostname.com/10.14.20.137

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 activeDeadlineSeconds: 1800 3
 backoffLimit: 6 4
 template: 5
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 6
#...

OpenShift Container Platform 4.15 Nodes

256

2

3

4

5

6

Successful pod completions are needed to mark a job completed.

The maximum duration the job can run.

The number of retries for a job.

The template for the pod the controller creates.

The restart policy of the pod.

Additional resources

Jobs in the Kubernetes documentation

5.2.1. Understanding jobs and cron jobs

A job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a job cleans up any pods it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

There are two possible resource types that allow creating run-once objects in OpenShift Container
Platform:

Job

A regular job is a run-once object that creates a task and ensures the job finishes.
There are three main types of task suitable to run as a job:

Non-parallel jobs:

A job that starts only one pod, unless the pod fails.

The job is complete as soon as its pod terminates successfully.

Parallel jobs with a fixed completion count:

a job that starts multiple pods.

The job represents the overall task and is complete when there is one successful pod for
each value in the range 1 to the completions value.

Parallel jobs with a work queue:

A job with multiple parallel worker processes in a given pod.

OpenShift Container Platform coordinates pods to determine what each should work on
or use an external queue service.

Each pod is independently capable of determining whether or not all peer pods are
complete and that the entire job is done.

When any pod from the job terminates with success, no new pods are created.

When at least one pod has terminated with success and all pods are terminated, the job
is successfully completed.

When any pod has exited with success, no other pod should be doing any work for this

CHAPTER 5. USING JOBS AND DAEMONSETS

257

https://kubernetes.io/docs/concepts/workloads/controllers/job/

When any pod has exited with success, no other pod should be doing any work for this
task or writing any output. Pods should all be in the process of exiting.
For more information about how to make use of the different types of job, see Job
Patterns in the Kubernetes documentation.

Cron job

A job can be scheduled to run multiple times, using a cron job.
A cron job builds on a regular job by allowing you to specify how the job should be run. Cron jobs are
part of the Kubernetes API, which can be managed with oc commands like other object types.

Cron jobs are useful for creating periodic and recurring tasks, like running backups or sending emails.
Cron jobs can also schedule individual tasks for a specific time, such as if you want to schedule a job
for a low activity period. A cron job creates a Job object based on the timezone configured on the
control plane node that runs the cronjob controller.

WARNING

A cron job creates a Job object approximately once per execution time of its
schedule, but there are circumstances in which it fails to create a job or two jobs
might be created. Therefore, jobs must be idempotent and you must configure
history limits.

5.2.1.1. Understanding how to create jobs

Both resource types require a job configuration that consists of the following key parts:

A pod template, which describes the pod that OpenShift Container Platform creates.

The parallelism parameter, which specifies how many pods running in parallel at any point in
time should execute a job.

For non-parallel jobs, leave unset. When unset, defaults to 1.

The completions parameter, specifying how many successful pod completions are needed to
finish a job.

For non-parallel jobs, leave unset. When unset, defaults to 1.

For parallel jobs with a fixed completion count, specify a value.

For parallel jobs with a work queue, leave unset. When unset defaults to the parallelism
value.

5.2.1.2. Understanding how to set a maximum duration for jobs

When defining a job, you can define its maximum duration by setting the activeDeadlineSeconds field.
It is specified in seconds and is not set by default. When not set, there is no maximum duration enforced.

The maximum duration is counted from the time when a first pod gets scheduled in the system, and

OpenShift Container Platform 4.15 Nodes

258

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/#job-patterns
http://kubernetes.io/docs/user-guide/cron-jobs

The maximum duration is counted from the time when a first pod gets scheduled in the system, and
defines how long a job can be active. It tracks overall time of an execution. After reaching the specified
timeout, the job is terminated by OpenShift Container Platform.

5.2.1.3. Understanding how to set a job back off policy for pod failure

A job can be considered failed, after a set amount of retries due to a logical error in configuration or
other similar reasons. Failed pods associated with the job are recreated by the controller with an
exponential back off delay (10s, 20s, 40s …) capped at six minutes. The limit is reset if no new failed
pods appear between controller checks.

Use the spec.backoffLimit parameter to set the number of retries for a job.

5.2.1.4. Understanding how to configure a cron job to remove artifacts

Cron jobs can leave behind artifact resources such as jobs or pods. As a user it is important to configure
history limits so that old jobs and their pods are properly cleaned. There are two fields within cron job’s
spec responsible for that:

.spec.successfulJobsHistoryLimit. The number of successful finished jobs to retain (defaults
to 3).

.spec.failedJobsHistoryLimit. The number of failed finished jobs to retain (defaults to 1).

TIP

Delete cron jobs that you no longer need:

Doing this prevents them from generating unnecessary artifacts.

You can suspend further executions by setting the spec.suspend to true. All subsequent
executions are suspended until you reset to false.

5.2.1.5. Known limitations

The job specification restart policy only applies to the pods, and not the job controller. However, the job
controller is hard-coded to keep retrying jobs to completion.

As such, restartPolicy: Never or --restart=Never results in the same behavior as restartPolicy:
OnFailure or --restart=OnFailure. That is, when a job fails it is restarted automatically until it succeeds
(or is manually discarded). The policy only sets which subsystem performs the restart.

With the Never policy, the job controller performs the restart. With each attempt, the job controller
increments the number of failures in the job status and create new pods. This means that with each
failed attempt, the number of pods increases.

With the OnFailure policy, kubelet performs the restart. Each attempt does not increment the number
of failures in the job status. In addition, kubelet will retry failed jobs starting pods on the same nodes.

5.2.2. Creating jobs

You create a job in OpenShift Container Platform by creating a job object.

$ oc delete cronjob/<cron_job_name>

CHAPTER 5. USING JOBS AND DAEMONSETS

259

1

2

3

4

5

6

Procedure

To create a job:

1. Create a YAML file similar to the following:

Optional: Specify how many pod replicas a job should run in parallel; defaults to 1.

For non-parallel jobs, leave unset. When unset, defaults to 1.

Optional: Specify how many successful pod completions are needed to mark a job
completed.

For non-parallel jobs, leave unset. When unset, defaults to 1.

For parallel jobs with a fixed completion count, specify the number of completions.

For parallel jobs with a work queue, leave unset. When unset defaults to the
parallelism value.

Optional: Specify the maximum duration the job can run.

Optional: Specify the number of retries for a job. This field defaults to six.

Specify the template for the pod the controller creates.

Specify the restart policy of the pod:

Never. Do not restart the job.

OnFailure. Restart the job only if it fails.

Always. Always restart the job.
For details on how OpenShift Container Platform uses restart policy with failed
containers, see the Example States in the Kubernetes documentation.

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 activeDeadlineSeconds: 1800 3
 backoffLimit: 6 4
 template: 5
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 6
#...

OpenShift Container Platform 4.15 Nodes

260

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states

1

2

2. Create the job:

NOTE

You can also create and launch a job from a single command using oc create job. The
following command creates and launches a job similar to the one specified in the previous
example:

5.2.3. Creating cron jobs

You create a cron job in OpenShift Container Platform by creating a job object.

Procedure

To create a cron job:

1. Create a YAML file similar to the following:

Schedule for the job specified in cron format. In this example, the job will run every minute.

An optional time zone for the schedule. See List of tz database time zones for valid
options. If not specified, the Kubernetes controller manager interprets the schedule
relative to its local time zone.

$ oc create -f <file-name>.yaml

$ oc create job pi --image=perl -- perl -Mbignum=bpi -wle 'print bpi(2000)'

apiVersion: batch/v1
kind: CronJob
metadata:
 name: pi
spec:
 schedule: "*/1 * * * *" 1
 timeZone: Etc/UTC 2
 concurrencyPolicy: "Replace" 3
 startingDeadlineSeconds: 200 4
 suspend: true 5
 successfulJobsHistoryLimit: 3 6
 failedJobsHistoryLimit: 1 7
 jobTemplate: 8
 spec:
 template:
 metadata:
 labels: 9
 parent: "cronjobpi"
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 10
#...

CHAPTER 5. USING JOBS AND DAEMONSETS

261

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

3

4

5

6

7

8

9

10

An optional concurrency policy, specifying how to treat concurrent jobs within a cron job.
Only one of the following concurrent policies may be specified. If not specified, this

Allow allows cron jobs to run concurrently.

Forbid forbids concurrent runs, skipping the next run if the previous has not finished
yet.

Replace cancels the currently running job and replaces it with a new one.

An optional deadline (in seconds) for starting the job if it misses its scheduled time for any
reason. Missed jobs executions will be counted as failed ones. If not specified, there is no
deadline.

An optional flag allowing the suspension of a cron job. If set to true, all subsequent
executions will be suspended.

The number of successful finished jobs to retain (defaults to 3).

The number of failed finished jobs to retain (defaults to 1).

Job template. This is similar to the job example.

Sets a label for jobs spawned by this cron job.

The restart policy of the pod. This does not apply to the job controller.

2. Create the cron job:

NOTE

You can also create and launch a cron job from a single command using oc create
cronjob. The following command creates and launches a cron job similar to the one
specified in the previous example:

With oc create cronjob, the --schedule option accepts schedules in cron format.

$ oc create -f <file-name>.yaml

$ oc create cronjob pi --image=perl --schedule='*/1 * * * *' -- perl -Mbignum=bpi -wle
'print bpi(2000)'

OpenShift Container Platform 4.15 Nodes

262

https://en.wikipedia.org/wiki/Cron

CHAPTER 6. WORKING WITH NODES

6.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT
CONTAINER PLATFORM CLUSTER

You can list all the nodes in your cluster to obtain information such as status, age, memory usage, and
details about the nodes.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

6.1.1. About listing all the nodes in a cluster

You can get detailed information on the nodes in the cluster.

The following command lists all nodes:

The following example is a cluster with healthy nodes:

Example output

The following example is a cluster with one unhealthy node:

Example output

The conditions that trigger a NotReady status are shown later in this section.

The -o wide option provides additional information on nodes.

Example output

$ oc get nodes

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.28.5
node1.example.com Ready worker 7h v1.28.5
node2.example.com Ready worker 7h v1.28.5

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.28.5
node1.example.com NotReady,SchedulingDisabled worker 7h v1.28.5
node2.example.com Ready worker 7h v1.28.5

$ oc get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP

CHAPTER 6. WORKING WITH NODES

263

The following command lists information about a single node:

For example:

Example output

The following command provides more detailed information about a specific node, including the
reason for the current condition:

For example:

Example output

OS-IMAGE KERNEL-VERSION CONTAINER-
RUNTIME
master.example.com Ready master 171m v1.28.5 10.0.129.108 <none> Red Hat
Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-240.15.1.el8_3.x86_64
cri-o://1.28.5-30.rhaos4.10.gitf2f339d.el8-dev
node1.example.com Ready worker 72m v1.28.5 10.0.129.222 <none> Red Hat
Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-240.15.1.el8_3.x86_64
cri-o://1.28.5-30.rhaos4.10.gitf2f339d.el8-dev
node2.example.com Ready worker 164m v1.28.5 10.0.142.150 <none> Red Hat
Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-240.15.1.el8_3.x86_64
cri-o://1.28.5-30.rhaos4.10.gitf2f339d.el8-dev

$ oc get node <node>

$ oc get node node1.example.com

NAME STATUS ROLES AGE VERSION
node1.example.com Ready worker 7h v1.28.5

$ oc describe node <node>

$ oc describe node node1.example.com

Name: node1.example.com 1
Roles: worker 2
Labels: kubernetes.io/os=linux
 kubernetes.io/hostname=ip-10-0-131-14
 kubernetes.io/arch=amd64 3
 node-role.kubernetes.io/worker=
 node.kubernetes.io/instance-type=m4.large
 node.openshift.io/os_id=rhcos
 node.openshift.io/os_version=4.5
 region=east
 topology.kubernetes.io/region=us-east-1
 topology.kubernetes.io/zone=us-east-1a
Annotations: cluster.k8s.io/machine: openshift-machine-api/ahardin-worker-us-east-2a-
q5dzc 4
 machineconfiguration.openshift.io/currentConfig: worker-
309c228e8b3a92e2235edd544c62fea8
 machineconfiguration.openshift.io/desiredConfig: worker-

OpenShift Container Platform 4.15 Nodes

264

309c228e8b3a92e2235edd544c62fea8
 machineconfiguration.openshift.io/state: Done
 volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Wed, 13 Feb 2019 11:05:57 -0500
Taints: <none> 5
Unschedulable: false
Conditions: 6
 Type Status LastHeartbeatTime LastTransitionTime Reason
Message
 ---- ------ ----------------- ------------------ ------ -------
 OutOfDisk False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientDisk kubelet has sufficient disk space available
 MemoryPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57
-0500 KubeletHasSufficientMemory kubelet has sufficient memory available
 DiskPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasNoDiskPressure kubelet has no disk pressure
 PIDPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientPID kubelet has sufficient PID available
 Ready True Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:07:09 -0500
KubeletReady kubelet is posting ready status
Addresses: 7
 InternalIP: 10.0.140.16
 InternalDNS: ip-10-0-140-16.us-east-2.compute.internal
 Hostname: ip-10-0-140-16.us-east-2.compute.internal
Capacity: 8
 attachable-volumes-aws-ebs: 39
 cpu: 2
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8172516Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7558116Ki
 pods: 250
System Info: 9
 Machine ID: 63787c9534c24fde9a0cde35c13f1f66
 System UUID: EC22BF97-A006-4A58-6AF8-0A38DEEA122A
 Boot ID: f24ad37d-2594-46b4-8830-7f7555918325
 Kernel Version: 3.10.0-957.5.1.el7.x86_64
 OS Image: Red Hat Enterprise Linux CoreOS 410.8.20190520.0 (Ootpa)
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: cri-o://1.28.5-0.6.dev.rhaos4.3.git9ad059b.el8-rc2
 Kubelet Version: v1.28.5
 Kube-Proxy Version: v1.28.5
PodCIDR: 10.128.4.0/24
ProviderID: aws:///us-east-2a/i-04e87b31dc6b3e171
Non-terminated Pods: (12 in total) 10
 Namespace Name CPU Requests CPU Limits
Memory Requests Memory Limits
 --------- ---- ------------ ---------- --------------- -------

CHAPTER 6. WORKING WITH NODES

265

1

2

3

The name of the node.

The role of the node, either master or worker.

The labels applied to the node.

 openshift-cluster-node-tuning-operator tuned-hdl5q 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-dns dns-default-l69zr 0 (0%) 0 (0%) 0 (0%)
0 (0%)
 openshift-image-registry node-ca-9hmcg 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-ingress router-default-76455c45c-c5ptv 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-machine-config-operator machine-config-daemon-cvqw9 20m (1%) 0
(0%) 50Mi (0%) 0 (0%)
 openshift-marketplace community-operators-f67fh 0 (0%) 0 (0%)
0 (0%) 0 (0%)
 openshift-monitoring alertmanager-main-0 50m (3%) 50m (3%)
210Mi (2%) 10Mi (0%)
 openshift-monitoring node-exporter-l7q8d 10m (0%) 20m (1%)
20Mi (0%) 40Mi (0%)
 openshift-monitoring prometheus-adapter-75d769c874-hvb85 0 (0%) 0
(0%) 0 (0%) 0 (0%)
 openshift-multus multus-kw8w5 0 (0%) 0 (0%) 0 (0%)
0 (0%)
 openshift-sdn ovs-t4dsn 100m (6%) 0 (0%) 300Mi
(4%) 0 (0%)
 openshift-sdn sdn-g79hg 100m (6%) 0 (0%) 200Mi
(2%) 0 (0%)
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 380m (25%) 270m (18%)
 memory 880Mi (11%) 250Mi (3%)
 attachable-volumes-aws-ebs 0 0
Events: 11
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal NodeHasSufficientPID 6d (x5 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientPID
 Normal NodeAllocatableEnforced 6d kubelet, m01.example.com Updated Node
Allocatable limit across pods
 Normal NodeHasSufficientMemory 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientMemory
 Normal NodeHasNoDiskPressure 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasNoDiskPressure
 Normal NodeHasSufficientDisk 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientDisk
 Normal NodeHasSufficientPID 6d kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientPID
 Normal Starting 6d kubelet, m01.example.com Starting kubelet.
#...

OpenShift Container Platform 4.15 Nodes

266

4

5

6

7

8

9

10

11

The annotations applied to the node.

The taints applied to the node.

The node conditions and status. The conditions stanza lists the Ready, PIDPressure,
PIDPressure, MemoryPressure, DiskPressure and OutOfDisk status. These condition
are described later in this section.

The IP address and hostname of the node.

The pod resources and allocatable resources.

Information about the node host.

The pods on the node.

The events reported by the node.

NOTE

The control plane label is not automatically added to newly created or updated master
nodes. If you want to use the control plane label for your nodes, you can manually
configure the label. For more information, see Understanding how to update labels on
nodes in the Additional resources section.

Among the information shown for nodes, the following node conditions appear in the output of the
commands shown in this section:

Table 6.1. Node Conditions

Condition Description

Ready If true, the node is healthy and ready to accept pods. If false, the node is not
healthy and is not accepting pods. If unknown, the node controller has not
received a heartbeat from the node for the node-monitor-grace-period
(the default is 40 seconds).

DiskPressure If true, the disk capacity is low.

MemoryPressure If true, the node memory is low.

PIDPressure If true, there are too many processes on the node.

OutOfDisk If true, the node has insufficient free space on the node for adding new pods.

NetworkUnavailable If true, the network for the node is not correctly configured.

NotReady If true, one of the underlying components, such as the container runtime or
network, is experiencing issues or is not yet configured.

SchedulingDisabled Pods cannot be scheduled for placement on the node.

CHAPTER 6. WORKING WITH NODES

267

Additional resources

Understanding how to update labels on nodes

6.1.2. Listing pods on a node in your cluster

You can list all the pods on a specific node.

Procedure

To list all or selected pods on one or more nodes:

For example:

To list all or selected pods on selected nodes:

Or:

To list all pods on a specific node, including terminated pods:

6.1.3. Viewing memory and CPU usage statistics on your nodes

You can display usage statistics about nodes, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

Prerequisites

You must have cluster-reader permission to view the usage statistics.

Metrics must be installed to view the usage statistics.

Procedure

To view the usage statistics:

$ oc describe node <node1> <node2>

$ oc describe node ip-10-0-128-218.ec2.internal

$ oc describe node --selector=<node_selector>

$ oc describe node --selector=kubernetes.io/os

$ oc describe node -l=<pod_selector>

$ oc describe node -l node-role.kubernetes.io/worker

$ oc get pod --all-namespaces --field-selector=spec.nodeName=<nodename>

$ oc adm top nodes

OpenShift Container Platform 4.15 Nodes

268

Example output

To view the usage statistics for nodes with labels:

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

6.2. WORKING WITH NODES

As an administrator, you can perform several tasks to make your clusters more efficient.

6.2.1. Understanding how to evacuate pods on nodes

Evacuating pods allows you to migrate all or selected pods from a given node or nodes.

You can only evacuate pods backed by a replication controller. The replication controller creates new
pods on other nodes and removes the existing pods from the specified node(s).

Bare pods, meaning those not backed by a replication controller, are unaffected by default. You can
evacuate a subset of pods by specifying a pod-selector. Pod selectors are based on labels, so all the
pods with the specified label will be evacuated.

Procedure

1. Mark the nodes unschedulable before performing the pod evacuation.

a. Mark the node as unschedulable:

Example output

b. Check that the node status is Ready,SchedulingDisabled:

Example output

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-10-0-12-143.ec2.compute.internal 1503m 100% 4533Mi 61%
ip-10-0-132-16.ec2.compute.internal 76m 5% 1391Mi 18%
ip-10-0-140-137.ec2.compute.internal 398m 26% 2473Mi 33%
ip-10-0-142-44.ec2.compute.internal 656m 43% 6119Mi 82%
ip-10-0-146-165.ec2.compute.internal 188m 12% 3367Mi 45%
ip-10-0-19-62.ec2.compute.internal 896m 59% 5754Mi 77%
ip-10-0-44-193.ec2.compute.internal 632m 42% 5349Mi 72%

$ oc adm top node --selector=''

$ oc adm cordon <node1>

node/<node1> cordoned

$ oc get node <node1>

NAME STATUS ROLES AGE VERSION
<node1> Ready,SchedulingDisabled worker 1d v1.28.5

CHAPTER 6. WORKING WITH NODES

269

2. Evacuate the pods using one of the following methods:

Evacuate all or selected pods on one or more nodes:

Force the deletion of bare pods using the --force option. When set to true, deletion
continues even if there are pods not managed by a replication controller, replica set, job,
daemon set, or stateful set:

Set a period of time in seconds for each pod to terminate gracefully, use --grace-period. If
negative, the default value specified in the pod will be used:

Ignore pods managed by daemon sets using the --ignore-daemonsets flag set to true:

Set the length of time to wait before giving up using the --timeout flag. A value of 0 sets an
infinite length of time:

Delete pods even if there are pods using emptyDir volumes by setting the --delete-
emptydir-data flag to true. Local data is deleted when the node is drained:

List objects that will be migrated without actually performing the evacuation, using the --
dry-run option set to true:

Instead of specifying specific node names (for example, <node1> <node2>), you can use
the --selector=<node_selector> option to evacuate pods on selected nodes.

3. Mark the node as schedulable when done.

6.2.2. Understanding how to update labels on nodes

You can update any label on a node.

Node labels are not persisted after a node is deleted even if the node is backed up by a Machine.

NOTE

$ oc adm drain <node1> <node2> [--pod-selector=<pod_selector>]

$ oc adm drain <node1> <node2> --force=true

$ oc adm drain <node1> <node2> --grace-period=-1

$ oc adm drain <node1> <node2> --ignore-daemonsets=true

$ oc adm drain <node1> <node2> --timeout=5s

$ oc adm drain <node1> <node2> --delete-emptydir-data=true

$ oc adm drain <node1> <node2> --dry-run=true

$ oc adm uncordon <node1>

OpenShift Container Platform 4.15 Nodes

270

NOTE

Any change to a MachineSet object is not applied to existing machines owned by the
compute machine set. For example, labels edited or added to an existing MachineSet
object are not propagated to existing machines and nodes associated with the compute
machine set.

The following command adds or updates labels on a node:

For example:

TIP

You can alternatively apply the following YAML to apply the label:

The following command updates all pods in the namespace:

For example:

6.2.3. Understanding how to mark nodes as unschedulable or schedulable

By default, healthy nodes with a Ready status are marked as schedulable, which means that you can
place new pods on the node. Manually marking a node as unschedulable blocks any new pods from being
scheduled on the node. Existing pods on the node are not affected.

The following command marks a node or nodes as unschedulable:

Example output

For example:

$ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

$ oc label nodes webconsole-7f7f6 unhealthy=true

kind: Node
apiVersion: v1
metadata:
 name: webconsole-7f7f6
 labels:
 unhealthy: 'true'
#...

$ oc label pods --all <key_1>=<value_1>

$ oc label pods --all status=unhealthy

$ oc adm cordon <node>

$ oc adm cordon node1.example.com

CHAPTER 6. WORKING WITH NODES

271

Example output

The following command marks a currently unschedulable node or nodes as schedulable:

Alternatively, instead of specifying specific node names (for example, <node>), you can use the
--selector=<node_selector> option to mark selected nodes as schedulable or unschedulable.

6.2.4. Handling errors in single-node OpenShift clusters when the node reboots
without draining application pods

In single-node OpenShift clusters and in OpenShift Container Platform clusters in general, a situation
can arise where a node reboot occurs without first draining the node. This can occur where an
application pod requesting devices fails with the UnexpectedAdmissionError error. Deployment,
ReplicaSet, or DaemonSet errors are reported because the application pods that require those devices
start before the pod serving those devices. You cannot control the order of pod restarts.

While this behavior is to be expected, it can cause a pod to remain on the cluster even though it has
failed to deploy successfully. The pod continues to report UnexpectedAdmissionError. This issue is
mitigated by the fact that application pods are typically included in a Deployment, ReplicaSet, or
DaemonSet. If a pod is in this error state, it is of little concern because another instance should be
running. Belonging to a Deployment, ReplicaSet, or DaemonSet guarantees the successful creation
and execution of subsequent pods and ensures the successful deployment of the application.

There is ongoing work upstream to ensure that such pods are gracefully terminated. Until that work is
resolved, run the following command for a single-node OpenShift cluster to remove the failed pods:

NOTE

The option to drain the node is unavailable for single-node OpenShift clusters.

Additional resources

Understanding how to evacuate pods on nodes

6.2.5. Deleting nodes

6.2.5.1. Deleting nodes from a cluster

To delete a node from the OpenShift Container Platform cluster, scale down the appropriate
MachineSet object.

IMPORTANT

node/node1.example.com cordoned

NAME LABELS STATUS
node1.example.com kubernetes.io/hostname=node1.example.com
Ready,SchedulingDisabled

$ oc adm uncordon <node1>

$ oc delete pods --field-selector status.phase=Failed -n <POD_NAMESPACE>

OpenShift Container Platform 4.15 Nodes

272

1

IMPORTANT

When a cluster is integrated with a cloud provider, you must delete the corresponding
machine to delete a node. Do not try to use the oc delete node command for this task.

When you delete a node by using the CLI, the node object is deleted in Kubernetes, but the pods that
exist on the node are not deleted. Any bare pods that are not backed by a replication controller become
inaccessible to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to
other available nodes. You must delete local manifest pods.

NOTE

If you are running cluster on bare metal, you cannot delete a node by editing MachineSet
objects. Compute machine sets are only available when a cluster is integrated with a cloud
provider. Instead you must unschedule and drain the node before manually deleting it.

Procedure

1. View the compute machine sets that are in the cluster by running the following command:

The compute machine sets are listed in the form of <cluster-id>-worker-<aws-region-az>.

2. Scale down the compute machine set by using one of the following methods:

Specify the number of replicas to scale down to by running the following command:

Edit the compute machine set custom resource by running the following command:

Example output

Specify the number of replicas to scale down to.

Additional resources

Manually scaling a compute machine set

$ oc get machinesets -n openshift-machine-api

$ oc scale --replicas=2 machineset <machine-set-name> -n openshift-machine-api

$ oc edit machineset <machine-set-name> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 # ...
 name: <machine-set-name>
 namespace: openshift-machine-api
 # ...
spec:
 replicas: 2 1
 # ...

CHAPTER 6. WORKING WITH NODES

273

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#machineset-manually-scaling-manually-scaling-machineset

6.2.5.2. Deleting nodes from a bare metal cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible
to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest pods.

Procedure

Delete a node from an OpenShift Container Platform cluster running on bare metal by completing the
following steps:

1. Mark the node as unschedulable:

2. Drain all pods on the node:

This step might fail if the node is offline or unresponsive. Even if the node does not respond, it
might still be running a workload that writes to shared storage. To avoid data corruption, power
down the physical hardware before you proceed.

3. Delete the node from the cluster:

Although the node object is now deleted from the cluster, it can still rejoin the cluster after
reboot or if the kubelet service is restarted. To permanently delete the node and all its data, you
must decommission the node.

4. If you powered down the physical hardware, turn it back on so that the node can rejoin the
cluster.

6.3. MANAGING NODES

OpenShift Container Platform uses a KubeletConfig custom resource (CR) to manage the configuration
of nodes. By creating an instance of a KubeletConfig object, a managed machine config is created to
override setting on the node.

NOTE

Logging in to remote machines for the purpose of changing their configuration is not
supported.

6.3.1. Modifying nodes

To make configuration changes to a cluster, or machine pool, you must create a custom resource
definition (CRD), or kubeletConfig object. OpenShift Container Platform uses the Machine Config
Controller to watch for changes introduced through the CRD to apply the changes to the cluster.

NOTE

$ oc adm cordon <node_name>

$ oc adm drain <node_name> --force=true

$ oc delete node <node_name>

OpenShift Container Platform 4.15 Nodes

274

https://access.redhat.com/solutions/84663

NOTE

Because the fields in a kubeletConfig object are passed directly to the kubelet from
upstream Kubernetes, the validation of those fields is handled directly by the kubelet
itself. Please refer to the relevant Kubernetes documentation for the valid values for
these fields. Invalid values in the kubeletConfig object can render cluster nodes
unusable.

Procedure

1. Obtain the label associated with the static CRD, Machine Config Pool, for the type of node you
want to configure. Perform one of the following steps:

a. Check current labels of the desired machine config pool.
For example:

Example output

b. Add a custom label to the desired machine config pool.
For example:

2. Create a kubeletconfig custom resource (CR) for your configuration change.
For example:

Sample configuration for a custom-config CR

$ oc get machineconfigpool --show-labels

NAME CONFIG UPDATED UPDATING DEGRADED
LABELS
master rendered-master-e05b81f5ca4db1d249a1bf32f9ec24fd True False
False operator.machineconfiguration.openshift.io/required-for-upgrade=
worker rendered-worker-f50e78e1bc06d8e82327763145bfcf62 True False
False

$ oc label machineconfigpool worker custom-kubelet=enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-config 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: enabled 2
 kubeletConfig: 3
 podsPerCore: 10
 maxPods: 250
 systemReserved:
 cpu: 2000m
 memory: 1Gi
#...

CHAPTER 6. WORKING WITH NODES

275

1

2

3

Assign a name to CR.

Specify the label to apply the configuration change, this is the label you added to the
machine config pool.

Specify the new value(s) you want to change.

3. Create the CR object.

For example:

Most Kubelet Configuration options can be set by the user. The following options are not allowed to be
overwritten:

CgroupDriver

ClusterDNS

ClusterDomain

StaticPodPath

NOTE

If a single node contains more than 50 images, pod scheduling might be imbalanced
across nodes. This is because the list of images on a node is shortened to 50 by default.
You can disable the image limit by editing the KubeletConfig object and setting the
value of nodeStatusMaxImages to -1.

6.3.2. Configuring control plane nodes as schedulable

You can configure control plane nodes to be schedulable, meaning that new pods are allowed for
placement on the master nodes. By default, control plane nodes are not schedulable.

You can set the masters to be schedulable, but must retain the worker nodes.

NOTE

You can deploy OpenShift Container Platform with no worker nodes on a bare metal
cluster. In this case, the control plane nodes are marked schedulable by default.

You can allow or disallow control plane nodes to be schedulable by configuring the
mastersSchedulable field.

IMPORTANT

When you configure control plane nodes from the default unschedulable to schedulable,
additional subscriptions are required. This is because control plane nodes then become
worker nodes.

$ oc create -f <file-name>

$ oc create -f master-kube-config.yaml

OpenShift Container Platform 4.15 Nodes

276

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

1

Procedure

1. Edit the schedulers.config.openshift.io resource.

2. Configure the mastersSchedulable field.

Set to true to allow control plane nodes to be schedulable, or false to disallow control
plane nodes to be schedulable.

3. Save the file to apply the changes.

6.3.3. Setting SELinux booleans

OpenShift Container Platform allows you to enable and disable an SELinux boolean on a Red Hat
Enterprise Linux CoreOS (RHCOS) node. The following procedure explains how to modify SELinux
booleans on nodes using the Machine Config Operator (MCO). This procedure uses
container_manage_cgroup as the example boolean. You can modify this value to whichever boolean
you need.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Create a new YAML file with a MachineConfig object, displayed in the following example:

$ oc edit schedulers.config.openshift.io cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 creationTimestamp: "2019-09-10T03:04:05Z"
 generation: 1
 name: cluster
 resourceVersion: "433"
 selfLink: /apis/config.openshift.io/v1/schedulers/cluster
 uid: a636d30a-d377-11e9-88d4-0a60097bee62
spec:
 mastersSchedulable: false 1
status: {}
#...

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 99-worker-setsebool
spec:
 config:
 ignition:
 version: 3.2.0
 systemd:

CHAPTER 6. WORKING WITH NODES

277

2. Create the new MachineConfig object by running the following command:

NOTE

Applying any changes to the MachineConfig object causes all affected nodes to
gracefully reboot after the change is applied.

6.3.4. Adding kernel arguments to nodes

In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This
should only be done with caution and clear understanding of the implications of the arguments you set.

WARNING

Improper use of kernel arguments can result in your systems becoming unbootable.

Examples of kernel arguments you could set include:

nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple
logical threads for each CPU. You could consider nosmt in multi-tenant environments to reduce
risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over
performance.

systemd.unified_cgroup_hierarchy: Enables Linux control group version 2 (cgroup v2). cgroup
v2 is the next version of the kernel control group and offers multiple improvements.

enforcing=0: Configures Security Enhanced Linux (SELinux) to run in permissive mode. In
permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including
labeling objects and emitting access denial entries in the logs, but it does not actually deny any
operations. While not supported for production systems, permissive mode can be helpful for
debugging.

 units:
 - contents: |
 [Unit]
 Description=Set SELinux booleans
 Before=kubelet.service

 [Service]
 Type=oneshot
 ExecStart=/sbin/setsebool container_manage_cgroup=on
 RemainAfterExit=true

 [Install]
 WantedBy=multi-user.target graphical.target
 enabled: true
 name: setsebool.service
#...

$ oc create -f 99-worker-setsebool.yaml

OpenShift Container Platform 4.15 Nodes

278

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01

WARNING

Disabling SELinux on RHCOS in production is not supported. Once SELinux
has been disabled on a node, it must be re-provisioned before re-inclusion
in a production cluster.

See Kernel.org kernel parameters for a list and descriptions of kernel arguments.

In the following procedure, you create a MachineConfig object that identifies:

A set of machines to which you want to add the kernel argument. In this case, machines with a
worker role.

Kernel arguments that are appended to the end of the existing kernel arguments.

A label that indicates where in the list of machine configs the change is applied.

Prerequisites

Have administrative privilege to a working OpenShift Container Platform cluster.

Procedure

1. List existing MachineConfig objects for your OpenShift Container Platform cluster to
determine how to label your machine config:

Example output

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0
33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0
33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-worker-ssh 3.2.0 40m

CHAPTER 6. WORKING WITH NODES

279

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

1

2

3

2. Create a MachineConfig object file that identifies the kernel argument (for example, 05-
worker-kernelarg-selinuxpermissive.yaml)

Applies the new kernel argument only to worker nodes.

Named to identify where it fits among the machine configs (05) and what it does (adds a
kernel argument to configure SELinux permissive mode).

Identifies the exact kernel argument as enforcing=0.

3. Create the new machine config:

4. Check the machine configs to see that the new one was added:

Example output

rendered-master-23e785de7587df95a4b517e0647e5ab7
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker 1
 name: 05-worker-kernelarg-selinuxpermissive 2
spec:
 kernelArguments:
 - enforcing=0 3

$ oc create -f 05-worker-kernelarg-selinuxpermissive.yaml

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0
33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0
33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
05-worker-kernelarg-selinuxpermissive 3.2.0 105s
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-master-ssh 3.2.0 40m

OpenShift Container Platform 4.15 Nodes

280

5. Check the nodes:

Example output

You can see that scheduling on each worker node is disabled as the change is being applied.

6. Check that the kernel argument worked by going to one of the worker nodes and listing the
kernel command line arguments (in /proc/cmdline on the host):

Example output

You should see the enforcing=0 argument added to the other kernel arguments.

6.3.5. Enabling swap memory use on nodes

IMPORTANT

99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-worker-ssh 3.2.0 40m
rendered-master-23e785de7587df95a4b517e0647e5ab7
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-136-161.ec2.internal Ready worker 28m v1.28.5
ip-10-0-136-243.ec2.internal Ready master 34m v1.28.5
ip-10-0-141-105.ec2.internal Ready,SchedulingDisabled worker 28m v1.28.5
ip-10-0-142-249.ec2.internal Ready master 34m v1.28.5
ip-10-0-153-11.ec2.internal Ready worker 28m v1.28.5
ip-10-0-153-150.ec2.internal Ready master 34m v1.28.5

$ oc debug node/ip-10-0-141-105.ec2.internal

Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# cat /host/proc/cmdline
BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 enforcing=0

sh-4.2# exit

CHAPTER 6. WORKING WITH NODES

281

IMPORTANT

Enabling swap memory use on nodes is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can enable swap memory use for OpenShift Container Platform workloads on a per-node basis.

WARNING

Enabling swap memory can negatively impact workload performance and out-of-
resource handling. Do not enable swap memory on control plane nodes.

To enable swap memory, create a kubeletconfig custom resource (CR) to set the swapbehavior
parameter. You can set limited or unlimited swap memory:

Limited: Use the LimitedSwap value to limit how much swap memory workloads can use. Any
workloads on the node that are not managed by OpenShift Container Platform can still use
swap memory. The LimitedSwap behavior depends on whether the node is running with Linux
control groups version 1 (cgroups v1) or version 2 (cgroup v2):

cgroup v1: OpenShift Container Platform workloads can use any combination of memory
and swap, up to the pod’s memory limit, if set.

cgroup v2: OpenShift Container Platform workloads cannot use swap memory.

Unlimited: Use the UnlimitedSwap value to allow workloads to use as much swap memory as
they request, up to the system limit.

Because the kubelet will not start in the presence of swap memory without this configuration, you must
enable swap memory in OpenShift Container Platform before enabling swap memory on the nodes. If
there is no swap memory present on a node, enabling swap memory in OpenShift Container Platform has
no effect.

Prerequisites

You have a running OpenShift Container Platform cluster that uses version 4.10 or later.

You are logged in to the cluster as a user with administrative privileges.

You have enabled the TechPreviewNoUpgrade feature set on the cluster (see Nodes →
Working with clusters → Enabling features using feature gates).

NOTE

OpenShift Container Platform 4.15 Nodes

282

https://access.redhat.com/support/offerings/techpreview/
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/index.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

1

2

NOTE

Enabling the TechPreviewNoUpgrade feature set cannot be undone and
prevents minor version updates. These feature sets are not recommended on
production clusters.

If cgroup v2 is enabled on a node, you must enable swap accounting on the node, by setting the
swapaccount=1 kernel argument.

Procedure

1. Apply a custom label to the machine config pool where you want to allow swap memory.

2. Create a custom resource (CR) to enable and configure swap settings.

Set to false to enable swap memory use on the associated nodes. Set to true to disable
swap memory use.

Specify the swap memory behavior. If unspecified, the default is LimitedSwap.

3. Enable swap memory on the machines.

6.3.6. Migrating control plane nodes from one RHOSP host to another manually

If control plane machine sets are not enabled on your cluster, you can run a script that moves a control
plane node from one Red Hat OpenStack Platform (RHOSP) node to another.

NOTE

Control plane machine sets are not enabled on clusters that run on user-provisioned
infrastructure.

For information about control plane machine sets, see "Managing control plane machines
with control plane machine sets".

Prerequisites

The environment variable OS_CLOUD refers to a clouds entry that has administrative

$ oc label machineconfigpool worker kubelet-swap=enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: swap-config
spec:
 machineConfigPoolSelector:
 matchLabels:
 kubelet-swap: enabled
 kubeletConfig:
 failSwapOn: false 1
 memorySwap:
 swapBehavior: LimitedSwap 2
#...

CHAPTER 6. WORKING WITH NODES

283

The environment variable OS_CLOUD refers to a clouds entry that has administrative
credentials in a clouds.yaml file.

The environment variable KUBECONFIG refers to a configuration that contains administrative
OpenShift Container Platform credentials.

Procedure

From a command line, run the following script:

#!/usr/bin/env bash

set -Eeuo pipefail

if [$# -lt 1]; then
 echo "Usage: '$0 node_name'"
 exit 64
fi

Check for admin OpenStack credentials
openstack server list --all-projects >/dev/null || { >&2 echo "The script needs OpenStack admin
credentials. Exiting"; exit 77; }

Check for admin OpenShift credentials
oc adm top node >/dev/null || { >&2 echo "The script needs OpenShift admin credentials. Exiting"; exit
77; }

set -x

declare -r node_name="$1"
declare server_id
server_id="$(openstack server list --all-projects -f value -c ID -c Name | grep "$node_name" | cut -d' '
-f1)"
readonly server_id

Drain the node
oc adm cordon "$node_name"
oc adm drain "$node_name" --delete-emptydir-data --ignore-daemonsets --force

Power off the server
oc debug "node/${node_name}" -- chroot /host shutdown -h 1

Verify the server is shut off
until openstack server show "$server_id" -f value -c status | grep -q 'SHUTOFF'; do sleep 5; done

Migrate the node
openstack server migrate --wait "$server_id"

Resize the VM
openstack server resize confirm "$server_id"

Wait for the resize confirm to finish
until openstack server show "$server_id" -f value -c status | grep -q 'SHUTOFF'; do sleep 5; done

Restart the VM
openstack server start "$server_id"

OpenShift Container Platform 4.15 Nodes

284

If the script completes, the control plane machine is migrated to a new RHOSP node.

Additional resources

For information about control plane machine sets, see Managing control plane machines with
control plane machine sets.

6.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE

In OpenShift Container Platform, you can configure the number of pods that can run on a node based
on the number of processor cores on the node, a hard limit or both. If you use both options, the lower of
the two limits the number of pods on a node.

When both options are in use, the lower of the two values limits the number of pods on a node.
Exceeding these values can result in:

Increased CPU utilization.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

IMPORTANT

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

NOTE

Disk IOPS throttling from the cloud provider might have an impact on CRI-O and kubelet.
They might get overloaded when there are large number of I/O intensive pods running on
the nodes. It is recommended that you monitor the disk I/O on the nodes and use
volumes with sufficient throughput for the workload.

The podsPerCore parameter sets the number of pods the node can run based on the number of

Wait for the node to show up as Ready:
until oc get node "$node_name" | grep -q "^${node_name}[[:space:]]\+Ready"; do sleep 5; done

Uncordon the node
oc adm uncordon "$node_name"

Wait for cluster operators to stabilize
until oc get co -o go-template='statuses: {{ range .items }}{{ range .status.conditions }}{{ if eq .type
"Degraded" }}{{ if ne .status "False" }}DEGRADED{{ end }}{{ else if eq .type "Progressing"}}{{ if ne
.status "False" }}PROGRESSING{{ end }}{{ else if eq .type "Available"}}{{ if ne .status "True"
}}NOTAVAILABLE{{ end }}{{ end }}{{ end }}{{ end }}' | grep -qv '\
(DEGRADED\|PROGRESSING\|NOTAVAILABLE\)'; do sleep 5; done

CHAPTER 6. WORKING WITH NODES

285

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#cpmso-using

1

The podsPerCore parameter sets the number of pods the node can run based on the number of
processor cores on the node. For example, if podsPerCore is set to 10 on a node with 4 processor
cores, the maximum number of pods allowed on the node will be 40.

Setting podsPerCore to 0 disables this limit. The default is 0. The value of the podsPerCore parameter
cannot exceed the value of the maxPods parameter.

The maxPods parameter sets the number of pods the node can run to a fixed value, regardless of the
properties of the node.

6.4.1. Configuring the maximum number of pods per node

Two parameters control the maximum number of pods that can be scheduled to a node: podsPerCore
and maxPods. If you use both options, the lower of the two limits the number of pods on a node.

For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of
pods allowed on the node will be 40.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command:

For example:

Example output

The label appears under Labels.

TIP

kubeletConfig:
 podsPerCore: 10

 kubeletConfig:
 maxPods: 250

$ oc edit machineconfigpool <name>

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: "2022-11-16T15:34:25Z"
 generation: 4
 labels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1
 name: worker
#...

OpenShift Container Platform 4.15 Nodes

286

1

2

3

4

TIP

If the label is not present, add a key/value pair such as:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a max-pods CR

Assign a name to CR.

Specify the label from the machine config pool.

Specify the number of pods the node can run based on the number of processor cores on
the node.

Specify the number of pods the node can run to a fixed value, regardless of the properties
of the node.

NOTE

Setting podsPerCore to 0 disables this limit.

In the above example, the default value for podsPerCore is 10 and the default value for
maxPods is 250. This means that unless the node has 25 cores or more, by default,
podsPerCore will be the limiting factor.

2. Run the following command to create the CR:

Verification

1. List the MachineConfigPool CRDs to see if the change is applied. The UPDATING column
reports True if the change is picked up by the Machine Config Controller:

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 2
 kubeletConfig:
 podsPerCore: 10 3
 maxPods: 250 4
#...

$ oc create -f <file_name>.yaml

CHAPTER 6. WORKING WITH NODES

287

Example output

Once the change is complete, the UPDATED column reports True.

Example output

6.5. USING THE NODE TUNING OPERATOR

Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

Purpose
The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon
and achieves low latency performance by using the Performance Profile controller. The majority of high-
performance applications require some level of kernel tuning. The Node Tuning Operator provides a
unified management interface to users of node-level sysctls and more flexibility to add custom tuning
specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications.

The cluster administrator configures a performance profile to define node-level settings such as the
following:

Updating the kernel to kernel-rt.

Choosing CPUs for housekeeping.

Choosing CPUs for running workloads.

NOTE

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
master master-9cc2c72f205e103bb534 False False False
worker worker-8cecd1236b33ee3f8a5e False True False

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
master master-9cc2c72f205e103bb534 False True False
worker worker-8cecd1236b33ee3f8a5e True False False

OpenShift Container Platform 4.15 Nodes

288

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

6.5.1. Accessing an example Node Tuning Operator specification

Use this process to access an example Node Tuning Operator specification.

Procedure

Run the following command to access an example Node Tuning Operator specification:

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality will be
deprecated in future versions of the Node Tuning Operator.

6.5.2. Custom tuning specification

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
TuneD profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized TuneD daemons are updated.

oc get tuned.tuned.openshift.io/default -o yaml -n openshift-cluster-node-tuning-operator

CHAPTER 6. WORKING WITH NODES

289

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

Managed: the Operator will update its operands as configuration resources are updated

Unmanaged: the Operator will ignore changes to the configuration resources

Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists TuneD profiles and their names.

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

The individual items of the list:

profile:
- name: tuned_profile_1
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

...

- name: tuned_profile_n
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

recommend:
<recommend-item-1>
...
<recommend-item-n>

- machineConfigLabels: 1
 <mcLabels> 2
 match: 3
 <match> 4
 priority: <priority> 5
 profile: <tuned_profile_name> 6

OpenShift Container Platform 4.15 Nodes

290

1

2

3

4

5

6

7

8

9

1

2

3

4

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A TuneD profile to apply on a match. For example tuned_profile_1.

Optional operand configuration.

Turn debugging on or off for the TuneD daemon. Options are true for on or false for off. The
default is false.

Turn reapply_sysctl functionality on or off for the TuneD daemon. Options are true for on and
false for off.

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_name>. This involves finding all machine config pools with machine config selector
matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

 operand: 7
 debug: <bool> 8
 tunedConfig:
 reapply_sysctl: <bool> 9

- label: <label_name> 1
 value: <label_value> 2
 type: <label_type> 3
 <match> 4

CHAPTER 6. WORKING WITH NODES

291

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in TuneD operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: Node or pod label based matching

The CR above is translated for the containerized TuneD daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized
TuneD pod runs on a node with labels node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

OpenShift Container Platform 4.15 Nodes

292

Example: Machine config pool based matching

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

Cloud provider-specific TuneD profiles

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-custom
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile with an additional kernel parameter
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_custom=+skew_tick=1
 name: openshift-node-custom

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-custom"
 priority: 20
 profile: openshift-node-custom

CHAPTER 6. WORKING WITH NODES

293

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile
specifically tailored to a given Cloud provider on a OpenShift Container Platform cluster. This can be
accomplished without adding additional node labels or grouping nodes into machine config pools.

This functionality takes advantage of spec.providerID node object values in the form of <cloud-
provider>://<cloud-provider-specific-id> and writes the file /var/lib/tuned/provider with the value
<cloud-provider> in NTO operand containers. The content of this file is then used by TuneD to load
provider-<cloud-provider> profile if such profile exists.

The openshift profile that both openshift-control-plane and openshift-node profiles inherit settings
from is now updated to use this functionality through the use of conditional profile loading. Neither NTO
nor TuneD currently include any Cloud provider-specific profiles. However, it is possible to create a
custom profile provider-<cloud-provider> that will be applied to all Cloud provider-specific cluster
nodes.

Example GCE Cloud provider profile

NOTE

Due to profile inheritance, any setting specified in the provider-<cloud-provider> profile
will be overwritten by the openshift profile and its child profiles.

6.5.3. Default profiles set on a cluster

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: provider-gce
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=GCE Cloud provider-specific profile
 # Your tuning for GCE Cloud provider goes here.
 name: provider-gce

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Optimize systems running OpenShift (provider specific parent profile)
 include=-provider-${f:exec:cat:/var/lib/tuned/provider},openshift
 name: openshift
 recommend:
 - profile: openshift-control-plane
 priority: 30
 match:

OpenShift Container Platform 4.15 Nodes

294

Starting with OpenShift Container Platform 4.9, all OpenShift TuneD profiles are shipped with the
TuneD package. You can use the oc exec command to view the contents of these profiles:

6.5.4. Supported TuneD daemon plugins

Excluding the [main] section, the following TuneD plugins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

scsi_host

selinux

sysctl

sysfs

usb

video

vm

bootloader

There is some dynamic tuning functionality provided by some of these plugins that is not supported. The
following TuneD plugins are currently not supported:

script

systemd

NOTE

 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 - profile: openshift-node
 priority: 40

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-
control-plane,-node} -name tuned.conf -exec grep -H ^ {} \;

CHAPTER 6. WORKING WITH NODES

295

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

Additional resources

Available TuneD Plugins

Getting Started with TuneD

6.6. REMEDIATING, FENCING, AND MAINTAINING NODES

When node-level failures occur, such as the kernel hangs or network interface controllers (NICs) fail, the
work required from the cluster does not decrease, and workloads from affected nodes need to be
restarted somewhere. Failures affecting these workloads risk data loss, corruption, or both. It is
important to isolate the node, known as fencing, before initiating recovery of the workload, known as
remediation, and recovery of the node.

For more information on remediation, fencing, and maintaining nodes, see the Workload Availability for
Red Hat OpenShift documentation.

6.7. UNDERSTANDING NODE REBOOTING

To reboot a node without causing an outage for applications running on the platform, it is important to
first evacuate the pods. For pods that are made highly available by the routing tier, nothing else needs to
be done. For other pods needing storage, typically databases, it is critical to ensure that they can remain
in operation with one pod temporarily going offline. While implementing resiliency for stateful pods is
different for each application, in all cases it is important to configure the scheduler to use node anti-
affinity to ensure that the pods are properly spread across available nodes.

Another challenge is how to handle nodes that are running critical infrastructure such as the router or
the registry. The same node evacuation process applies, though it is important to understand certain
edge cases.

6.7.1. About rebooting nodes running critical infrastructure

When rebooting nodes that host critical OpenShift Container Platform infrastructure components, such
as router pods, registry pods, and monitoring pods, ensure that there are at least three nodes available
to run these components.

The following scenario demonstrates how service interruptions can occur with applications running on
OpenShift Container Platform when only two nodes are available:

Node A is marked unschedulable and all pods are evacuated.

The registry pod running on that node is now redeployed on node B. Node B is now running
both registry pods.

Node B is now marked unschedulable and is evacuated.

The service exposing the two pod endpoints on node B loses all endpoints, for a brief period of
time, until they are redeployed to node A.

When using three nodes for infrastructure components, this process does not result in a service

OpenShift Container Platform 4.15 Nodes

296

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/workload_availability_for_red_hat_openshift/23.2/html-single/remediation_fencing_and_maintenance/index#about-remediation-fencing-maintenance

1

2

3

4

disruption. However, due to pod scheduling, the last node that is evacuated and brought back into
rotation does not have a registry pod. One of the other nodes has two registry pods. To schedule the
third registry pod on the last node, use pod anti-affinity to prevent the scheduler from locating two
registry pods on the same node.

Additional information

For more information on pod anti-affinity, see Placing pods relative to other pods using affinity
and anti-affinity rules.

6.7.2. Rebooting a node using pod anti-affinity

Pod anti-affinity is slightly different than node anti-affinity. Node anti-affinity can be violated if there
are no other suitable locations to deploy a pod. Pod anti-affinity can be set to either required or
preferred.

With this in place, if only two infrastructure nodes are available and one is rebooted, the container image
registry pod is prevented from running on the other node. oc get pods reports the pod as unready until
a suitable node is available. Once a node is available and all pods are back in ready state, the next node
can be restarted.

Procedure

To reboot a node using pod anti-affinity:

1. Edit the node specification to configure pod anti-affinity:

Stanza to configure pod anti-affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with the highest weight is preferred.

Description of the pod label that determines when the anti-affinity rule applies. Specify a
key and value for the label.

The operator represents the relationship between the label on the existing pod and the set

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-antiaffinity
spec:
 affinity:
 podAntiAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: registry 4
 operator: In 5
 values:
 - default
 topologyKey: kubernetes.io/hostname
#...

CHAPTER 6. WORKING WITH NODES

297

5 The operator represents the relationship between the label on the existing pod and the set
of values in the matchExpression parameters in the specification for the new pod. Can be
In, NotIn, Exists, or DoesNotExist.

This example assumes the container image registry pod has a label of registry=default. Pod
anti-affinity can use any Kubernetes match expression.

2. Enable the MatchInterPodAffinity scheduler predicate in the scheduling policy file.

3. Perform a graceful restart of the node.

6.7.3. Understanding how to reboot nodes running routers

In most cases, a pod running an OpenShift Container Platform router exposes a host port.

The PodFitsPorts scheduler predicate ensures that no router pods using the same port can run on the
same node, and pod anti-affinity is achieved. If the routers are relying on IP failover for high availability,
there is nothing else that is needed.

For router pods relying on an external service such as AWS Elastic Load Balancing for high availability, it
is that service’s responsibility to react to router pod restarts.

In rare cases, a router pod may not have a host port configured. In those cases, it is important to follow
the recommended restart process for infrastructure nodes.

6.7.4. Rebooting a node gracefully

Before rebooting a node, it is recommended to backup etcd data to avoid any data loss on the node.

NOTE

For single-node OpenShift clusters that require users to perform the oc login command
rather than having the certificates in kubeconfig file to manage the cluster, the oc adm
commands might not be available after cordoning and draining the node. This is because
the openshift-oauth-apiserver pod is not running due to the cordon. You can use SSH
to access the nodes as indicated in the following procedure.

In a single-node OpenShift cluster, pods cannot be rescheduled when cordoning and
draining. However, doing so gives the pods, especially your workload pods, time to
properly stop and release associated resources.

Procedure

To perform a graceful restart of a node:

1. Mark the node as unschedulable:

2. Drain the node to remove all the running pods:

You might receive errors that pods associated with custom pod disruption budgets (PDB)

$ oc adm cordon <node1>

$ oc adm drain <node1> --ignore-daemonsets --delete-emptydir-data --force

OpenShift Container Platform 4.15 Nodes

298

You might receive errors that pods associated with custom pod disruption budgets (PDB)
cannot be evicted.

Example error

In this case, run the drain command again, adding the disable-eviction flag, which bypasses the
PDB checks:

3. Access the node in debug mode:

4. Change your root directory to /host:

5. Restart the node:

In a moment, the node enters the NotReady state.

NOTE

With some single-node OpenShift clusters, the oc commands might not be
available after you cordon and drain the node because the openshift-oauth-
apiserver pod is not running. You can use SSH to connect to the node and
perform the reboot.

6. After the reboot is complete, mark the node as schedulable by running the following command:

NOTE

error when evicting pods/"rails-postgresql-example-1-72v2w" -n "rails" (will retry after 5s):
Cannot evict pod as it would violate the pod's disruption budget.

$ oc adm drain <node1> --ignore-daemonsets --delete-emptydir-data --force --disable-
eviction

$ oc debug node/<node1>

$ chroot /host

$ systemctl reboot

$ ssh core@<master-node>.<cluster_name>.<base_domain>

$ sudo systemctl reboot

$ oc adm uncordon <node1>

CHAPTER 6. WORKING WITH NODES

299

NOTE

With some single-node OpenShift clusters, the oc commands might not be
available after you cordon and drain the node because the openshift-oauth-
apiserver pod is not running. You can use SSH to connect to the node and
uncordon it.

7. Verify that the node is ready:

Example output

Additional information

For information on etcd data backup, see Backing up etcd data.

6.8. FREEING NODE RESOURCES USING GARBAGE COLLECTION

As an administrator, you can use OpenShift Container Platform to ensure that your nodes are running
efficiently by freeing up resources through garbage collection.

The OpenShift Container Platform node performs two types of garbage collection:

Container garbage collection: Removes terminated containers.

Image garbage collection: Removes images not referenced by any running pods.

6.8.1. Understanding how terminated containers are removed through garbage
collection

Container garbage collection removes terminated containers by using eviction thresholds.

When eviction thresholds are set for garbage collection, the node tries to keep any container for any
pod accessible from the API. If the pod has been deleted, the containers will be as well. Containers are
preserved as long the pod is not deleted and the eviction threshold is not reached. If the node is under
disk pressure, it will remove containers and their logs will no longer be accessible using oc logs.

eviction-soft - A soft eviction threshold pairs an eviction threshold with a required
administrator-specified grace period.

eviction-hard - A hard eviction threshold has no grace period, and if observed, OpenShift
Container Platform takes immediate action.

$ ssh core@<target_node>

$ sudo oc adm uncordon <node> --kubeconfig /etc/kubernetes/static-pod-
resources/kube-apiserver-certs/secrets/node-
kubeconfigs/localhost.kubeconfig

$ oc get node <node1>

NAME STATUS ROLES AGE VERSION
<node1> Ready worker 6d22h v1.18.3+b0068a8

OpenShift Container Platform 4.15 Nodes

300

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/backup_and_restore/#backup-etcd

The following table lists the eviction thresholds:

Table 6.2. Variables for configuring container garbage collection

Node condition Eviction signal Description

MemoryPressure memory.available The available memory on the
node.

DiskPressure
nodefs.available

nodefs.inodesFree

imagefs.available

imagefs.inodesFree

The available disk space or inodes
on the node root file system,
nodefs, or image file system,
imagefs.

NOTE

For evictionHard you must specify all of these parameters. If you do not specify all
parameters, only the specified parameters are applied and the garbage collection will not
function properly.

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace
period, the corresponding node would constantly oscillate between true and false. As a consequence,
the scheduler could make poor scheduling decisions.

To protect against this oscillation, use the eviction-pressure-transition-period flag to control how long
OpenShift Container Platform must wait before transitioning out of a pressure condition. OpenShift
Container Platform will not set an eviction threshold as being met for the specified pressure condition
for the period specified before toggling the condition back to false.

6.8.2. Understanding how images are removed through garbage collection

Image garbage collection removes images that are not referenced by any running pods.

OpenShift Container Platform determines which images to remove from a node based on the disk usage
that is reported by cAdvisor.

The policy for image garbage collection is based on two conditions:

The percent of disk usage (expressed as an integer) which triggers image garbage collection.
The default is 85.

The percent of disk usage (expressed as an integer) to which image garbage collection
attempts to free. Default is 80.

For image garbage collection, you can modify any of the following variables using a custom resource.

Table 6.3. Variables for configuring image garbage collection

CHAPTER 6. WORKING WITH NODES

301

Setting Description

imageMinimumGCA
ge

The minimum age for an unused image before the image is removed by garbage
collection. The default is 2m.

imageGCHighThresh
oldPercent

The percent of disk usage, expressed as an integer, which triggers image garbage
collection. The default is 85.

imageGCLowThresh
oldPercent

The percent of disk usage, expressed as an integer, to which image garbage
collection attempts to free. The default is 80.

Two lists of images are retrieved in each garbage collector run:

1. A list of images currently running in at least one pod.

2. A list of images available on a host.

As new containers are run, new images appear. All images are marked with a time stamp. If the image is
running (the first list above) or is newly detected (the second list above), it is marked with the current
time. The remaining images are already marked from the previous spins. All images are then sorted by
the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

6.8.3. Configuring garbage collection for containers and images

As an administrator, you can configure how OpenShift Container Platform performs garbage collection
by creating a kubeletConfig object for each machine config pool.

NOTE

OpenShift Container Platform supports only one kubeletConfig object for each machine
config pool.

You can configure any combination of the following:

Soft eviction for containers

Hard eviction for containers

Eviction for images

Container garbage collection removes terminated containers. Image garbage collection removes images
that are not referenced by any running pods.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command:

$ oc edit machineconfigpool <name>

OpenShift Container Platform 4.15 Nodes

302

1

For example:

Example output

The label appears under Labels.

TIP

If the label is not present, add a key/value pair such as:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a custom resource (CR) for your configuration change.

IMPORTANT

If there is one file system, or if /var/lib/kubelet and /var/lib/containers/ are in the
same file system, the settings with the highest values trigger evictions, as those
are met first. The file system triggers the eviction.

Sample configuration for a container garbage collection CR:

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: "2022-11-16T15:34:25Z"
 generation: 4
 labels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1
 name: worker
#...

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: worker-kubeconfig 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 2
 kubeletConfig:
 evictionSoft: 3
 memory.available: "500Mi" 4
 nodefs.available: "10%"
 nodefs.inodesFree: "5%"
 imagefs.available: "15%"
 imagefs.inodesFree: "10%"

CHAPTER 6. WORKING WITH NODES

303

1

2

3

4

5

6

7

8

9

10

Name for the object.

Specify the label from the machine config pool.

For container garbage collection: Type of eviction: evictionSoft or evictionHard.

For container garbage collection: Eviction thresholds based on a specific eviction trigger
signal.

For container garbage collection: Grace periods for the soft eviction. This parameter does
not apply to eviction-hard.

For container garbage collection: Eviction thresholds based on a specific eviction trigger
signal. For evictionHard you must specify all of these parameters. If you do not specify all
parameters, only the specified parameters are applied and the garbage collection will not
function properly.

For container garbage collection: The duration to wait before transitioning out of an
eviction pressure condition.

For image garbage collection: The minimum age for an unused image before the image is
removed by garbage collection.

For image garbage collection: The percent of disk usage (expressed as an integer) that
triggers image garbage collection.

For image garbage collection: The percent of disk usage (expressed as an integer) that
image garbage collection attempts to free.

2. Run the following command to create the CR:

For example:

 evictionSoftGracePeriod: 5
 memory.available: "1m30s"
 nodefs.available: "1m30s"
 nodefs.inodesFree: "1m30s"
 imagefs.available: "1m30s"
 imagefs.inodesFree: "1m30s"
 evictionHard: 6
 memory.available: "200Mi"
 nodefs.available: "5%"
 nodefs.inodesFree: "4%"
 imagefs.available: "10%"
 imagefs.inodesFree: "5%"
 evictionPressureTransitionPeriod: 0s 7
 imageMinimumGCAge: 5m 8
 imageGCHighThresholdPercent: 80 9
 imageGCLowThresholdPercent: 75 10
#...

$ oc create -f <file_name>.yaml

$ oc create -f gc-container.yaml

OpenShift Container Platform 4.15 Nodes

304

Example output

Verification

1. Verify that garbage collection is active by entering the following command. The Machine Config
Pool you specified in the custom resource appears with UPDATING as 'true` until the change is
fully implemented:

Example output

6.9. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

To provide more reliable scheduling and minimize node resource overcommitment, reserve a portion of
the CPU and memory resources for use by the underlying node components, such as kubelet and kube-
proxy, and the remaining system components, such as sshd and NetworkManager. By specifying the
resources to reserve, you provide the scheduler with more information about the remaining CPU and
memory resources that a node has available for use by pods. You can allow OpenShift Container
Platform to automatically determine the optimal system-reserved CPU and memory resources for your
nodes or you can manually determine and set the best resources for your nodes.

IMPORTANT

To manually set resource values, you must use a kubelet config CR. You cannot use a
machine config CR.

6.9.1. Understanding how to allocate resources for nodes

CPU and memory resources reserved for node components in OpenShift Container Platform are based
on two node settings:

Setting Description

kube-reserved This setting is not used with OpenShift Container Platform. Add the CPU
and memory resources that you planned to reserve to the system-
reserved setting.

system-reserved This setting identifies the resources to reserve for the node components
and system components, such as CRI-O and Kubelet. The default
settings depend on the OpenShift Container Platform and Machine
Config Operator versions. Confirm the default systemReserved
parameter on the machine-config-operator repository.

kubeletconfig.machineconfiguration.openshift.io/gc-container created

$ oc get machineconfigpool

NAME CONFIG UPDATED UPDATING
master rendered-master-546383f80705bd5aeaba93 True False
worker rendered-worker-b4c51bb33ccaae6fc4a6a5 False True

CHAPTER 6. WORKING WITH NODES

305

If a flag is not set, the defaults are used. If none of the flags are set, the allocated resource is set to the
node’s capacity as it was before the introduction of allocatable resources.

NOTE

Any CPUs specifically reserved using the reservedSystemCPUs parameter are not
available for allocation using kube-reserved or system-reserved.

6.9.1.1. How OpenShift Container Platform computes allocated resources

An allocated amount of a resource is computed based on the following formula:

[Allocatable] = [Node Capacity] - [system-reserved] - [Hard-Eviction-Thresholds]

NOTE

The withholding of Hard-Eviction-Thresholds from Allocatable improves system
reliability because the value for Allocatable is enforced for pods at the node level.

If Allocatable is negative, it is set to 0.

Each node reports the system resources that are used by the container runtime and kubelet. To simplify
configuring the system-reserved parameter, view the resource use for the node by using the node
summary API. The node summary is available at /api/v1/nodes/<node>/proxy/stats/summary.

6.9.1.2. How nodes enforce resource constraints

The node is able to limit the total amount of resources that pods can consume based on the configured
allocatable value. This feature significantly improves the reliability of the node by preventing pods from
using CPU and memory resources that are needed by system services such as the container runtime
and node agent. To improve node reliability, administrators should reserve resources based on a target
for resource use.

The node enforces resource constraints by using a new cgroup hierarchy that enforces quality of
service. All pods are launched in a dedicated cgroup hierarchy that is separate from system daemons.

Administrators should treat system daemons similar to pods that have a guaranteed quality of service.
System daemons can burst within their bounding control groups and this behavior must be managed as
part of cluster deployments. Reserve CPU and memory resources for system daemons by specifying
the amount of CPU and memory resources in system-reserved.

Enforcing system-reserved limits can prevent critical system services from receiving CPU and memory
resources. As a result, a critical system service can be ended by the out-of-memory killer. The
recommendation is to enforce system-reserved only if you have profiled the nodes exhaustively to
determine precise estimates and you are confident that critical system services can recover if any
process in that group is ended by the out-of-memory killer.

6.9.1.3. Understanding Eviction Thresholds

If a node is under memory pressure, it can impact the entire node and all pods running on the node. For
example, a system daemon that uses more than its reserved amount of memory can trigger an out-of-
memory event. To avoid or reduce the probability of system out-of-memory events, the node provides
out-of-resource handling.

OpenShift Container Platform 4.15 Nodes

306

You can reserve some memory using the --eviction-hard flag. The node attempts to evict pods
whenever memory availability on the node drops below the absolute value or percentage. If system
daemons do not exist on a node, pods are limited to the memory capacity - eviction-hard. For this
reason, resources set aside as a buffer for eviction before reaching out of memory conditions are not
available for pods.

The following is an example to illustrate the impact of node allocatable for memory:

Node capacity is 32Gi

--system-reserved is 3Gi

--eviction-hard is set to 100Mi.

For this node, the effective node allocatable value is 28.9Gi. If the node and system components use all
their reservation, the memory available for pods is 28.9Gi, and kubelet evicts pods when it exceeds this
threshold.

If you enforce node allocatable, 28.9Gi, with top-level cgroups, then pods can never exceed 28.9Gi.
Evictions are not performed unless system daemons consume more than 3.1Gi of memory.

If system daemons do not use up all their reservation, with the above example, pods would face memcg
OOM kills from their bounding cgroup before node evictions kick in. To better enforce QoS under this
situation, the node applies the hard eviction thresholds to the top-level cgroup for all pods to be Node
Allocatable + Eviction Hard Thresholds.

If system daemons do not use up all their reservation, the node will evict pods whenever they consume
more than 28.9Gi of memory. If eviction does not occur in time, a pod will be OOM killed if pods
consume 29Gi of memory.

6.9.1.4. How the scheduler determines resource availability

The scheduler uses the value of node.Status.Allocatable instead of node.Status.Capacity to decide if
a node will become a candidate for pod scheduling.

By default, the node will report its machine capacity as fully schedulable by the cluster.

6.9.2. Automatically allocating resources for nodes

OpenShift Container Platform can automatically determine the optimal system-reserved CPU and
memory resources for nodes associated with a specific machine config pool and update the nodes with
those values when the nodes start. By default, the system-reserved CPU is 500m and system-
reserved memory is 1Gi.

To automatically determine and allocate the system-reserved resources on nodes, create a
KubeletConfig custom resource (CR) to set the autoSizingReserved: true parameter. A script on each
node calculates the optimal values for the respective reserved resources based on the installed CPU
and memory capacity on each node. The script takes into account that increased capacity requires a
corresponding increase in the reserved resources.

Automatically determining the optimal system-reserved settings ensures that your cluster is running
efficiently and prevents node failure due to resource starvation of system components, such as CRI-O
and kubelet, without your needing to manually calculate and update the values.

This feature is disabled by default.

Prerequisites

CHAPTER 6. WORKING WITH NODES

307

1

1

2

Prerequisites

1. Obtain the label associated with the static MachineConfigPool object for the type of node you
want to configure by entering the following command:

For example:

Example output

The label appears under Labels.

TIP

If an appropriate label is not present, add a key/value pair such as:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a custom resource (CR) for your configuration change:

Sample configuration for a resource allocation CR

Assign a name to CR.

Add the autoSizingReserved parameter set to true to allow OpenShift Container
Platform to automatically determine and allocate the system-reserved resources on the
nodes associated with the specified label. To disable automatic allocation on those nodes,

$ oc edit machineconfigpool <name>

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: "2022-11-16T15:34:25Z"
 generation: 4
 labels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1
 name: worker
#...

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: dynamic-node 1
spec:
 autoSizingReserved: true 2
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 3
#...

OpenShift Container Platform 4.15 Nodes

308

3

nodes associated with the specified label. To disable automatic allocation on those nodes,
set this parameter to false.

Specify the label from the machine config pool that you configured in the "Prerequisites"
section. You can choose any desired labels for the machine config pool, such as custom-
kubelet: small-pods, or the default label,
pools.operator.machineconfiguration.openshift.io/worker: "".

The previous example enables automatic resource allocation on all worker nodes. OpenShift
Container Platform drains the nodes, applies the kubelet config, and restarts the nodes.

2. Create the CR by entering the following command:

Verification

1. Log in to a node you configured by entering the following command:

2. Set /host as the root directory within the debug shell:

3. View the /etc/node-sizing.env file:

Example output

The kubelet uses the system-reserved values in the /etc/node-sizing.env file. In the previous
example, the worker nodes are allocated 0.08 CPU and 3 Gi of memory. It can take several
minutes for the optimal values to appear.

6.9.3. Manually allocating resources for nodes

OpenShift Container Platform supports the CPU and memory resource types for allocation. The
ephemeral-resource resource type is also supported. For the cpu type, you specify the resource
quantity in units of cores, such as 200m, 0.5, or 1. For memory and ephemeral-storage, you specify the
resource quantity in units of bytes, such as 200Ki, 50Mi, or 5Gi. By default, the system-reserved CPU is
500m and system-reserved memory is 1Gi.

As an administrator, you can set these values by using a kubelet config custom resource (CR) through a
set of <resource_type>=<resource_quantity> pairs (e.g., cpu=200m,memory=512Mi).

IMPORTANT

You must use a kubelet config CR to manually set resource values. You cannot use a
machine config CR.

For details on the recommended system-reserved values, refer to the recommended system-reserved

$ oc create -f <file_name>.yaml

$ oc debug node/<node_name>

chroot /host

SYSTEM_RESERVED_MEMORY=3Gi
SYSTEM_RESERVED_CPU=0.08

CHAPTER 6. WORKING WITH NODES

309

1

For details on the recommended system-reserved values, refer to the recommended system-reserved
values.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command:

For example:

Example output

The label appears under Labels.

TIP

If the label is not present, add a key/value pair such as:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a resource allocation CR

$ oc edit machineconfigpool <name>

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: "2022-11-16T15:34:25Z"
 generation: 4
 labels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1
 name: worker
#...

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-allocatable 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 2
 kubeletConfig:
 systemReserved: 3

OpenShift Container Platform 4.15 Nodes

310

https://access.redhat.com/solutions/5843241

1

2

3

1

Assign a name to CR.

Specify the label from the machine config pool.

Specify the resources to reserve for the node components and system components.

2. Run the following command to create the CR:

6.10. ALLOCATING SPECIFIC CPUS FOR NODES IN A CLUSTER

When using the static CPU Manager policy, you can reserve specific CPUs for use by specific nodes in
your cluster. For example, on a system with 24 CPUs, you could reserve CPUs numbered 0 - 3 for the
control plane allowing the compute nodes to use CPUs 4 - 23.

6.10.1. Reserving CPUs for nodes

To explicitly define a list of CPUs that are reserved for specific nodes, create a KubeletConfig custom
resource (CR) to define the reservedSystemCPUs parameter. This list supersedes the CPUs that
might be reserved using the systemReserved parameter.

Procedure

1. Obtain the label associated with the machine config pool (MCP) for the type of node you want
to configure:

For example:

Example output

Get the MCP label.

2. Create a YAML file for the KubeletConfig CR:

 cpu: 1000m
 memory: 1Gi
#...

$ oc create -f <file_name>.yaml

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

Name: worker
Namespace:
Labels: machineconfiguration.openshift.io/mco-built-in=
 pools.operator.machineconfiguration.openshift.io/worker= 1
Annotations: <none>
API Version: machineconfiguration.openshift.io/v1
Kind: MachineConfigPool
#...

CHAPTER 6. WORKING WITH NODES

311

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#using-cpu-manager-and-topology-manager

1

2

3

Specify a name for the CR.

Specify the core IDs of the CPUs you want to reserve for the nodes associated with the
MCP.

Specify the label from the MCP.

3. Create the CR object:

Additional resources

For more information on the systemReserved parameter, see Allocating resources for nodes in
an OpenShift Container Platform cluster.

6.11. ENABLING TLS SECURITY PROFILES FOR THE KUBELET

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by the kubelet when it is acting as an HTTP server. The kubelet uses its HTTP/GRPC server to
communicate with the Kubernetes API server, which sends commands to pods, gathers logs, and run
exec commands on pods through the kubelet.

A TLS security profile defines the TLS ciphers that the Kubernetes API server must use when
connecting with the kubelet to protect communication between the kubelet and the Kubernetes API
server.

NOTE

By default, when the kubelet acts as a client with the Kubernetes API server, it
automatically negotiates the TLS parameters with the API server.

6.11.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations .

You can specify one of the following TLS security profiles for each component:

Table 6.4. TLS security profiles

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-reserved-cpus 1
spec:
 kubeletConfig:
 reservedSystemCPUs: "0,1,2,3" 2
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 3
#...

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.15 Nodes

312

https://wiki.mozilla.org/Security/Server_Side_TLS

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
It is the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING

Use caution when using a Custom profile,
because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

6.11.2. Configuring the TLS security profile for the kubelet

To configure a TLS security profile for the kubelet when it is acting as an HTTP server, create a
KubeletConfig custom resource (CR) to specify a predefined or custom TLS security profile for specific
nodes. If a TLS security profile is not configured, the default TLS security profile is Intermediate.

Sample KubeletConfig CR that configures the Old TLS security profile on worker nodes

CHAPTER 6. WORKING WITH NODES

313

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

1

2

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
kubelet.conf file on a configured node.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

Procedure

1. Create a KubeletConfig CR to configure the TLS security profile:

Sample KubeletConfig CR for a Custom profile

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

custom:

apiVersion: config.openshift.io/v1
kind: KubeletConfig
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: ""
#...

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-kubelet-tls-security-profile
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 4
#...

OpenShift Container Platform 4.15 Nodes

314

3

4

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

Optional: Specify the machine config pool label for the nodes you want to apply the TLS
security profile.

2. Create the KubeletConfig object:

Depending on the number of worker nodes in the cluster, wait for the configured nodes to be
rebooted one by one.

Verification

To verify that the profile is set, perform the following steps after the nodes are in the Ready state:

1. Start a debug session for a configured node:

2. Set /host as the root directory within the debug shell:

3. View the kubelet.conf file:

Example output

6.12. MACHINE CONFIG DAEMON METRICS

The Machine Config Daemon is a part of the Machine Config Operator. It runs on every node in the
cluster. The Machine Config Daemon manages configuration changes and updates on each of the
nodes.

6.12.1. Machine Config Daemon metrics

Beginning with OpenShift Container Platform 4.3, the Machine Config Daemon provides a set of

$ oc create -f <filename>

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-4.4# cat /etc/kubernetes/kubelet.conf

 "kind": "KubeletConfiguration",
 "apiVersion": "kubelet.config.k8s.io/v1beta1",
#...
 "tlsCipherSuites": [
 "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
 "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
 "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
 "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
 "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
 "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"
],
 "tlsMinVersion": "VersionTLS12",
#...

CHAPTER 6. WORKING WITH NODES

315

Beginning with OpenShift Container Platform 4.3, the Machine Config Daemon provides a set of
metrics. These metrics can be accessed using the Prometheus Cluster Monitoring stack.

The following table describes this set of metrics. Some entries contain commands for getting specific
logs. Hpwever, the most comprehensive set of logs is available using the oc adm must-gather
command.

NOTE

Metrics marked with * in the Name and Description columns represent serious errors
that might cause performance problems. Such problems might prevent updates and
upgrades from proceeding.

Table 6.5. MCO metrics

Name Format Description Notes

mcd_host_o
s_and_versio
n

[]string{"os",
"version"}

Shows the OS that MCD is
running on, such as RHCOS or
RHEL. In case of RHCOS, the
version is provided.

mcd_drain_e
rr*

 Logs errors received during failed
drain. *

While drains might need multiple
tries to succeed, terminal failed
drains prevent updates from
proceeding. The drain_time
metric, which shows how much
time the drain took, might help
with troubleshooting.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_pivot_e
rr*

[]string{"err",
"node",
"pivot_target
"}

Logs errors encountered during
pivot. *

Pivot errors might prevent OS
upgrades from proceeding.

For further investigation, run this
command to see the logs from
the machine-config-daemon
container:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

OpenShift Container Platform 4.15 Nodes

316

mcd_state []string{"stat
e", "reason"}

State of Machine Config Daemon
for the indicated node. Possible
states are "Done", "Working", and
"Degraded". In case of
"Degraded", the reason is
included.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_kubelet
_state*

 Logs kubelet health failures. * This is expected to be empty,
with failure count of 0. If failure
count exceeds 2, the error
indicating threshold is exceeded.
This indicates a possible issue
with the health of the kubelet.

For further investigation, run this
command to access the node and
see all its logs:

$ oc debug node/<node> — 
chroot /host journalctl -u
kubelet

mcd_reboot_
err*

[]string{"mes
sage", "err",
"node"}

Logs the failed reboots and the
corresponding errors. *

This is expected to be empty,
which indicates a successful
reboot.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_update
_state

[]string{"con
fig", "err"}

Logs success or failure of
configuration updates and the
corresponding errors.

The expected value is rendered-
master/rendered-worker-
XXXX. If the update fails, an error
is present.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

Name Format Description Notes

CHAPTER 6. WORKING WITH NODES

317

Additional resources

Monitoring overview

Gathering data about your cluster

6.13. CREATING INFRASTRUCTURE NODES

IMPORTANT

You can use the advanced machine management and scaling capabilities only in clusters
where the Machine API is operational. Clusters with user-provisioned infrastructure
require additional validation and configuration to use the Machine API.

Clusters with the infrastructure platform type none cannot use the Machine API. This
limitation applies even if the compute machines that are attached to the cluster are
installed on a platform that supports the feature. This parameter cannot be changed
after installation.

To view the platform type for your cluster, run the following command:

You can use infrastructure machine sets to create machines that host only infrastructure components,
such as the default router, the integrated container image registry, and the components for cluster
metrics and monitoring. These infrastructure machines are not counted toward the total number of
subscriptions that are required to run the environment.

In a production deployment, it is recommended that you deploy at least three machine sets to hold
infrastructure components. Both OpenShift Logging and Red Hat OpenShift Service Mesh deploy
Elasticsearch, which requires three instances to be installed on different nodes. Each of these nodes can
be deployed to different availability zones for high availability. This configuration requires three
different machine sets, one for each availability zone. In global Azure regions that do not have multiple
availability zones, you can use availability sets to ensure high availability.

NOTE

After adding the NoSchedule taint on the infrastructure node, existing DNS pods
running on that node are marked as misscheduled. You must either delete or add
toleration on misscheduled DNS pods.

6.13.1. OpenShift Container Platform infrastructure components

Each self-managed Red Hat OpenShift subscription includes entitlements for OpenShift Container
Platform and other OpenShift-related components. These entitlements are included for running
OpenShift Container Platform control plane and infrastructure workloads and do not need to be
accounted for during sizing.

To qualify as an infrastructure node and use the included entitlement, only components that are
supporting the cluster, and not part of an end-user application, can run on those instances. Examples
include the following components:

Kubernetes and OpenShift Container Platform control plane services

$ oc get infrastructure cluster -o jsonpath='{.status.platform}'

OpenShift Container Platform 4.15 Nodes

318

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#monitoring-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/#gathering-cluster-data
https://access.redhat.com/solutions/6592171

The default router

The integrated container image registry

The HAProxy-based Ingress Controller

The cluster metrics collection, or monitoring service, including components for monitoring user-
defined projects

Cluster aggregated logging

Red Hat Quay

Red Hat OpenShift Data Foundation

Red Hat Advanced Cluster Manager

Red Hat Advanced Cluster Security for Kubernetes

Red Hat OpenShift GitOps

Red Hat OpenShift Pipelines

Red Hat OpenShift Service Mesh

Any node that runs any other container, pod, or component is a worker node that your subscription must
cover.

For information about infrastructure nodes and which components can run on infrastructure nodes, see
the "Red Hat OpenShift control plane and infrastructure nodes" section in the OpenShift sizing and
subscription guide for enterprise Kubernetes document.

To create an infrastructure node, you can use a machine set, label the node, or use a machine config
pool.

6.13.1.1. Creating an infrastructure node

IMPORTANT

See Creating infrastructure machine sets for installer-provisioned infrastructure
environments or for any cluster where the control plane nodes are managed by the
machine API.

Requirements of the cluster dictate that infrastructure, also called infra nodes, be provisioned. The
installer only provides provisions for control plane and worker nodes. Worker nodes can be designated as
infrastructure nodes or application, also called app, nodes through labeling.

Procedure

1. Add a label to the worker node that you want to act as application node:

2. Add a label to the worker nodes that you want to act as infrastructure nodes:

$ oc label node <node-name> node-role.kubernetes.io/app=""

CHAPTER 6. WORKING WITH NODES

319

https://www.redhat.com/en/resources/openshift-subscription-sizing-guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#machineset-creating_creating-infrastructure-machinesets
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#creating-infra-machines_creating-infrastructure-machinesets

1

3. Check to see if applicable nodes now have the infra role and app roles:

4. Create a default cluster-wide node selector. The default node selector is applied to pods
created in all namespaces. This creates an intersection with any existing node selectors on a
pod, which additionally constrains the pod’s selector.

IMPORTANT

If the default node selector key conflicts with the key of a pod’s label, then the
default node selector is not applied.

However, do not set a default node selector that might cause a pod to become
unschedulable. For example, setting the default node selector to a specific node
role, such as node-role.kubernetes.io/infra="", when a pod’s label is set to a
different node role, such as node-role.kubernetes.io/master="", can cause the
pod to become unschedulable. For this reason, use caution when setting the
default node selector to specific node roles.

You can alternatively use a project node selector to avoid cluster-wide node
selector key conflicts.

a. Edit the Scheduler object:

b. Add the defaultNodeSelector field with the appropriate node selector:

This example node selector deploys pods on nodes in the us-east-1 region by default.

c. Save the file to apply the changes.

You can now move infrastructure resources to the newly labeled infra nodes.

Additional resources

Moving resources to infrastructure machine sets

$ oc label node <node-name> node-role.kubernetes.io/infra=""

$ oc get nodes

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
spec:
 defaultNodeSelector: topology.kubernetes.io/region=us-east-1 1
...

OpenShift Container Platform 4.15 Nodes

320

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#moving-resources-to-infrastructure-machinesets

CHAPTER 7. WORKING WITH CONTAINERS

7.1. UNDERSTANDING CONTAINERS

The basic units of OpenShift Container Platform applications are called containers. Linux container
technologies are lightweight mechanisms for isolating running processes so that they are limited to
interacting with only their designated resources.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service (often
called a "micro-service"), such as a web server or a database, though containers can be used for arbitrary
workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. OpenShift
Container Platform and Kubernetes add the ability to orchestrate containers across multi-host
installations.

7.1.1. About containers and RHEL kernel memory

Due to Red Hat Enterprise Linux (RHEL) behavior, a container on a node with high CPU usage might
seem to consume more memory than expected. The higher memory consumption could be caused by
the kmem_cache in the RHEL kernel. The RHEL kernel creates a kmem_cache for each cgroup. For
added performance, the kmem_cache contains a cpu_cache, and a node cache for any NUMA nodes.
These caches all consume kernel memory.

The amount of memory stored in those caches is proportional to the number of CPUs that the system
uses. As a result, a higher number of CPUs results in a greater amount of kernel memory being held in
these caches. Higher amounts of kernel memory in these caches can cause OpenShift Container
Platform containers to exceed the configured memory limits, resulting in the container being killed.

To avoid losing containers due to kernel memory issues, ensure that the containers request sufficient
memory. You can use the following formula to estimate the amount of memory consumed by the
kmem_cache, where nproc is the number of processing units available that are reported by the nproc
command. The lower limit of container requests should be this value plus the container memory
requirements:

7.1.2. About the container engine and container runtime

A container engine is a piece of software that processes user requests, including command line options
and image pulls. The container engine uses a container runtime, also called a lower-level container
runtime, to run and manage the components required to deploy and operate containers. You likely will
not need to interact with the container engine or container runtime.

NOTE

The OpenShift Container Platform documentation uses the term container runtime to
refer to the lower-level container runtime. Other documentation can refer to the
container engine as the container runtime.

OpenShift Container Platform uses CRI-O as the container engine and runC or crun as the container

$(nproc) X 1/2 MiB

CHAPTER 7. WORKING WITH CONTAINERS

321

https://www.redhat.com/en/topics/containers#overview

OpenShift Container Platform uses CRI-O as the container engine and runC or crun as the container
runtime. The default container runtime is runC. Both container runtimes adhere to the Open Container
Initiative (OCI) runtime specifications.

CRI-O is a Kubernetes-native container engine implementation that integrates closely with the
operating system to deliver an efficient and optimized Kubernetes experience. The CRI-O container
engine runs as a systemd service on each OpenShift Container Platform cluster node.

runC, developed by Docker and maintained by the Open Container Project, is a lightweight, portable
container runtime written in Go. crun, developed by Red Hat, is a fast and low-memory container
runtime fully written in C. As of OpenShift Container Platform 4.15, you can select between the two.

crun has several improvements over runC, including:

Smaller binary

Quicker processing

Lower memory footprint

runC has some benefits over crun, including:

Most popular OCI container runtime.

Longer tenure in production.

Default container runtime of CRI-O.

You can move between the two container runtimes as needed.

For information on setting which container runtime to use, see Creating a ContainerRuntimeConfig CR
to edit CRI-O parameters.

7.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS
DEPLOYED

OpenShift Container Platform provides init containers, which are specialized containers that run before
application containers and can contain utilities or setup scripts not present in an app image.

7.2.1. Understanding Init Containers

You can use an Init Container resource to perform tasks before the rest of a pod is deployed.

A pod can have Init Containers in addition to application containers. Init containers allow you to
reorganize setup scripts and binding code.

An Init Container can:

Contain and run utilities that are not desirable to include in the app Container image for security
reasons.

Contain utilities or custom code for setup that is not present in an app image. For example,
there is no requirement to make an image FROM another image just to use a tool like sed, awk,
python, or dig during setup.

Use Linux namespaces so that they have different filesystem views from app containers, such as

OpenShift Container Platform 4.15 Nodes

322

https://www.opencontainers.org/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/postinstallation_configuration/#create-a-containerruntimeconfig_post-install-machine-configuration-tasks

Use Linux namespaces so that they have different filesystem views from app containers, such as
access to secrets that application containers are not able to access.

Each Init Container must complete successfully before the next one is started. So, Init Containers
provide an easy way to block or delay the startup of app containers until some set of preconditions are
met.

For example, the following are some ways you can use Init Containers:

Wait for a service to be created with a shell command like:

Register this pod with a remote server from the downward API with a command like:

Wait for some time before starting the app Container with a command like sleep 60.

Clone a git repository into a volume.

Place values into a configuration file and run a template tool to dynamically generate a
configuration file for the main app Container. For example, place the POD_IP value in a
configuration and generate the main app configuration file using Jinja.

See the Kubernetes documentation for more information.

7.2.2. Creating Init Containers

The following example outlines a simple pod which has two Init Containers. The first waits for myservice
and the second waits for mydb. After both containers complete, the pod begins.

Procedure

1. Create the pod for the Init Container:

a. Create a YAML file similar to the following:

for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; done; exit 1

$ curl -X POST
http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d
‘instance=$()&ip=$()’

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: myapp-container
 image: registry.access.redhat.com/ubi9/ubi:latest
 command: ['sh', '-c', 'echo The app is running! && sleep 3600']

CHAPTER 7. WORKING WITH CONTAINERS

323

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

b. Create the pod:

c. View the status of the pod:

Example output

The pod status, Init:0/2, indicates it is waiting for the two services.

2. Create the myservice service.

a. Create a YAML file similar to the following:

b. Create the pod:

 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 initContainers:
 - name: init-myservice
 image: registry.access.redhat.com/ubi9/ubi:latest
 command: ['sh', '-c', 'until getent hosts myservice; do echo waiting for myservice; sleep
2; done;']
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 - name: init-mydb
 image: registry.access.redhat.com/ubi9/ubi:latest
 command: ['sh', '-c', 'until getent hosts mydb; do echo waiting for mydb; sleep 2;
done;']
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f myapp.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:0/2 0 5s

kind: Service
apiVersion: v1
metadata:
 name: myservice
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

$ oc create -f myservice.yaml

OpenShift Container Platform 4.15 Nodes

324

c. View the status of the pod:

Example output

The pod status, Init:1/2, indicates it is waiting for one service, in this case the mydb service.

3. Create the mydb service:

a. Create a YAML file similar to the following:

b. Create the pod:

c. View the status of the pod:

Example output

The pod status indicated that it is no longer waiting for the services and is running.

7.3. USING VOLUMES TO PERSIST CONTAINER DATA

Files in a container are ephemeral. As such, when a container crashes or stops, the data is lost. You can
use volumes to persist the data used by the containers in a pod. A volume is directory, accessible to the
Containers in a pod, where data is stored for the life of the pod.

7.3.1. Understanding volumes

Volumes are mounted file systems available to pods and their containers which may be backed by a
number of host-local or network attached storage endpoints. Containers are not persistent by default;
on restart, their contents are cleared.

To ensure that the file system on the volume contains no errors and, if errors are present, to repair them

$ oc get pods

NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:1/2 0 5s

kind: Service
apiVersion: v1
metadata:
 name: mydb
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9377

$ oc create -f mydb.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
myapp-pod 1/1 Running 0 2m

CHAPTER 7. WORKING WITH CONTAINERS

325

To ensure that the file system on the volume contains no errors and, if errors are present, to repair them
when possible, OpenShift Container Platform invokes the fsck utility prior to the mount utility. This
occurs when either adding a volume or updating an existing volume.

The simplest volume type is emptyDir, which is a temporary directory on a single machine.
Administrators may also allow you to request a persistent volume that is automatically attached to your
pods.

NOTE

emptyDir volume storage may be restricted by a quota based on the pod’s FSGroup, if
the FSGroup parameter is enabled by your cluster administrator.

7.3.2. Working with volumes using the OpenShift Container Platform CLI

You can use the CLI command oc set volume to add and remove volumes and volume mounts for any
object that has a pod template like replication controllers or deployment configs. You can also list
volumes in pods or any object that has a pod template.

The oc set volume command uses the following general syntax:

Object selection

Specify one of the following for the object_selection parameter in the oc set volume command:

Table 7.1. Object Selection

Syntax Description Example

<object_type> <name> Selects <name> of type
<object_type>.

deploymentConfig registry

<object_type>/<name> Selects <name> of type
<object_type>.

deploymentConfig/registry

<object_type>--
selector=<object_label_selec
tor>

Selects resources of type
<object_type> that matched
the given label selector.

deploymentConfig--
selector="name=registry"

<object_type> --all Selects all resources of type
<object_type>.

deploymentConfig --all

-f or --filename=<file_name> File name, directory, or URL to file
to use to edit the resource.

-f registry-deployment-
config.json

Operation

Specify --add or --remove for the operation parameter in the oc set volume command.

Mandatory parameters

Any mandatory parameters are specific to the selected operation and are discussed in later sections.

Options

$ oc set volume <object_selection> <operation> <mandatory_parameters> <options>

OpenShift Container Platform 4.15 Nodes

326

Any options are specific to the selected operation and are discussed in later sections.

7.3.3. Listing volumes and volume mounts in a pod

You can list volumes and volume mounts in pods or pod templates:

Procedure

To list volumes:

List volume supported options:

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

For example:

To list all volumes for pod p1:

To list volume v1 defined on all deployment configs:

7.3.4. Adding volumes to a pod

You can add volumes and volume mounts to a pod.

Procedure

To add a volume, a volume mount, or both to pod templates:

Table 7.2. Supported Options for Adding Volumes

Option Description Default

--name Name of the volume. Automatically generated, if not
specified.

$ oc set volume <object_type>/<name> [options]

$ oc set volume pod/p1

$ oc set volume dc --all --name=v1

$ oc set volume <object_type>/<name> --add [options]

CHAPTER 7. WORKING WITH CONTAINERS

327

-t, --type Name of the volume source.
Supported values: emptyDir,
hostPath, secret, configmap,
persistentVolumeClaim or
projected.

emptyDir

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

-m, --mount-path Mount path inside the selected
containers. Do not mount to the
container root, /, or any path that
is the same in the host and the
container. This can corrupt your
host system if the container is
sufficiently privileged, such as the
host /dev/pts files. It is safe to
mount the host by using /host.

--path Host path. Mandatory parameter
for --type=hostPath. Do not
mount to the container root, /, or
any path that is the same in the
host and the container. This can
corrupt your host system if the
container is sufficiently privileged,
such as the host /dev/pts files. It
is safe to mount the host by using
/host.

--secret-name Name of the secret. Mandatory
parameter for --type=secret.

--configmap-name Name of the configmap.
Mandatory parameter for --
type=configmap.

--claim-name Name of the persistent volume
claim. Mandatory parameter for --
type=persistentVolumeClaim
.

--source Details of volume source as a
JSON string. Recommended if
the desired volume source is not
supported by --type.

Option Description Default

OpenShift Container Platform 4.15 Nodes

328

1

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Option Description Default

For example:

To add a new volume source emptyDir to the registry DeploymentConfig object:

TIP

You can alternatively apply the following YAML to add the volume:

Example 7.1. Sample deployment config with an added volume

Add the volume source emptyDir.

To add volume v1 with secret secret1 for replication controller r1 and mount inside the

$ oc set volume dc/registry --add

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: registry
 namespace: registry
spec:
 replicas: 3
 selector:
 app: httpd
 template:
 metadata:
 labels:
 app: httpd
 spec:
 volumes: 1
 - name: volume-pppsw
 emptyDir: {}
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP

CHAPTER 7. WORKING WITH CONTAINERS

329

1
2

To add volume v1 with secret secret1 for replication controller r1 and mount inside the
containers at /data:

TIP

You can alternatively apply the following YAML to add the volume:

Example 7.2. Sample replication controller with added volume and secret

Add the volume and secret.
Add the container mount path.

To add existing persistent volume v1 with claim name pvc1 to deployment configuration dc.json
on disk, mount the volume on container c1 at /data, and update the DeploymentConfig object
on the server:

$ oc set volume rc/r1 --add --name=v1 --type=secret --secret-name='secret1' --mount-
path=/data

kind: ReplicationController
apiVersion: v1
metadata:
 name: example-1
 namespace: example
spec:
 replicas: 0
 selector:
 app: httpd
 deployment: example-1
 deploymentconfig: example
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: httpd
 deployment: example-1
 deploymentconfig: example
 spec:
 volumes: 1
 - name: v1
 secret:
 secretName: secret1
 defaultMode: 420
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 volumeMounts: 2
 - name: v1
 mountPath: /data

$ oc set volume -f dc.json --add --name=v1 --type=persistentVolumeClaim \
 --claim-name=pvc1 --mount-path=/data --containers=c1

OpenShift Container Platform 4.15 Nodes

330

1
2

TIP

You can alternatively apply the following YAML to add the volume:

Example 7.3. Sample deployment config with persistent volume added

Add the persistent volume claim named `pvc1.
Add the container mount path.

To add a volume v1 based on Git repository https://github.com/namespace1/project1 with
revision 5125c45f9f563 for all replication controllers:

7.3.5. Updating volumes and volume mounts in a pod

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example
 namespace: example
spec:
 replicas: 3
 selector:
 app: httpd
 template:
 metadata:
 labels:
 app: httpd
 spec:
 volumes:
 - name: volume-pppsw
 emptyDir: {}
 - name: v1 1
 persistentVolumeClaim:
 claimName: pvc1
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP
 volumeMounts: 2
 - name: v1
 mountPath: /data

$ oc set volume rc --all --add --name=v1 \
 --source='{"gitRepo": {
 "repository": "https://github.com/namespace1/project1",
 "revision": "5125c45f9f563"
 }}'

CHAPTER 7. WORKING WITH CONTAINERS

331

You can modify the volumes and volume mounts in a pod.

Procedure

Updating existing volumes using the --overwrite option:

For example:

To replace existing volume v1 for replication controller r1 with existing persistent volume claim
pvc1:

TIP

$ oc set volume <object_type>/<name> --add --overwrite [options]

$ oc set volume rc/r1 --add --overwrite --name=v1 --type=persistentVolumeClaim --claim-
name=pvc1

OpenShift Container Platform 4.15 Nodes

332

1

TIP

You can alternatively apply the following YAML to replace the volume:

Example 7.4. Sample replication controller with persistent volume claim named pvc1

Set persistent volume claim to pvc1.

To change the DeploymentConfig object d1 mount point to /opt for volume v1:

TIP

kind: ReplicationController
apiVersion: v1
metadata:
 name: example-1
 namespace: example
spec:
 replicas: 0
 selector:
 app: httpd
 deployment: example-1
 deploymentconfig: example
 template:
 metadata:
 labels:
 app: httpd
 deployment: example-1
 deploymentconfig: example
 spec:
 volumes:
 - name: v1 1
 persistentVolumeClaim:
 claimName: pvc1
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP
 volumeMounts:
 - name: v1
 mountPath: /data

$ oc set volume dc/d1 --add --overwrite --name=v1 --mount-path=/opt

CHAPTER 7. WORKING WITH CONTAINERS

333

1

TIP

You can alternatively apply the following YAML to change the mount point:

Example 7.5. Sample deployment config with mount point set to opt.

Set the mount point to /opt.

7.3.6. Removing volumes and volume mounts from a pod

You can remove a volume or volume mount from a pod.

Procedure

To remove a volume from pod templates:

Table 7.3. Supported options for removing volumes

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example
 namespace: example
spec:
 replicas: 3
 selector:
 app: httpd
 template:
 metadata:
 labels:
 app: httpd
 spec:
 volumes:
 - name: volume-pppsw
 emptyDir: {}
 - name: v2
 persistentVolumeClaim:
 claimName: pvc1
 - name: v1
 persistentVolumeClaim:
 claimName: pvc1
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP
 volumeMounts: 1
 - name: v1
 mountPath: /opt

$ oc set volume <object_type>/<name> --remove [options]

OpenShift Container Platform 4.15 Nodes

334

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

--confirm Indicate that you want to remove
multiple volumes at once.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

For example:

To remove a volume v1 from the DeploymentConfig object d1:

To unmount volume v1 from container c1 for the DeploymentConfig object d1 and remove the
volume v1 if it is not referenced by any containers on d1:

To remove all volumes for replication controller r1:

7.3.7. Configuring volumes for multiple uses in a pod

You can configure a volume to allows you to share one volume for multiple uses in a single pod using the
volumeMounts.subPath property to specify a subPath value inside a volume instead of the volume’s
root.

NOTE

You cannot add a subPath parameter to an existing scheduled pod.

Procedure

1. To view the list of files in the volume, run the oc rsh command:

$ oc set volume dc/d1 --remove --name=v1

$ oc set volume dc/d1 --remove --name=v1 --containers=c1

$ oc set volume rc/r1 --remove --confirm

$ oc rsh <pod>

CHAPTER 7. WORKING WITH CONTAINERS

335

1

2

Example output

2. Specify the subPath:

Example Pod spec with subPath parameter

Databases are stored in the mysql folder.

HTML content is stored in the html folder.

7.4. MAPPING VOLUMES USING PROJECTED VOLUMES

A projected volume maps several existing volume sources into the same directory.

The following types of volume sources can be projected:

sh-4.2$ ls /path/to/volume/subpath/mount
example_file1 example_file2 example_file3

apiVersion: v1
kind: Pod
metadata:
 name: my-site
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: mysql
 image: mysql
 volumeMounts:
 - mountPath: /var/lib/mysql
 name: site-data
 subPath: mysql 1
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 - name: php
 image: php
 volumeMounts:
 - mountPath: /var/www/html
 name: site-data
 subPath: html 2
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: site-data
 persistentVolumeClaim:
 claimName: my-site-data

OpenShift Container Platform 4.15 Nodes

336

Secrets

Config Maps

Downward API

NOTE

All sources are required to be in the same namespace as the pod.

7.4.1. Understanding projected volumes

Projected volumes can map any combination of these volume sources into a single directory, allowing
the user to:

automatically populate a single volume with the keys from multiple secrets, config maps, and
with downward API information, so that I can synthesize a single directory with various sources
of information;

populate a single volume with the keys from multiple secrets, config maps, and with downward
API information, explicitly specifying paths for each item, so that I can have full control over the
contents of that volume.

IMPORTANT

When the RunAsUser permission is set in the security context of a Linux-based pod, the
projected files have the correct permissions set, including container user ownership.
However, when the Windows equivalent RunAsUsername permission is set in a Windows
pod, the kubelet is unable to correctly set ownership on the files in the projected volume.

Therefore, the RunAsUsername permission set in the security context of a Windows pod
is not honored for Windows projected volumes running in OpenShift Container Platform.

The following general scenarios show how you can use projected volumes.

Config map, secrets, Downward API.

Projected volumes allow you to deploy containers with configuration data that includes passwords.
An application using these resources could be deploying Red Hat OpenStack Platform (RHOSP) on
Kubernetes. The configuration data might have to be assembled differently depending on if the
services are going to be used for production or for testing. If a pod is labeled with production or
testing, the downward API selector metadata.labels can be used to produce the correct RHOSP
configs.

Config map + secrets.

Projected volumes allow you to deploy containers involving configuration data and passwords. For
example, you might execute a config map with some sensitive encrypted tasks that are decrypted
using a vault password file.

ConfigMap + Downward API.

Projected volumes allow you to generate a config including the pod name (available via the
metadata.name selector). This application can then pass the pod name along with requests to easily
determine the source without using IP tracking.

Secrets + Downward API.

Projected volumes allow you to use a secret as a public key to encrypt the namespace of the pod

CHAPTER 7. WORKING WITH CONTAINERS

337

Projected volumes allow you to use a secret as a public key to encrypt the namespace of the pod
(available via the metadata.namespace selector). This example allows the Operator to use the
application to deliver the namespace information securely without using an encrypted transport.

7.4.1.1. Example Pod specs

The following are examples of Pod specs for creating projected volumes.

Pod with a secret, a Downward API, and a config map

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: container-test
 image: busybox
 volumeMounts: 1
 - name: all-in-one
 mountPath: "/projected-volume" 2
 readOnly: true 3
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes: 4
 - name: all-in-one 5
 projected:
 defaultMode: 0400 6
 sources:
 - secret:
 name: mysecret 7
 items:
 - key: username
 path: my-group/my-username 8
 - downwardAPI: 9
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: container-test
 resource: limits.cpu
 - configMap: 10
 name: myconfigmap
 items:

OpenShift Container Platform 4.15 Nodes

338

1

2

3

4

5

6

7

8

9

10

11

Add a volumeMounts section for each container that needs the secret.

Specify a path to an unused directory where the secret will appear.

Set readOnly to true.

Add a volumes block to list each projected volume source.

Specify any name for the volume.

Set the execute permission on the files.

Add a secret. Enter the name of the secret object. Each secret you want to use must be listed.

Specify the path to the secrets file under the mountPath. Here, the secrets file is in /projected-
volume/my-group/my-username.

Add a Downward API source.

Add a ConfigMap source.

Set the mode for the specific projection

NOTE

If there are multiple containers in the pod, each container needs a volumeMounts
section, but only one volumes section is needed.

Pod with multiple secrets with a non-default permission mode set

 - key: config
 path: my-group/my-config
 mode: 0777 11

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

CHAPTER 7. WORKING WITH CONTAINERS

339

NOTE

The defaultMode can only be specified at the projected level and not for each volume
source. However, as illustrated above, you can explicitly set the mode for each individual
projection.

7.4.1.2. Pathing Considerations

Collisions Between Keys when Configured Paths are Identical

If you configure any keys with the same path, the pod spec will not be accepted as valid. In the
following example, the specified path for mysecret and myconfigmap are the same:

 volumes:
 - name: all-in-one
 projected:
 defaultMode: 0755
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/my-username
 - secret:
 name: mysecret2
 items:
 - key: password
 path: my-group/my-password
 mode: 511

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret

OpenShift Container Platform 4.15 Nodes

340

Consider the following situations related to the volume file paths.

Collisions Between Keys without Configured Paths

The only run-time validation that can occur is when all the paths are known at pod creation, similar to
the above scenario. Otherwise, when a conflict occurs the most recent specified resource will
overwrite anything preceding it (this is true for resources that are updated after pod creation as
well).

Collisions when One Path is Explicit and the Other is Automatically Projected

In the event that there is a collision due to a user specified path matching data that is automatically
projected, the latter resource will overwrite anything preceding it as before

7.4.2. Configuring a Projected Volume for a Pod

When creating projected volumes, consider the volume file path situations described in Understanding
projected volumes.

The following example shows how to use a projected volume to mount an existing secret volume source.
The steps can be used to create a user name and password secrets from local files. You then create a
pod that runs one container, using a projected volume to mount the secrets into the same shared
directory.

The user name and password values can be any valid string that is base64 encoded.

The following example shows admin in base64:

Example output

The following example shows the password 1f2d1e2e67df in base64:

Example output

Procedure

To use a projected volume to mount an existing secret volume source.

 items:
 - key: username
 path: my-group/data
 - configMap:
 name: myconfigmap
 items:
 - key: config
 path: my-group/data

$ echo -n "admin" | base64

YWRtaW4=

$ echo -n "1f2d1e2e67df" | base64

MWYyZDFlMmU2N2Rm

CHAPTER 7. WORKING WITH CONTAINERS

341

1. Create the secret:

a. Create a YAML file similar to the following, replacing the password and user information as
appropriate:

b. Use the following command to create the secret:

For example:

Example output

c. You can check that the secret was created using the following commands:

For example:

Example output

For example:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=

$ oc create -f <secrets-filename>

$ oc create -f secret.yaml

secret "mysecret" created

$ oc get secret <secret-name>

$ oc get secret mysecret

NAME TYPE DATA AGE
mysecret Opaque 2 17h

$ oc get secret <secret-name> -o yaml

$ oc get secret mysecret -o yaml

apiVersion: v1
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=
kind: Secret
metadata:
 creationTimestamp: 2017-05-30T20:21:38Z

OpenShift Container Platform 4.15 Nodes

342

1

2. Create a pod with a projected volume.

a. Create a YAML file similar to the following, including a volumes section:

The name of the secret you created.

b. Create the pod from the configuration file:

For example:

Example output

 name: mysecret
 namespace: default
 resourceVersion: "2107"
 selfLink: /api/v1/namespaces/default/secrets/mysecret
 uid: 959e0424-4575-11e7-9f97-fa163e4bd54c
type: Opaque

kind: Pod
metadata:
 name: test-projected-volume
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-projected-volume
 image: busybox
 args:
 - sleep
 - "86400"
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret 1

$ oc create -f <your_yaml_file>.yaml

$ oc create -f secret-pod.yaml

pod "test-projected-volume" created

CHAPTER 7. WORKING WITH CONTAINERS

343

3. Verify that the pod container is running, and then watch for changes to the pod:

For example:

The output should appear similar to the following:

Example output

4. In another terminal, use the oc exec command to open a shell to the running container:

For example:

5. In your shell, verify that the projected-volumes directory contains your projected sources:

Example output

7.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS

The Downward API is a mechanism that allows containers to consume information about API objects
without coupling to OpenShift Container Platform. Such information includes the pod’s name,
namespace, and resource values. Containers can consume information from the downward API using
environment variables or a volume plugin.

7.5.1. Expose pod information to Containers using the Downward API

The Downward API contains such information as the pod’s name, project, and resource values.
Containers can consume information from the downward API using environment variables or a volume
plugin.

Fields within the pod are selected using the FieldRef API type. FieldRef has two fields:

$ oc get pod <name>

$ oc get pod test-projected-volume

NAME READY STATUS RESTARTS AGE
test-projected-volume 1/1 Running 0 14s

$ oc exec -it <pod> <command>

$ oc exec -it test-projected-volume -- /bin/sh

/ # ls

bin home root tmp
dev proc run usr
etc projected-volume sys var

OpenShift Container Platform 4.15 Nodes

344

Field Description

fieldPath The path of the field to select, relative to the pod.

apiVersion The API version to interpret the fieldPath selector
within.

Currently, the valid selectors in the v1 API include:

Selector Description

metadata.name The pod’s name. This is supported in both
environment variables and volumes.

metadata.namespace The pod’s namespace.This is supported in both
environment variables and volumes.

metadata.labels The pod’s labels. This is only supported in volumes
and not in environment variables.

metadata.annotations The pod’s annotations. This is only supported in
volumes and not in environment variables.

status.podIP The pod’s IP. This is only supported in environment
variables and not volumes.

The apiVersion field, if not specified, defaults to the API version of the enclosing pod template.

7.5.2. Understanding how to consume container values using the downward API

You containers can consume API values using environment variables or a volume plugin. Depending on
the method you choose, containers can consume:

Pod name

Pod project/namespace

Pod annotations

Pod labels

Annotations and labels are available using only a volume plugin.

7.5.2.1. Consuming container values using environment variables

When using a container’s environment variables, use the EnvVar type’s valueFrom field (of type
EnvVarSource) to specify that the variable’s value should come from a FieldRef source instead of the
literal value specified by the value field.

Only constant attributes of the pod can be consumed this way, as environment variables cannot be

CHAPTER 7. WORKING WITH CONTAINERS

345

Only constant attributes of the pod can be consumed this way, as environment variables cannot be
updated once a process is started in a way that allows the process to be notified that the value of a
variable has changed. The fields supported using environment variables are:

Pod name

Pod project/namespace

Procedure

1. Create a new pod spec that contains the environment variables you want the container to
consume:

a. Create a pod.yaml file similar to the following:

b. Create the pod from the pod.yaml file:

Verification

Check the container’s logs for the MY_POD_NAME and MY_POD_NAMESPACE values:

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never
...

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

OpenShift Container Platform 4.15 Nodes

346

7.5.2.2. Consuming container values using a volume plugin

You containers can consume API values using a volume plugin.

Containers can consume:

Pod name

Pod project/namespace

Pod annotations

Pod labels

Procedure

To use the volume plugin:

1. Create a new pod spec that contains the environment variables you want the container to
consume:

a. Create a volume-pod.yaml file similar to the following:

kind: Pod
apiVersion: v1
metadata:
 labels:
 zone: us-east-coast
 cluster: downward-api-test-cluster1
 rack: rack-123
 name: dapi-volume-test-pod
 annotations:
 annotation1: "345"
 annotation2: "456"
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: volume-test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c", "cat /tmp/etc/pod_labels /tmp/etc/pod_annotations"]
 volumeMounts:
 - name: podinfo
 mountPath: /tmp/etc
 readOnly: false
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: podinfo
 downwardAPI:
 defaultMode: 420
 items:
 - fieldRef:

CHAPTER 7. WORKING WITH CONTAINERS

347

b. Create the pod from the volume-pod.yaml file:

Verification

Check the container’s logs and verify the presence of the configured fields:

Example output

7.5.3. Understanding how to consume container resources using the Downward API

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits so that image and application authors can correctly create an image for specific
environments.

You can do this using environment variable or a volume plugin.

7.5.3.1. Consuming container resources using environment variables

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits using environment variables.

When creating the pod configuration, specify environment variables that correspond to the contents of
the resources field in the spec.container field.

NOTE

If the resource limits are not included in the container configuration, the downward API
defaults to the node’s CPU and memory allocatable values.

 fieldPath: metadata.name
 path: pod_name
 - fieldRef:
 fieldPath: metadata.namespace
 path: pod_namespace
 - fieldRef:
 fieldPath: metadata.labels
 path: pod_labels
 - fieldRef:
 fieldPath: metadata.annotations
 path: pod_annotations
 restartPolicy: Never
...

$ oc create -f volume-pod.yaml

$ oc logs -p dapi-volume-test-pod

cluster=downward-api-test-cluster1
rack=rack-123
zone=us-east-coast
annotation1=345
annotation2=456
kubernetes.io/config.source=api

OpenShift Container Platform 4.15 Nodes

348

Procedure

1. Create a new pod spec that contains the resources you want to inject:

a. Create a pod.yaml file similar to the following:

b. Create the pod from the pod.yaml file:

7.5.3.2. Consuming container resources using a volume plugin

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits using a volume plugin.

When creating the pod configuration, use the spec.volumes.downwardAPI.items field to describe the
desired resources that correspond to the spec.resources field.

NOTE

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["/bin/sh", "-c", "env"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 env:
 - name: MY_CPU_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.cpu
 - name: MY_CPU_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.cpu
 - name: MY_MEM_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.memory
 - name: MY_MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.memory
...

$ oc create -f pod.yaml

CHAPTER 7. WORKING WITH CONTAINERS

349

NOTE

If the resource limits are not included in the container configuration, the Downward API
defaults to the node’s CPU and memory allocatable values.

Procedure

1. Create a new pod spec that contains the resources you want to inject:

a. Create a pod.yaml file similar to the following:

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: client-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["sh", "-c", "while true; do echo; if [[-e /etc/cpu_limit]]; then cat
/etc/cpu_limit; fi; if [[-e /etc/cpu_request]]; then cat /etc/cpu_request; fi; if [[-e
/etc/mem_limit]]; then cat /etc/mem_limit; fi; if [[-e /etc/mem_request]]; then cat
/etc/mem_request; fi; sleep 5; done"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.cpu
 - path: "cpu_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.cpu
 - path: "mem_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.memory
 - path: "mem_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.memory
...

OpenShift Container Platform 4.15 Nodes

350

b. Create the pod from the volume-pod.yaml file:

7.5.4. Consuming secrets using the Downward API

When creating pods, you can use the downward API to inject secrets so image and application authors
can create an image for specific environments.

Procedure

1. Create a secret to inject:

a. Create a secret.yaml file similar to the following:

b. Create the secret object from the secret.yaml file:

2. Create a pod that references the username field from the above Secret object:

a. Create a pod.yaml file similar to the following:

$ oc create -f volume-pod.yaml

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
data:
 password: <password>
 username: <username>
type: kubernetes.io/basic-auth

$ oc create -f secret.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: username
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:

CHAPTER 7. WORKING WITH CONTAINERS

351

b. Create the pod from the pod.yaml file:

Verification

Check the container’s logs for the MY_SECRET_USERNAME value:

7.5.5. Consuming configuration maps using the Downward API

When creating pods, you can use the Downward API to inject configuration map values so image and
application authors can create an image for specific environments.

Procedure

1. Create a config map with the values to inject:

a. Create a configmap.yaml file similar to the following:

b. Create the config map from the configmap.yaml file:

2. Create a pod that references the above config map:

a. Create a pod.yaml file similar to the following:

 drop: [ALL]
 restartPolicy: Never
...

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: ConfigMap
metadata:
 name: myconfigmap
data:
 mykey: myvalue

$ oc create -f configmap.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:

OpenShift Container Platform 4.15 Nodes

352

b. Create the pod from the pod.yaml file:

Verification

Check the container’s logs for the MY_CONFIGMAP_VALUE value:

7.5.6. Referencing environment variables

When creating pods, you can reference the value of a previously defined environment variable by using
the $() syntax. If the environment variable reference can not be resolved, the value will be left as the
provided string.

Procedure

1. Create a pod that references an existing environment variable:

a. Create a pod.yaml file similar to the following:

 - name: MY_CONFIGMAP_VALUE
 valueFrom:
 configMapKeyRef:
 name: myconfigmap
 key: mykey
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Always
...

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_EXISTING_ENV
 value: my_value
 - name: MY_ENV_VAR_REF_ENV
 value: $(MY_EXISTING_ENV)
 securityContext:
 allowPrivilegeEscalation: false

CHAPTER 7. WORKING WITH CONTAINERS

353

b. Create the pod from the pod.yaml file:

Verification

Check the container’s logs for the MY_ENV_VAR_REF_ENV value:

7.5.7. Escaping environment variable references

When creating a pod, you can escape an environment variable reference by using a double dollar sign.
The value will then be set to a single dollar sign version of the provided value.

Procedure

1. Create a pod that references an existing environment variable:

a. Create a pod.yaml file similar to the following:

b. Create the pod from the pod.yaml file:

 capabilities:
 drop: [ALL]
 restartPolicy: Never
...

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_NEW_ENV
 value: $$(SOME_OTHER_ENV)
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never
...

$ oc create -f pod.yaml

OpenShift Container Platform 4.15 Nodes

354

Verification

Check the container’s logs for the MY_NEW_ENV value:

7.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER
PLATFORM CONTAINER

You can use the CLI to copy local files to or from a remote directory in a container using the rsync
command.

7.6.1. Understanding how to copy files

The oc rsync command, or remote sync, is a useful tool for copying database archives to and from your
pods for backup and restore purposes. You can also use oc rsync to copy source code changes into a
running pod for development debugging, when the running pod supports hot reload of source files.

7.6.1.1. Requirements

Specifying the Copy Source

The source argument of the oc rsync command must point to either a local directory or a pod
directory. Individual files are not supported.
When specifying a pod directory the directory name must be prefixed with the pod name:

If the directory name ends in a path separator (/), only the contents of the directory are copied to the
destination. Otherwise, the directory and its contents are copied to the destination.

Specifying the Copy Destination

The destination argument of the oc rsync command must point to a directory. If the directory does
not exist, but rsync is used for copy, the directory is created for you.

Deleting Files at the Destination

The --delete flag may be used to delete any files in the remote directory that are not in the local
directory.

Continuous Syncing on File Change

Using the --watch option causes the command to monitor the source path for any file system
changes, and synchronizes changes when they occur. With this argument, the command runs forever.
Synchronization occurs after short quiet periods to ensure a rapidly changing file system does not
result in continuous synchronization calls.

When using the --watch option, the behavior is effectively the same as manually invoking oc rsync
repeatedly, including any arguments normally passed to oc rsync. Therefore, you can control the
behavior via the same flags used with manual invocations of oc rsync, such as --delete.

7.6.2. Copying files to and from containers

$ oc logs -p dapi-env-test-pod

$ oc rsync <source> <destination> [-c <container>]

<pod name>:<dir>

CHAPTER 7. WORKING WITH CONTAINERS

355

Support for copying local files to or from a container is built into the CLI.

Prerequisites

When working with oc rsync, note the following:

rsync must be installed. The oc rsync command uses the local rsync tool, if present on the
client machine and the remote container.
If rsync is not found locally or in the remote container, a tar archive is created locally and sent
to the container where the tar utility is used to extract the files. If tar is not available in the
remote container, the copy will fail.

The tar copy method does not provide the same functionality as oc rsync. For example, oc
rsync creates the destination directory if it does not exist and only sends files that are different
between the source and the destination.

NOTE

In Windows, the cwRsync client should be installed and added to the PATH for
use with the oc rsync command.

Procedure

To copy a local directory to a pod directory:

For example:

To copy a pod directory to a local directory:

Example output

7.6.3. Using advanced Rsync features

The oc rsync command exposes fewer command line options than standard rsync. In the case that you
want to use a standard rsync command line option that is not available in oc rsync, for example the --
exclude-from=FILE option, it might be possible to use standard rsync 's --rsh (-e) option or
RSYNC_RSH environment variable as a workaround, as follows:

or:

Export the RSYNC_RSH variable:

$ oc rsync <local-dir> <pod-name>:/<remote-dir> -c <container-name>

$ oc rsync /home/user/source devpod1234:/src -c user-container

$ oc rsync devpod1234:/src /home/user/source

$ oc rsync devpod1234:/src/status.txt /home/user/

$ rsync --rsh='oc rsh' --exclude-from=<file_name> <local-dir> <pod-name>:/<remote-dir>

$ export RSYNC_RSH='oc rsh'

OpenShift Container Platform 4.15 Nodes

356

Then, run the rsync command:

Both of the above examples configure standard rsync to use oc rsh as its remote shell program to
enable it to connect to the remote pod, and are an alternative to running oc rsync.

7.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER
PLATFORM CONTAINER

You can use the CLI to execute remote commands in an OpenShift Container Platform container.

7.7.1. Executing remote commands in containers

Support for remote container command execution is built into the CLI.

Procedure

To run a command in a container:

For example:

Example output

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers except when the command is executed by a cluster-admin user.

7.7.2. Protocol for initiating a remote command from a client

Clients initiate the execution of a remote command in a container by issuing a request to the Kubernetes
API server:

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the project of the target pod.

<pod> is the name of the target pod.

<container> is the name of the target container.

$ rsync --exclude-from=<file_name> <local-dir> <pod-name>:/<remote-dir>

$ oc exec <pod> [-c <container>] -- <command> [<arg_1> ... <arg_n>]

$ oc exec mypod date

Thu Apr 9 02:21:53 UTC 2015

/proxy/nodes/<node_name>/exec/<namespace>/<pod>/<container>?command=<command>

CHAPTER 7. WORKING WITH CONTAINERS

357

https://access.redhat.com/errata/RHSA-2015:1650

<command> is the desired command to be executed.

For example:

Additionally, the client can add parameters to the request to indicate if:

the client should send input to the remote container’s command (stdin).

the client’s terminal is a TTY.

the remote container’s command should send output from stdout to the client.

the remote container’s command should send output from stderr to the client.

After sending an exec request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses HTTP/2.

The client creates one stream each for stdin, stdout, and stderr. To distinguish among the streams, the
client sets the streamType header on the stream to one of stdin, stdout, or stderr.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the remote command execution request.

7.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A
CONTAINER

OpenShift Container Platform supports port forwarding to pods.

7.8.1. Understanding port forwarding

You can use the CLI to forward one or more local ports to a pod. This allows you to listen on a given or
random port locally, and have data forwarded to and from given ports in the pod.

Support for port forwarding is built into the CLI:

The CLI listens on each local port specified by the user, forwarding using the protocol described below.

Ports may be specified using the following formats:

5000 The client listens on port 5000 locally and forwards to 5000 in the pod.

6000:5000 The client listens on port 6000 locally and forwards to 5000 in the pod.

:5000 or
0:5000

The client selects a free local port and forwards to 5000 in the pod.

OpenShift Container Platform handles port-forward requests from clients. Upon receiving a request,
OpenShift Container Platform upgrades the response and waits for the client to create port-forwarding

/proxy/nodes/node123.openshift.com/exec/myns/mypod/mycontainer?command=date

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

OpenShift Container Platform 4.15 Nodes

358

streams. When OpenShift Container Platform receives a new stream, it copies data between the stream
and the pod’s port.

Architecturally, there are options for forwarding to a pod’s port. The supported OpenShift Container
Platform implementation invokes nsenter directly on the node host to enter the pod’s network
namespace, then invokes socat to copy data between the stream and the pod’s port. However, a
custom implementation could include running a helper pod that then runs nsenter and socat, so that
those binaries are not required to be installed on the host.

7.8.2. Using port forwarding

You can use the CLI to port-forward one or more local ports to a pod.

Procedure

Use the following command to listen on the specified port in a pod:

For example:

Use the following command to listen on ports 5000 and 6000 locally and forward data to and
from ports 5000 and 6000 in the pod:

Example output

Use the following command to listen on port 8888 locally and forward to 5000 in the pod:

Example output

Use the following command to listen on a free port locally and forward to 5000 in the pod:

Example output

Or:

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

$ oc port-forward <pod> 5000 6000

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000
Forwarding from 127.0.0.1:6000 -> 6000
Forwarding from [::1]:6000 -> 6000

$ oc port-forward <pod> 8888:5000

Forwarding from 127.0.0.1:8888 -> 5000
Forwarding from [::1]:8888 -> 5000

$ oc port-forward <pod> :5000

Forwarding from 127.0.0.1:42390 -> 5000
Forwarding from [::1]:42390 -> 5000

CHAPTER 7. WORKING WITH CONTAINERS

359

7.8.3. Protocol for initiating port forwarding from a client

Clients initiate port forwarding to a pod by issuing a request to the Kubernetes API server:

/proxy/nodes/<node_name>/portForward/<namespace>/<pod>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

For example:

/proxy/nodes/node123.openshift.com/portForward/myns/mypod

After sending a port forward request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses Hyptertext Transfer Protocol Version
2 (HTTP/2).

The client creates a stream with the port header containing the target port in the pod. All data written to
the stream is delivered via the kubelet to the target pod and port. Similarly, all data sent from the pod
for that forwarded connection is delivered back to the same stream in the client.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the port forwarding request.

7.9. USING SYSCTLS IN CONTAINERS

Sysctl settings are exposed through Kubernetes, allowing users to modify certain kernel parameters at
runtime. Only sysctls that are namespaced can be set independently on pods. If a sysctl is not
namespaced, called node-level, you must use another method of setting the sysctl, such as by using the
Node Tuning Operator.

Network sysctls are a special category of sysctl. Network sysctls include:

System-wide sysctls, for example net.ipv4.ip_local_port_range, that are valid for all
networking. You can set these independently for each pod on a node.

Interface-specific sysctls, for example net.ipv4.conf.IFNAME.accept_local, that only apply to
a specific additional network interface for a given pod. You can set these independently for
each additional network configuration. You set these by using a configuration in the tuning-cni
after the network interfaces are created.

Moreover, only those sysctls considered safe are whitelisted by default; you can manually enable other
unsafe sysctls on the node to be available to the user.

If you are setting the sysctl and it is not node-level, you can find information on this procedure in the
section Using the Node Tuning Operator .

$ oc port-forward <pod> 0:5000

OpenShift Container Platform 4.15 Nodes

360

https://httpwg.org/specs/rfc7540.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#using-node-tuning-operator

7.9.1. About sysctls

In Linux, the sysctl interface allows an administrator to modify kernel parameters at runtime. Parameters
are available from the /proc/sys/ virtual process file system. The parameters cover various subsystems,
such as:

kernel (common prefix: kernel.)

networking (common prefix: net.)

virtual memory (common prefix: vm.)

MDADM (common prefix: dev.)

More subsystems are described in Kernel documentation. To get a list of all parameters, run:

7.9.2. Namespaced and node-level sysctls

A number of sysctls are namespaced in the Linux kernels. This means that you can set them
independently for each pod on a node. Being namespaced is a requirement for sysctls to be accessible in
a pod context within Kubernetes.

The following sysctls are known to be namespaced:

kernel.shm*

kernel.msg*

kernel.sem

fs.mqueue.*

Additionally, most of the sysctls in the net.* group are known to be namespaced. Their namespace
adoption differs based on the kernel version and distributor.

Sysctls that are not namespaced are called node-level and must be set manually by the cluster
administrator, either by means of the underlying Linux distribution of the nodes, such as by modifying
the /etc/sysctls.conf file, or by using a daemon set with privileged containers. You can use the Node
Tuning Operator to set node-level sysctls.

NOTE

Consider marking nodes with special sysctls as tainted. Only schedule pods onto them
that need those sysctl settings. Use the taints and toleration feature to mark the nodes.

7.9.3. Safe and unsafe sysctls

Sysctls are grouped into safe and unsafe sysctls.

For system-wide sysctls to be considered safe, they must be namespaced. A namespaced sysctl ensures
there is isolation between namespaces and therefore pods. If you set a sysctl for one pod it must not add
any of the following:

$ sudo sysctl -a

CHAPTER 7. WORKING WITH CONTAINERS

361

https://www.kernel.org/doc/Documentation/sysctl/README

Influence any other pod on the node

Harm the node health

Gain CPU or memory resources outside of the resource limits of a pod

NOTE

Being namespaced alone is not sufficient for the sysctl to be considered safe.

Any sysctl that is not added to the allowed list on OpenShift Container Platform is considered unsafe
for OpenShift Container Platform.

Unsafe sysctls are not allowed by default. For system-wide sysctls the cluster administrator must
manually enable them on a per-node basis. Pods with disabled unsafe sysctls are scheduled but do not
launch.

NOTE

You cannot manually enable interface-specific unsafe sysctls.

OpenShift Container Platform adds the following system-wide and interface-specific safe sysctls to an
allowed safe list:

Table 7.4. System-wide safe sysctls

sysctl Description

kernel.shm_rmid_forced When set to 1, all shared memory objects in current IPC namespace are
automatically forced to use IPC_RMID. For more information, see
shm_rmid_forced.

net.ipv4.ip_local_port_ran
ge

Defines the local port range that is used by TCP and UDP to choose the
local port. The first number is the first port number, and the second number
is the last local port number. If possible, it is better if these numbers have
different parity (one even and one odd value). They must be greater than or
equal to ip_unprivileged_port_start. The default values are 32768 and
60999 respectively. For more information, see ip_local_port_range.

net.ipv4.tcp_syncookies When net.ipv4.tcp_syncookies is set, the kernel handles TCP SYN
packets normally until the half-open connection queue is full, at which time,
the SYN cookie functionality kicks in. This functionality allows the system to
keep accepting valid connections, even if under a denial-of-service attack.
For more information, see tcp_syncookies.

net.ipv4.ping_group_rang
e

This restricts ICMP_PROTO datagram sockets to users in the group range.
The default is 1 0, meaning that nobody, not even root, can create ping
sockets. For more information, see ping_group_range.

OpenShift Container Platform 4.15 Nodes

362

https://docs.kernel.org/admin-guide/sysctl/kernel.html?highlight=shm_rmid_forced#shm-rmid-forced
https://docs.kernel.org/networking/ip-sysctl.html?highlight=ip_local_port_range#ip-variables
https://docs.kernel.org/networking/ip-sysctl.html?highlight=tcp_syncookies#tcp-variables
https://docs.kernel.org/networking/ip-sysctl.html?highlight=ping_group_range#ip-variables

net.ipv4.ip_unprivileged_
port_start

This defines the first unprivileged port in the network namespace. To disable
all privileged ports, set this to 0. Privileged ports must not overlap with the
ip_local_port_range. For more information, see
ip_unprivileged_port_start.

sysctl Description

Table 7.5. Interface-specific safe sysctls

sysctl Description

net.ipv4.conf.IFNAME.acc
ept_redirects

Accept IPv4 ICMP redirect messages.

net.ipv4.conf.IFNAME.acc
ept_source_route

Accept IPv4 packets with strict source route (SRR) option.

net.ipv4.conf.IFNAME.arp
_accept

Define behavior for gratuitous ARP frames with an IPv4 address that is not
already present in the ARP table:

0 - Do not create new entries in the ARP table.

1 - Create new entries in the ARP table.

net.ipv4.conf.IFNAME.arp
_notify

Define mode for notification of IPv4 address and device changes.

net.ipv4.conf.IFNAME.dis
able_policy

Disable IPSEC policy (SPD) for this IPv4 interface.

net.ipv4.conf.IFNAME.sec
ure_redirects

Accept ICMP redirect messages only to gateways listed in the interface’s
current gateway list.

net.ipv4.conf.IFNAME.sen
d_redirects

Send redirects is enabled only if the node acts as a router. That is, a host
should not send an ICMP redirect message. It is used by routers to notify the
host about a better routing path that is available for a particular destination.

net.ipv6.conf.IFNAME.acc
ept_ra

Accept IPv6 Router advertisements; autoconfigure using them. It also
determines whether or not to transmit router solicitations. Router
solicitations are transmitted only if the functional setting is to accept router
advertisements.

net.ipv6.conf.IFNAME.acc
ept_redirects

Accept IPv6 ICMP redirect messages.

net.ipv6.conf.IFNAME.acc
ept_source_route

Accept IPv6 packets with SRR option.

CHAPTER 7. WORKING WITH CONTAINERS

363

https://docs.kernel.org/networking/ip-sysctl.html?highlight=ip_unprivileged_port_start#ip-variables#ip-variables

net.ipv6.conf.IFNAME.arp
_accept

Define behavior for gratuitous ARP frames with an IPv6 address that is not
already present in the ARP table:

0 - Do not create new entries in the ARP table.

1 - Create new entries in the ARP table.

net.ipv6.conf.IFNAME.arp
_notify

Define mode for notification of IPv6 address and device changes.

net.ipv6.neigh.IFNAME.ba
se_reachable_time_ms

This parameter controls the hardware address to IP mapping lifetime in the
neighbour table for IPv6.

net.ipv6.neigh.IFNAME.ret
rans_time_ms

Set the retransmit timer for neighbor discovery messages.

sysctl Description

NOTE

When setting these values using the tuning CNI plugin, use the value IFNAME literally.
The interface name is represented by the IFNAME token, and is replaced with the actual
name of the interface at runtime.

7.9.4. Updating the interface-specific safe sysctls list

OpenShift Container Platform includes a predefined list of safe interface-specific sysctls. You can
modify this list by updating the cni-sysctl-allowlist in the openshift-multus namespace.

IMPORTANT

The support for updating the interface-specific safe sysctls list is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Follow this procedure to modify the predefined list of safe sysctls. This procedure describes how to
extend the default allow list.

Procedure

1. View the existing predefined list by running the following command:

$ oc get cm -n openshift-multus cni-sysctl-allowlist -oyaml

OpenShift Container Platform 4.15 Nodes

364

https://access.redhat.com/support/offerings/techpreview/

Expected output

2. Edit the list by using the following command:

For example, to allow you to be able to implement stricter reverse path forwarding you need to
add ^net.ipv4.conf.IFNAME.rp_filter$ and ^net.ipv6.conf.IFNAME.rp_filter$ to the list as
shown here:

apiVersion: v1
data:
 allowlist.conf: |-
 ^net.ipv4.conf.IFNAME.accept_redirects$
 ^net.ipv4.conf.IFNAME.accept_source_route$
 ^net.ipv4.conf.IFNAME.arp_accept$
 ^net.ipv4.conf.IFNAME.arp_notify$
 ^net.ipv4.conf.IFNAME.disable_policy$
 ^net.ipv4.conf.IFNAME.secure_redirects$
 ^net.ipv4.conf.IFNAME.send_redirects$
 ^net.ipv6.conf.IFNAME.accept_ra$
 ^net.ipv6.conf.IFNAME.accept_redirects$
 ^net.ipv6.conf.IFNAME.accept_source_route$
 ^net.ipv6.conf.IFNAME.arp_accept$
 ^net.ipv6.conf.IFNAME.arp_notify$
 ^net.ipv6.neigh.IFNAME.base_reachable_time_ms$
 ^net.ipv6.neigh.IFNAME.retrans_time_ms$
kind: ConfigMap
metadata:
 annotations:
 kubernetes.io/description: |
 Sysctl allowlist for nodes.
 release.openshift.io/version: 4.15.0-0.nightly-2022-11-16-003434
 creationTimestamp: "2022-11-17T14:09:27Z"
 name: cni-sysctl-allowlist
 namespace: openshift-multus
 resourceVersion: "2422"
 uid: 96d138a3-160e-4943-90ff-6108fa7c50c3

$ oc edit cm -n openshift-multus cni-sysctl-allowlist -oyaml

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this file will be
reopened with the relevant failures.
#
apiVersion: v1
data:
 allowlist.conf: |-
 ^net.ipv4.conf.IFNAME.accept_redirects$
 ^net.ipv4.conf.IFNAME.accept_source_route$
 ^net.ipv4.conf.IFNAME.arp_accept$
 ^net.ipv4.conf.IFNAME.arp_notify$
 ^net.ipv4.conf.IFNAME.disable_policy$
 ^net.ipv4.conf.IFNAME.secure_redirects$
 ^net.ipv4.conf.IFNAME.send_redirects$
 ^net.ipv4.conf.IFNAME.rp_filter$
 ^net.ipv6.conf.IFNAME.accept_ra$

CHAPTER 7. WORKING WITH CONTAINERS

365

3. Save the changes to the file and exit.

NOTE

The removal of sysctls is also supported. Edit the file, remove the sysctl or
sysctls then save the changes and exit.

Verification

Follow this procedure to enforce stricter reverse path forwarding for IPv4. For more information on
reverse path forwarding see Reverse Path Forwarding .

1. Create a network attachment definition, such as reverse-path-fwd-example.yaml, with the
following content:

2. Apply the yaml by running the following command:

Example output

3. Create a pod such as examplepod.yaml using the following YAML:

 ^net.ipv6.conf.IFNAME.accept_redirects$
 ^net.ipv6.conf.IFNAME.accept_source_route$
 ^net.ipv6.conf.IFNAME.arp_accept$
 ^net.ipv6.conf.IFNAME.arp_notify$
 ^net.ipv6.neigh.IFNAME.base_reachable_time_ms$
 ^net.ipv6.neigh.IFNAME.retrans_time_ms$
 ^net.ipv6.conf.IFNAME.rp_filter$

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: tuningnad
 namespace: default
spec:
 config: '{
 "cniVersion": "0.4.0",
 "name": "tuningnad",
 "plugins": [{
 "type": "bridge"
 },
 {
 "type": "tuning",
 "sysctl": {
 "net.ipv4.conf.IFNAME.rp_filter": "1"
 }
 }
]
}'

$ oc apply -f reverse-path-fwd-example.yaml

networkattachmentdefinition.k8.cni.cncf.io/tuningnad created

OpenShift Container Platform 4.15 Nodes

366

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-server_security-reverse_path_forwarding

1 Specify the name of the configured NetworkAttachmentDefinition.

4. Apply the yaml by running the following command:

5. Verify that the pod is created by running the following command:

Example output

6. Log in to the pod by running the following command:

7. Verify the value of the configured sysctl flag. For example, find the value
net.ipv4.conf.net1.rp_filter by running the following command:

Expected output

apiVersion: v1
kind: Pod
metadata:
 name: example
 labels:
 app: httpd
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: tuningnad 1
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: httpd
 image: 'image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest'
 ports:
 - containerPort: 8080
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL

$ oc apply -f examplepod.yaml

$ oc get pod

NAME READY STATUS RESTARTS AGE
example 1/1 Running 0 47s

$ oc rsh example

sh-4.4# sysctl net.ipv4.conf.net1.rp_filter

net.ipv4.conf.net1.rp_filter = 1

CHAPTER 7. WORKING WITH CONTAINERS

367

Additional resources

Linux networking documentation

7.9.5. Starting a pod with safe sysctls

You can set sysctls on pods using the pod’s securityContext. The securityContext applies to all
containers in the same pod.

Safe sysctls are allowed by default.

This example uses the pod securityContext to set the following safe sysctls:

kernel.shm_rmid_forced

net.ipv4.ip_local_port_range

net.ipv4.tcp_syncookies

net.ipv4.ping_group_range

WARNING

To avoid destabilizing your operating system, modify sysctl parameters only after
you understand their effects.

Use this procedure to start a pod with the configured sysctl settings.

NOTE

In most cases you modify an existing pod definition and add the securityContext spec.

Procedure

1. Create a YAML file sysctl_pod.yaml that defines an example pod and add the
securityContext spec, as shown in the following example:

apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example
 namespace: default
spec:
 containers:
 - name: podexample
 image: centos
 command: ["bin/bash", "-c", "sleep INF"]
 securityContext:
 runAsUser: 2000 1
 runAsGroup: 3000 2

OpenShift Container Platform 4.15 Nodes

368

https://docs.kernel.org/networking/ip-sysctl.html

1

2

3

4

5

6

runAsUser controls which user ID the container is run with.

runAsGroup controls which primary group ID the containers is run with.

allowPrivilegeEscalation determines if a pod can request to allow privilege escalation. If
unspecified, it defaults to true. This boolean directly controls whether the no_new_privs
flag gets set on the container process.

capabilities permit privileged actions without giving full root access. This policy ensures all
capabilities are dropped from the pod.

runAsNonRoot: true requires that the container will run with a user with any UID other
than 0.

RuntimeDefault enables the default seccomp profile for a pod or container workload.

2. Create the pod by running the following command:

3. Verify that the pod is created by running the following command:

Example output

4. Log in to the pod by running the following command:

5. Verify the values of the configured sysctl flags. For example, find the value
kernel.shm_rmid_forced by running the following command:

 allowPrivilegeEscalation: false 3
 capabilities: 4
 drop: ["ALL"]
 securityContext:
 runAsNonRoot: true 5
 seccompProfile: 6
 type: RuntimeDefault
 sysctls:
 - name: kernel.shm_rmid_forced
 value: "1"
 - name: net.ipv4.ip_local_port_range
 value: "32770 60666"
 - name: net.ipv4.tcp_syncookies
 value: "0"
 - name: net.ipv4.ping_group_range
 value: "0 200000000"

$ oc apply -f sysctl_pod.yaml

$ oc get pod

NAME READY STATUS RESTARTS AGE
sysctl-example 1/1 Running 0 14s

$ oc rsh sysctl-example

CHAPTER 7. WORKING WITH CONTAINERS

369

Expected output

7.9.6. Starting a pod with unsafe sysctls

A pod with unsafe sysctls fails to launch on any node unless the cluster administrator explicitly enables
unsafe sysctls for that node. As with node-level sysctls, use the taints and toleration feature or labels on
nodes to schedule those pods onto the right nodes.

The following example uses the pod securityContext to set a safe sysctl kernel.shm_rmid_forced and
two unsafe sysctls, net.core.somaxconn and kernel.msgmax. There is no distinction between safe and
unsafe sysctls in the specification.

WARNING

To avoid destabilizing your operating system, modify sysctl parameters only after
you understand their effects.

The following example illustrates what happens when you add safe and unsafe sysctls to a pod
specification:

Procedure

1. Create a YAML file sysctl-example-unsafe.yaml that defines an example pod and add the
securityContext specification, as shown in the following example:

sh-4.4# sysctl kernel.shm_rmid_forced

kernel.shm_rmid_forced = 1

apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example-unsafe
spec:
 containers:
 - name: podexample
 image: centos
 command: ["bin/bash", "-c", "sleep INF"]
 securityContext:
 runAsUser: 2000
 runAsGroup: 3000
 allowPrivilegeEscalation: false
 capabilities:
 drop: ["ALL"]
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 sysctls:

OpenShift Container Platform 4.15 Nodes

370

2. Create the pod using the following command:

3. Verify that the pod is scheduled but does not deploy because unsafe sysctls are not allowed for
the node using the following command:

Example output

7.9.7. Enabling unsafe sysctls

A cluster administrator can allow certain unsafe sysctls for very special situations such as high
performance or real-time application tuning.

If you want to use unsafe sysctls, a cluster administrator must enable them individually for a specific type
of node. The sysctls must be namespaced.

You can further control which sysctls are set in pods by specifying lists of sysctls or sysctl patterns in the
allowedUnsafeSysctls field of the Security Context Constraints.

The allowedUnsafeSysctls option controls specific needs such as high performance or real-
time application tuning.

WARNING

Due to their nature of being unsafe, the use of unsafe sysctls is at-your-own-risk
and can lead to severe problems, such as improper behavior of containers, resource
shortage, or breaking a node.

Procedure

1. List existing MachineConfig objects for your OpenShift Container Platform cluster to decide
how to label your machine config by running the following command:

Example output

 - name: kernel.shm_rmid_forced
 value: "0"
 - name: net.core.somaxconn
 value: "1024"
 - name: kernel.msgmax
 value: "65536"

$ oc apply -f sysctl-example-unsafe.yaml

$ oc get pod

NAME READY STATUS RESTARTS AGE
sysctl-example-unsafe 0/1 SysctlForbidden 0 14s

$ oc get machineconfigpool

CHAPTER 7. WORKING WITH CONTAINERS

371

1

2

2. Add a label to the machine config pool where the containers with the unsafe sysctls will run by
running the following command:

3. Create a YAML file set-sysctl-worker.yaml that defines a KubeletConfig custom resource
(CR):

Specify the label from the machine config pool.

List the unsafe sysctls you want to allow.

4. Create the object by running the following command:

5. Wait for the Machine Config Operator to generate the new rendered configuration and apply it
to the machines by running the following command:

After some minutes the UPDATING status changes from True to False:

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-bfb92f0cd1684e54d8e234ab7423cc96 True False False
3 3 3 0 42m
worker rendered-worker-21b6cb9a0f8919c88caf39db80ac1fce True False False
3 3 3 0 42m

$ oc label machineconfigpool worker custom-kubelet=sysctl

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-kubelet
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: sysctl 1
 kubeletConfig:
 allowedUnsafeSysctls: 2
 - "kernel.msg*"
 - "net.core.somaxconn"

$ oc apply -f set-sysctl-worker.yaml

$ oc get machineconfigpool worker -w

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
worker rendered-worker-f1704a00fc6f30d3a7de9a15fd68a800 False True False
3 2 2 0 71m
worker rendered-worker-f1704a00fc6f30d3a7de9a15fd68a800 False True False
3 2 3 0 72m
worker rendered-worker-0188658afe1f3a183ec8c4f14186f4d5 True False False
3 3 3 0 72m

OpenShift Container Platform 4.15 Nodes

372

6. Create a YAML file sysctl-example-safe-unsafe.yaml that defines an example pod and add
the securityContext spec, as shown in the following example:

7. Create the pod by running the following command:

Expected output

8. Verify that the pod is created by running the following command:

Example output

9. Log in to the pod by running the following command:

apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example-safe-unsafe
spec:
 containers:
 - name: podexample
 image: centos
 command: ["bin/bash", "-c", "sleep INF"]
 securityContext:
 runAsUser: 2000
 runAsGroup: 3000
 allowPrivilegeEscalation: false
 capabilities:
 drop: ["ALL"]
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 sysctls:
 - name: kernel.shm_rmid_forced
 value: "0"
 - name: net.core.somaxconn
 value: "1024"
 - name: kernel.msgmax
 value: "65536"

$ oc apply -f sysctl-example-safe-unsafe.yaml

Warning: would violate PodSecurity "restricted:latest": forbidden sysctls
(net.core.somaxconn, kernel.msgmax)
pod/sysctl-example-safe-unsafe created

$ oc get pod

NAME READY STATUS RESTARTS AGE
sysctl-example-safe-unsafe 1/1 Running 0 19s

$ oc rsh sysctl-example-safe-unsafe

CHAPTER 7. WORKING WITH CONTAINERS

373

10. Verify the values of the configured sysctl flags. For example, find the value
net.core.somaxconn by running the following command:

Expected output

The unsafe sysctl is now allowed and the value is set as defined in the securityContext spec of the
updated pod specification.

7.9.8. Additional resources

Configuring system controls by using the tuning CNI

Using the Node Tuning Operator

7.10. ACCESSING FASTER BUILDS WITH /DEV/FUSE

You can configure your pods with the /dev/fuse device to access faster builds.

7.10.1. Configuring /dev/fuse on unprivileged pods

As an alternative to the virtual filesystem, you can configure the /dev/fuse device to the
io.kubernetes.cri-o.Devices annotation to access faster builds within unprivileged pods. Using
/dev/fuse is secure, efficient, and scalable, and allows unprivileged users to mount an overlay filesystem
as if the unprivileged pod was privileged.

Procedure

1. Create the pod.

2. Implement /dev/fuse by adding the /dev/fuse device to the io.kubernetes.cri-o.Devices
annotation.

For example:

sh-4.4# sysctl net.core.somaxconn

net.core.somaxconn = 1024

$ oc exec -ti no-priv -- /bin/bash

$ cat >> Dockerfile <<EOF
FROM registry.access.redhat.com/ubi9
EOF

$ podman build .

io.kubernetes.cri-o.Devices: "/dev/fuse"

apiVersion: v1
kind: Pod
metadata:

OpenShift Container Platform 4.15 Nodes

374

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#nw-configuring-tuning-cni_configure-syscontrols-interface-tuning-cni
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#using-node-tuning-operator

3. Configure the /dev/fuse device in your pod specifications.

 name: podman-pod
 annotations:
 io.kubernetes.cri-o.Devices: "/dev/fuse"

spec:
 containers:
 - name: podman-container
 image: quay.io/podman/stable
 args:
 - sleep
 - "1000000"
 securityContext:
 runAsUser: 1000

CHAPTER 7. WORKING WITH CONTAINERS

375

1

CHAPTER 8. WORKING WITH CLUSTERS

8.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

Events in OpenShift Container Platform are modeled based on events that happen to API objects in an
OpenShift Container Platform cluster.

8.1.1. Understanding events

Events allow OpenShift Container Platform to record information about real-world events in a resource-
agnostic manner. They also allow developers and administrators to consume information about system
components in a unified way.

8.1.2. Viewing events using the CLI

You can get a list of events in a given project using the CLI.

Procedure

To view events in a project use the following command:

The name of the project.

For example:

Example output

To view events in your project from the OpenShift Container Platform console.

1. Launch the OpenShift Container Platform console.

$ oc get events [-n <project>] 1

$ oc get events -n openshift-config

LAST SEEN TYPE REASON OBJECT MESSAGE
97m Normal Scheduled pod/dapi-env-test-pod Successfully assigned
openshift-config/dapi-env-test-pod to ip-10-0-171-202.ec2.internal
97m Normal Pulling pod/dapi-env-test-pod pulling image
"gcr.io/google_containers/busybox"
97m Normal Pulled pod/dapi-env-test-pod Successfully pulled image
"gcr.io/google_containers/busybox"
97m Normal Created pod/dapi-env-test-pod Created container
9m5s Warning FailedCreatePodSandBox pod/dapi-volume-test-pod Failed create
pod sandbox: rpc error: code = Unknown desc = failed to create pod network sandbox
k8s_dapi-volume-test-pod_openshift-config_6bc60c1f-452e-11e9-9140-
0eec59c23068_0(748c7a40db3d08c07fb4f9eba774bd5effe5f0d5090a242432a73eee66ba9e22
): Multus: Err adding pod to network "openshift-sdn": cannot set "openshift-sdn" ifname to
"eth0": no netns: failed to Statfs "/proc/33366/ns/net": no such file or directory
8m31s Normal Scheduled pod/dapi-volume-test-pod Successfully assigned
openshift-config/dapi-volume-test-pod to ip-10-0-171-202.ec2.internal

OpenShift Container Platform 4.15 Nodes

376

2. Click Home → Events and select your project.

3. Move to resource that you want to see events. For example: Home → Projects → <project-
name> → <resource-name>.
Many objects, such as pods and deployments, have their own Events tab as well, which
shows events related to that object.

8.1.3. List of events

This section describes the events of OpenShift Container Platform.

Table 8.1. Configuration events

Name Description

FailedValidation Failed pod configuration validation.

Table 8.2. Container events

Name Description

BackOff Back-off restarting failed the container.

Created Container created.

Failed Pull/Create/Start failed.

Killing Killing the container.

Started Container started.

Preempting Preempting other pods.

ExceededGrace
Period

Container runtime did not stop the pod within specified grace period.

Table 8.3. Health events

Name Description

Unhealthy Container is unhealthy.

Table 8.4. Image events

Name Description

BackOff Back off Ctr Start, image pull.

CHAPTER 8. WORKING WITH CLUSTERS

377

ErrImageNeverP
ull

The image’s NeverPull Policy is violated.

Failed Failed to pull the image.

InspectFailed Failed to inspect the image.

Pulled Successfully pulled the image or the container image is already present on the machine.

Pulling Pulling the image.

Name Description

Table 8.5. Image Manager events

Name Description

FreeDiskSpaceF
ailed

Free disk space failed.

InvalidDiskCapa
city

Invalid disk capacity.

Table 8.6. Node events

Name Description

FailedMount Volume mount failed.

HostNetworkNo
tSupported

Host network not supported.

HostPortConflic
t

Host/port conflict.

KubeletSetupFa
iled

Kubelet setup failed.

NilShaper Undefined shaper.

NodeNotReady Node is not ready.

NodeNotSched
ulable

Node is not schedulable.

NodeReady Node is ready.

OpenShift Container Platform 4.15 Nodes

378

NodeSchedulab
le

Node is schedulable.

NodeSelectorMi
smatching

Node selector mismatch.

OutOfDisk Out of disk.

Rebooted Node rebooted.

Starting Starting kubelet.

FailedAttachVol
ume

Failed to attach volume.

FailedDetachVol
ume

Failed to detach volume.

VolumeResizeF
ailed

Failed to expand/reduce volume.

VolumeResizeS
uccessful

Successfully expanded/reduced volume.

FileSystemResi
zeFailed

Failed to expand/reduce file system.

FileSystemResi
zeSuccessful

Successfully expanded/reduced file system.

FailedUnMount Failed to unmount volume.

FailedMapVolu
me

Failed to map a volume.

FailedUnmapDe
vice

Failed unmaped device.

AlreadyMounte
dVolume

Volume is already mounted.

SuccessfulDeta
chVolume

Volume is successfully detached.

SuccessfulMou
ntVolume

Volume is successfully mounted.

Name Description

CHAPTER 8. WORKING WITH CLUSTERS

379

SuccessfulUnM
ountVolume

Volume is successfully unmounted.

ContainerGCFai
led

Container garbage collection failed.

ImageGCFailed Image garbage collection failed.

FailedNodeAllo
catableEnforce
ment

Failed to enforce System Reserved Cgroup limit.

NodeAllocatabl
eEnforced

Enforced System Reserved Cgroup limit.

UnsupportedMo
untOption

Unsupported mount option.

SandboxChang
ed

Pod sandbox changed.

FailedCreatePo
dSandBox

Failed to create pod sandbox.

FailedPodSand
BoxStatus

Failed pod sandbox status.

Name Description

Table 8.7. Pod worker events

Name Description

FailedSync Pod sync failed.

Table 8.8. System Events

Name Description

SystemOOM There is an OOM (out of memory) situation on the cluster.

Table 8.9. Pod events

Name Description

FailedKillPod Failed to stop a pod.

OpenShift Container Platform 4.15 Nodes

380

FailedCreatePo
dContainer

Failed to create a pod container.

Failed Failed to make pod data directories.

NetworkNotRea
dy

Network is not ready.

FailedCreate Error creating: <error-msg>.

SuccessfulCrea
te

Created pod: <pod-name>.

FailedDelete Error deleting: <error-msg>.

SuccessfulDelet
e

Deleted pod: <pod-id>.

Name Description

Table 8.10. Horizontal Pod AutoScaler events

Name Description

SelectorRequired Selector is required.

InvalidSelector Could not convert selector into a corresponding internal selector object.

FailedGetObject
Metric

HPA was unable to compute the replica count.

InvalidMetricSo
urceType

Unknown metric source type.

ValidMetricFoun
d

HPA was able to successfully calculate a replica count.

FailedConvertH
PA

Failed to convert the given HPA.

FailedGetScale HPA controller was unable to get the target’s current scale.

SucceededGetS
cale

HPA controller was able to get the target’s current scale.

FailedCompute
MetricsReplicas

Failed to compute desired number of replicas based on listed metrics.

CHAPTER 8. WORKING WITH CLUSTERS

381

FailedRescale New size: <size>; reason: <msg>; error: <error-msg>.

SuccessfulResc
ale

New size: <size>; reason: <msg>.

FailedUpdateSt
atus

Failed to update status.

Name Description

Table 8.11. Network events (openshift-sdn)

Name Description

Starting Starting OpenShift SDN.

NetworkFailed The pod’s network interface has been lost and the pod will be stopped.

Table 8.12. Network events (kube-proxy)

Name Description

NeedPods The service-port <serviceName>:<port> needs pods.

Table 8.13. Volume events

Name Description

FailedBinding There are no persistent volumes available and no storage class is set.

VolumeMismatc
h

Volume size or class is different from what is requested in claim.

VolumeFailedRe
cycle

Error creating recycler pod.

VolumeRecycle
d

Occurs when volume is recycled.

RecyclerPod Occurs when pod is recycled.

VolumeDelete Occurs when volume is deleted.

VolumeFailedDe
lete

Error when deleting the volume.

OpenShift Container Platform 4.15 Nodes

382

ExternalProvisi
oning

Occurs when volume for the claim is provisioned either manually or via external
software.

ProvisioningFail
ed

Failed to provision volume.

ProvisioningCle
anupFailed

Error cleaning provisioned volume.

ProvisioningSu
cceeded

Occurs when the volume is provisioned successfully.

WaitForFirstCo
nsumer

Delay binding until pod scheduling.

Name Description

Table 8.14. Lifecycle hooks

Name Description

FailedPostStart
Hook

Handler failed for pod start.

FailedPreStopH
ook

Handler failed for pre-stop.

UnfinishedPreSt
opHook

Pre-stop hook unfinished.

Table 8.15. Deployments

Name Description

DeploymentCan
cellationFailed

Failed to cancel deployment.

DeploymentCan
celled

Canceled deployment.

DeploymentCre
ated

Created new replication controller.

IngressIPRange
Full

No available Ingress IP to allocate to service.

CHAPTER 8. WORKING WITH CLUSTERS

383

Table 8.16. Scheduler events

Name Description

FailedSchedulin
g

Failed to schedule pod: <pod-namespace>/<pod-name>. This event is raised for
multiple reasons, for example: AssumePodVolumes failed, Binding rejected etc.

Preempted By <preemptor-namespace>/<preemptor-name> on node <node-name>.

Scheduled Successfully assigned <pod-name> to <node-name>.

Table 8.17. Daemon set events

Name Description

SelectingAll This daemon set is selecting all pods. A non-empty selector is required.

FailedPlacemen
t

Failed to place pod on <node-name>.

FailedDaemonP
od

Found failed daemon pod <pod-name> on node <node-name>, will try to kill it.

Table 8.18. LoadBalancer service events

Name Description

CreatingLoadBa
lancerFailed

Error creating load balancer.

DeletingLoadBa
lancer

Deleting load balancer.

EnsuringLoadB
alancer

Ensuring load balancer.

EnsuredLoadBa
lancer

Ensured load balancer.

UnAvailableLoa
dBalancer

There are no available nodes for LoadBalancer service.

LoadBalancerS
ourceRanges

Lists the new LoadBalancerSourceRanges. For example, <old-source-range>
→ <new-source-range>.

LoadbalancerIP Lists the new IP address. For example, <old-ip> → <new-ip>.

ExternalIP Lists external IP address. For example, Added: <external-ip>.

OpenShift Container Platform 4.15 Nodes

384

UID Lists the new UID. For example, <old-service-uid> → <new-service-uid>.

ExternalTrafficP
olicy

Lists the new ExternalTrafficPolicy. For example, <old-policy> → <new-policy>.

HealthCheckNo
dePort

Lists the new HealthCheckNodePort. For example, <old-node-port> → new-
node-port>.

UpdatedLoadBa
lancer

Updated load balancer with new hosts.

LoadBalancerU
pdateFailed

Error updating load balancer with new hosts.

DeletingLoadBa
lancer

Deleting load balancer.

DeletingLoadBa
lancerFailed

Error deleting load balancer.

DeletedLoadBal
ancer

Deleted load balancer.

Name Description

8.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT
CONTAINER PLATFORM NODES CAN HOLD

As a cluster administrator, you can use the OpenShift Cluster Capacity Tool to view the number of pods
that can be scheduled to increase the current resources before they become exhausted, and to ensure
any future pods can be scheduled. This capacity comes from an individual node host in a cluster, and
includes CPU, memory, disk space, and others.

8.2.1. Understanding the OpenShift Cluster Capacity Tool

The OpenShift Cluster Capacity Tool simulates a sequence of scheduling decisions to determine how
many instances of an input pod can be scheduled on the cluster before it is exhausted of resources to
provide a more accurate estimation.

NOTE

The remaining allocatable capacity is a rough estimation, because it does not count all of
the resources being distributed among nodes. It analyzes only the remaining resources
and estimates the available capacity that is still consumable in terms of a number of
instances of a pod with given requirements that can be scheduled in a cluster.

Also, pods might only have scheduling support on particular sets of nodes based on its
selection and affinity criteria. As a result, the estimation of which remaining pods a cluster
can schedule can be difficult.

You can run the OpenShift Cluster Capacity Tool as a stand-alone utility from the command line, or as a

CHAPTER 8. WORKING WITH CLUSTERS

385

You can run the OpenShift Cluster Capacity Tool as a stand-alone utility from the command line, or as a
job in a pod inside an OpenShift Container Platform cluster. Running the tool as job inside of a pod
enables you to run it multiple times without intervention.

8.2.2. Running the OpenShift Cluster Capacity Tool on the command line

You can run the OpenShift Cluster Capacity Tool from the command line to estimate the number of
pods that can be scheduled onto your cluster.

You create a sample pod spec file, which the tool uses for estimating resource usage. The pod spec
specifies its resource requirements as limits or requests. The cluster capacity tool takes the pod’s
resource requirements into account for its estimation analysis.

Prerequisites

1. Run the OpenShift Cluster Capacity Tool , which is available as a container image from the Red
Hat Ecosystem Catalog.

2. Create a sample pod spec file:

a. Create a YAML file similar to the following:

b. Create the cluster role:

For example:

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.15 Nodes

386

https://catalog.redhat.com/software/containers/openshift4/ose-cluster-capacity/5cca0324d70cc57c44ae8eb6?container-tabs=overview

Procedure

To use the cluster capacity tool on the command line:

1. From the terminal, log in to the Red Hat Registry:

2. Pull the cluster capacity tool image:

3. Run the cluster capacity tool:

where:

<pod_spec>.yaml

Specifies the pod spec to use.

verbose

Outputs a detailed description of how many pods can be scheduled on each node in the
cluster.

Example output

In the above example, the number of estimated pods that can be scheduled onto the cluster is
88.

8.2.3. Running the OpenShift Cluster Capacity Tool as a job inside a pod

Running the OpenShift Cluster Capacity Tool as a job inside of a pod allows you to run the tool multiple
times without needing user intervention. You run the OpenShift Cluster Capacity Tool as a job by using a
ConfigMap object.

$ oc create -f pod-spec.yaml

$ podman login registry.redhat.io

$ podman pull registry.redhat.io/openshift4/ose-cluster-capacity

$ podman run -v $HOME/.kube:/kube:Z -v $(pwd):/cc:Z ose-cluster-capacity \
/bin/cluster-capacity --kubeconfig /kube/config --<pod_spec>.yaml /cc/<pod_spec>.yaml \
--verbose

small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 88 instance(s) of the pod small-pod.

Termination reason: Unschedulable: 0/5 nodes are available: 2 Insufficient cpu,
3 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't
tolerate.

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 45 instance(s)
 - 192.168.124.120: 43 instance(s)

CHAPTER 8. WORKING WITH CLUSTERS

387

Prerequisites

Download and install OpenShift Cluster Capacity Tool .

Procedure

To run the cluster capacity tool:

1. Create the cluster role:

a. Create a YAML file similar to the following:

b. Create the cluster role by running the following command:

For example:

2. Create the service account:

3. Add the role to the service account:

where:

<namespace>

Specifies the namespace where the pod is located.

4. Define and create the pod spec:

a. Create a YAML file similar to the following:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: cluster-capacity-role
rules:
- apiGroups: [""]
 resources: ["pods", "nodes", "persistentvolumeclaims", "persistentvolumes", "services",
"replicationcontrollers"]
 verbs: ["get", "watch", "list"]
- apiGroups: ["apps"]
 resources: ["replicasets", "statefulsets"]
 verbs: ["get", "watch", "list"]
- apiGroups: ["policy"]
 resources: ["poddisruptionbudgets"]
 verbs: ["get", "watch", "list"]
- apiGroups: ["storage.k8s.io"]
 resources: ["storageclasses"]
 verbs: ["get", "watch", "list"]

$ oc create -f <file_name>.yaml

$ oc create sa cluster-capacity-sa

$ oc create sa cluster-capacity-sa -n default

$ oc adm policy add-cluster-role-to-user cluster-capacity-role \
 system:serviceaccount:<namespace>:cluster-capacity-sa

OpenShift Container Platform 4.15 Nodes

388

https://github.com/openshift/cluster-capacity

a. Create a YAML file similar to the following:

b. Create the pod by running the following command:

For example:

5. Created a config map object by running the following command:

The cluster capacity analysis is mounted in a volume using a config map object named cluster-
capacity-configmap to mount the input pod spec file pod.yaml into a volume test-volume at
the path /test-pod.

6. Create the job using the below example of a job specification file:

a. Create a YAML file similar to the following:

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f <file_name>.yaml

$ oc create -f pod.yaml

$ oc create configmap cluster-capacity-configmap \
 --from-file=pod.yaml=pod.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: cluster-capacity-job

CHAPTER 8. WORKING WITH CLUSTERS

389

1 A required environment variable letting the cluster capacity tool know that it is running
inside a cluster as a pod.
The pod.yaml key of the ConfigMap object is the same as the Pod spec file name,
though it is not required. By doing this, the input pod spec file can be accessed inside
the pod as /test-pod/pod.yaml.

b. Run the cluster capacity image as a job in a pod by running the following command:

Verification

1. Check the job logs to find the number of pods that can be scheduled in the cluster:

Example output

spec:
 parallelism: 1
 completions: 1
 template:
 metadata:
 name: cluster-capacity-pod
 spec:
 containers:
 - name: cluster-capacity
 image: openshift/origin-cluster-capacity
 imagePullPolicy: "Always"
 volumeMounts:
 - mountPath: /test-pod
 name: test-volume
 env:
 - name: CC_INCLUSTER 1
 value: "true"
 command:
 - "/bin/sh"
 - "-ec"
 - |
 /bin/cluster-capacity --podspec=/test-pod/pod.yaml --verbose
 restartPolicy: "Never"
 serviceAccountName: cluster-capacity-sa
 volumes:
 - name: test-volume
 configMap:
 name: cluster-capacity-configmap

$ oc create -f cluster-capacity-job.yaml

$ oc logs jobs/cluster-capacity-job

small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 52 instance(s) of the pod small-pod.

Termination reason: Unschedulable: No nodes are available that match all of the

OpenShift Container Platform 4.15 Nodes

390

8.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES

By default, containers run with unbounded compute resources on an OpenShift Container Platform
cluster. With limit ranges, you can restrict resource consumption for specific objects in a project:

pods and containers: You can set minimum and maximum requirements for CPU and memory
for pods and their containers.

Image streams: You can set limits on the number of images and tags in an ImageStream object.

Images: You can limit the size of images that can be pushed to an internal registry.

Persistent volume claims (PVC): You can restrict the size of the PVCs that can be requested.

If a pod does not meet the constraints imposed by the limit range, the pod cannot be created in the
namespace.

8.3.1. About limit ranges

A limit range, defined by a LimitRange object, restricts resource consumption in a project. In the project
you can set specific resource limits for a pod, container, image, image stream, or persistent volume claim
(PVC).

All requests to create and modify resources are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, the resource is rejected.

The following shows a limit range object for all components: pod, container, image, image stream, or
PVC. You can configure limits for any or all of these components in the same object. You create a
different limit range object for each project where you want to control resources.

Sample limit range object for a container

following predicates:: Insufficient cpu (2).

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 26 instance(s)
 - 192.168.124.120: 26 instance(s)

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: "Container"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"
 default:
 cpu: "300m"
 memory: "200Mi"

CHAPTER 8. WORKING WITH CLUSTERS

391

8.3.1.1. About component limits

The following examples show limit range parameters for each component. The examples are broken out
for clarity. You can create a single LimitRange object for any or all components as necessary.

8.3.1.1.1. Container limits

A limit range allows you to specify the minimum and maximum CPU and memory that each container in a
pod can request for a specific project. If a container is created in the project, the container CPU and
memory requests in the Pod spec must comply with the values set in the LimitRange object. If not, the
pod does not get created.

The container CPU or memory request and limit must be greater than or equal to the min
resource constraint for containers that are specified in the LimitRange object.

The container CPU or memory request and limit must be less than or equal to the max resource
constraint for containers that are specified in the LimitRange object.
If the LimitRange object defines a max CPU, you do not need to define a CPU request value in
the Pod spec. But you must specify a CPU limit value that satisfies the maximum CPU
constraint specified in the limit range.

The ratio of the container limits to requests must be less than or equal to the
maxLimitRequestRatio value for containers that is specified in the LimitRange object.
If the LimitRange object defines a maxLimitRequestRatio constraint, any new containers must
have both a request and a limit value. OpenShift Container Platform calculates the limit-to-
request ratio by dividing the limit by the request. This value should be a non-negative integer
greater than 1.

For example, if a container has cpu: 500 in the limit value, and cpu: 100 in the request value,
the limit-to-request ratio for cpu is 5. This ratio must be less than or equal to the
maxLimitRequestRatio.

If the Pod spec does not specify a container resource memory or limit, the default or defaultRequest
CPU and memory values for containers specified in the limit range object are assigned to the container.

Container LimitRange object definition

 defaultRequest:
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio:
 cpu: "10"

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Container"
 max:
 cpu: "2" 2
 memory: "1Gi" 3
 min:
 cpu: "100m" 4

OpenShift Container Platform 4.15 Nodes

392

1

2

3

4

5

6

7

8

9

10

The name of the LimitRange object.

The maximum amount of CPU that a single container in a pod can request.

The maximum amount of memory that a single container in a pod can request.

The minimum amount of CPU that a single container in a pod can request.

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container can use if not specified in the Pod spec.

The default amount of memory that a container can use if not specified in the Pod spec.

The default amount of CPU that a container can request if not specified in the Pod spec.

The default amount of memory that a container can request if not specified in the Pod spec.

The maximum limit-to-request ratio for a container.

8.3.1.1.2. Pod limits

A limit range allows you to specify the minimum and maximum CPU and memory limits for all containers
across a pod in a given project. To create a container in the project, the container CPU and memory
requests in the Pod spec must comply with the values set in the LimitRange object. If not, the pod does
not get created.

If the Pod spec does not specify a container resource memory or limit, the default or defaultRequest
CPU and memory values for containers specified in the limit range object are assigned to the container.

Across all containers in a pod, the following must hold true:

The container CPU or memory request and limit must be greater than or equal to the min
resource constraints for pods that are specified in the LimitRange object.

The container CPU or memory request and limit must be less than or equal to the max resource
constraints for pods that are specified in the LimitRange object.

The ratio of the container limits to requests must be less than or equal to the
maxLimitRequestRatio constraint specified in the LimitRange object.

Pod LimitRange object definition

 memory: "4Mi" 5
 default:
 cpu: "300m" 6
 memory: "200Mi" 7
 defaultRequest:
 cpu: "200m" 8
 memory: "100Mi" 9
 maxLimitRequestRatio:
 cpu: "10" 10

apiVersion: "v1"
kind: "LimitRange"

CHAPTER 8. WORKING WITH CLUSTERS

393

1

2

3

4

5

6

1

2

The name of the limit range object.

The maximum amount of CPU that a pod can request across all containers.

The maximum amount of memory that a pod can request across all containers.

The minimum amount of CPU that a pod can request across all containers.

The minimum amount of memory that a pod can request across all containers.

The maximum limit-to-request ratio for a container.

8.3.1.1.3. Image limits

A LimitRange object allows you to specify the maximum size of an image that can be pushed to an
OpenShift image registry.

When pushing images to an OpenShift image registry, the following must hold true:

The size of the image must be less than or equal to the max size for images that is specified in
the LimitRange object.

Image LimitRange object definition

The name of the LimitRange object.

The maximum size of an image that can be pushed to an OpenShift image registry.

NOTE

metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:
 cpu: "2" 2
 memory: "1Gi" 3
 min:
 cpu: "200m" 4
 memory: "6Mi" 5
 maxLimitRequestRatio:
 cpu: "10" 6

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: openshift.io/Image
 max:
 storage: 1Gi 2

OpenShift Container Platform 4.15 Nodes

394

1

2

3

NOTE

To prevent blobs that exceed the limit from being uploaded to the registry, the registry
must be configured to enforce quotas.

WARNING

The image size is not always available in the manifest of an uploaded image. This is
especially the case for images built with Docker 1.10 or higher and pushed to a v2
registry. If such an image is pulled with an older Docker daemon, the image manifest
is converted by the registry to schema v1 lacking all the size information. No storage
limit set on images prevent it from being uploaded.

The issue is being addressed.

8.3.1.1.4. Image stream limits

A LimitRange object allows you to specify limits for image streams.

For each image stream, the following must hold true:

The number of image tags in an ImageStream specification must be less than or equal to the
openshift.io/image-tags constraint in the LimitRange object.

The number of unique references to images in an ImageStream specification must be less than
or equal to the openshift.io/images constraint in the limit range object.

Imagestream LimitRange object definition

The name of the LimitRange object.

The maximum number of unique image tags in the imagestream.spec.tags parameter in
imagestream spec.

The maximum number of unique image references in the imagestream.status.tags parameter in
the imagestream spec.

The openshift.io/image-tags resource represents unique image references. Possible references are an
ImageStreamTag, an ImageStreamImage and a DockerImage. Tags can be created using the oc tag

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: openshift.io/ImageStream
 max:
 openshift.io/image-tags: 20 2
 openshift.io/images: 30 3

CHAPTER 8. WORKING WITH CLUSTERS

395

https://github.com/openshift/origin/issues/7706

1

2

3

and oc import-image commands. No distinction is made between internal and external references.
However, each unique reference tagged in an ImageStream specification is counted just once. It does
not restrict pushes to an internal container image registry in any way, but is useful for tag restriction.

The openshift.io/images resource represents unique image names recorded in image stream status. It
allows for restriction of a number of images that can be pushed to the OpenShift image registry.
Internal and external references are not distinguished.

8.3.1.1.5. Persistent volume claim limits

A LimitRange object allows you to restrict the storage requested in a persistent volume claim (PVC).

Across all persistent volume claims in a project, the following must hold true:

The resource request in a persistent volume claim (PVC) must be greater than or equal the min
constraint for PVCs that is specified in the LimitRange object.

The resource request in a persistent volume claim (PVC) must be less than or equal the max
constraint for PVCs that is specified in the LimitRange object.

PVC LimitRange object definition

The name of the LimitRange object.

The minimum amount of storage that can be requested in a persistent volume claim.

The maximum amount of storage that can be requested in a persistent volume claim.

8.3.2. Creating a Limit Range

To apply a limit range to a project:

1. Create a LimitRange object with your required specifications:

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "PersistentVolumeClaim"
 min:
 storage: "2Gi" 2
 max:
 storage: "50Gi" 3

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Pod" 2
 max:

OpenShift Container Platform 4.15 Nodes

396

1

2

3

4

5

6

7

8

Specify a name for the LimitRange object.

To set limits for a pod, specify the minimum and maximum CPU and memory requests as
needed.

To set limits for a container, specify the minimum and maximum CPU and memory
requests as needed.

Optional. For a container, specify the default amount of CPU or memory that a container
can use, if not specified in the Pod spec.

Optional. For a container, specify the default amount of CPU or memory that a container
can request, if not specified in the Pod spec.

Optional. For a container, specify the maximum limit-to-request ratio that can be specified
in the Pod spec.

To set limits for an Image object, set the maximum size of an image that can be pushed to
an OpenShift image registry.

To set limits for an image stream, set the maximum number of image tags and references
that can be in the ImageStream object file, as needed.

 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "200m"
 memory: "6Mi"
 - type: "Container" 3
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"
 default: 4
 cpu: "300m"
 memory: "200Mi"
 defaultRequest: 5
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio: 6
 cpu: "10"
 - type: openshift.io/Image 7
 max:
 storage: 1Gi
 - type: openshift.io/ImageStream 8
 max:
 openshift.io/image-tags: 20
 openshift.io/images: 30
 - type: "PersistentVolumeClaim" 9
 min:
 storage: "2Gi"
 max:
 storage: "50Gi"

CHAPTER 8. WORKING WITH CLUSTERS

397

9

1

To set limits for a persistent volume claim, set the minimum and maximum amount of
storage that can be requested.

2. Create the object:

Specify the name of the YAML file you created and the project where you want the limits
to apply.

8.3.3. Viewing a limit

You can view any limits defined in a project by navigating in the web console to the project’s Quota
page.

You can also use the CLI to view limit range details:

1. Get the list of LimitRange object defined in the project. For example, for a project called
demoproject:

2. Describe the LimitRange object you are interested in, for example the resource-limits limit
range:

8.3.4. Deleting a Limit Range

To remove any active LimitRange object to no longer enforce the limits in a project:

Run the following command:

$ oc create -f <limit_range_file> -n <project> 1

$ oc get limits -n demoproject

NAME CREATED AT
resource-limits 2020-07-15T17:14:23Z

$ oc describe limits resource-limits -n demoproject

Name: resource-limits
Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Pod cpu 200m 2 - - -
Pod memory 6Mi 1Gi - - -
Container cpu 100m 2 200m 300m 10
Container memory 4Mi 1Gi 100Mi 200Mi -
openshift.io/Image storage - 1Gi - - -
openshift.io/ImageStream openshift.io/image - 12 - - -
openshift.io/ImageStream openshift.io/image-tags - 10 - - -
PersistentVolumeClaim storage - 50Gi - - -

$ oc delete limits <limit_name>

OpenShift Container Platform 4.15 Nodes

398

8.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER
MEMORY AND RISK REQUIREMENTS

As a cluster administrator, you can help your clusters operate efficiently through managing application
memory by:

Determining the memory and risk requirements of a containerized application component and
configuring the container memory parameters to suit those requirements.

Configuring containerized application runtimes (for example, OpenJDK) to adhere optimally to
the configured container memory parameters.

Diagnosing and resolving memory-related error conditions associated with running in a
container.

8.4.1. Understanding managing application memory

It is recommended to fully read the overview of how OpenShift Container Platform manages Compute
Resources before proceeding.

For each kind of resource (memory, CPU, storage), OpenShift Container Platform allows optional
request and limit values to be placed on each container in a pod.

Note the following about memory requests and memory limits:

Memory request

The memory request value, if specified, influences the OpenShift Container Platform
scheduler. The scheduler considers the memory request when scheduling a container to a
node, then fences off the requested memory on the chosen node for the use of the
container.

If a node’s memory is exhausted, OpenShift Container Platform prioritizes evicting its
containers whose memory usage most exceeds their memory request. In serious cases of
memory exhaustion, the node OOM killer may select and kill a process in a container based
on a similar metric.

The cluster administrator can assign quota or assign default values for the memory request
value.

The cluster administrator can override the memory request values that a developer
specifies, to manage cluster overcommit.

Memory limit

The memory limit value, if specified, provides a hard limit on the memory that can be
allocated across all the processes in a container.

If the memory allocated by all of the processes in a container exceeds the memory limit, the
node Out of Memory (OOM) killer will immediately select and kill a process in the container.

If both memory request and limit are specified, the memory limit value must be greater than
or equal to the memory request.

The cluster administrator can assign quota or assign default values for the memory limit
value.

The minimum memory limit is 12 MB. If a container fails to start due to a Cannot allocate

CHAPTER 8. WORKING WITH CLUSTERS

399

The minimum memory limit is 12 MB. If a container fails to start due to a Cannot allocate
memory pod event, the memory limit is too low. Either increase or remove the memory
limit. Removing the limit allows pods to consume unbounded node resources.

8.4.1.1. Managing application memory strategy

The steps for sizing application memory on OpenShift Container Platform are as follows:

1. Determine expected container memory usage
Determine expected mean and peak container memory usage, empirically if necessary (for
example, by separate load testing). Remember to consider all the processes that may
potentially run in parallel in the container: for example, does the main application spawn any
ancillary scripts?

2. Determine risk appetite
Determine risk appetite for eviction. If the risk appetite is low, the container should request
memory according to the expected peak usage plus a percentage safety margin. If the risk
appetite is higher, it may be more appropriate to request memory according to the expected
mean usage.

3. Set container memory request
Set container memory request based on the above. The more accurately the request represents
the application memory usage, the better. If the request is too high, cluster and quota usage will
be inefficient. If the request is too low, the chances of application eviction increase.

4. Set container memory limit, if required
Set container memory limit, if required. Setting a limit has the effect of immediately killing a
container process if the combined memory usage of all processes in the container exceeds the
limit, and is therefore a mixed blessing. On the one hand, it may make unanticipated excess
memory usage obvious early ("fail fast"); on the other hand it also terminates processes
abruptly.

Note that some OpenShift Container Platform clusters may require a limit value to be set; some
may override the request based on the limit; and some application images rely on a limit value
being set as this is easier to detect than a request value.

If the memory limit is set, it should not be set to less than the expected peak container memory
usage plus a percentage safety margin.

5. Ensure application is tuned
Ensure application is tuned with respect to configured request and limit values, if appropriate.
This step is particularly relevant to applications which pool memory, such as the JVM. The rest of
this page discusses this.

Additional resources

Understanding compute resources and containers

8.4.2. Understanding OpenJDK settings for OpenShift Container Platform

The default OpenJDK settings do not work well with containerized environments. As a result, some
additional Java memory settings must always be provided whenever running the OpenJDK in a
container.

The JVM memory layout is complex, version dependent, and describing it in detail is beyond the scope

OpenShift Container Platform 4.15 Nodes

400

The JVM memory layout is complex, version dependent, and describing it in detail is beyond the scope
of this documentation. However, as a starting point for running OpenJDK in a container, at least the
following three memory-related tasks are key:

1. Overriding the JVM maximum heap size.

2. Encouraging the JVM to release unused memory to the operating system, if appropriate.

3. Ensuring all JVM processes within a container are appropriately configured.

Optimally tuning JVM workloads for running in a container is beyond the scope of this documentation,
and may involve setting multiple additional JVM options.

8.4.2.1. Understanding how to override the JVM maximum heap size

For many Java workloads, the JVM heap is the largest single consumer of memory. Currently, the
OpenJDK defaults to allowing up to 1/4 (1/-XX:MaxRAMFraction) of the compute node’s memory to be
used for the heap, regardless of whether the OpenJDK is running in a container or not. It is therefore
essential to override this behavior, especially if a container memory limit is also set.

There are at least two ways the above can be achieved:

If the container memory limit is set and the experimental options are supported by the JVM, set
-XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap.

NOTE

The UseCGroupMemoryLimitForHeap option has been removed in JDK 11. Use -
XX:+UseContainerSupport instead.

This sets -XX:MaxRAM to the container memory limit, and the maximum heap size (-
XX:MaxHeapSize / -Xmx) to 1/ -XX:MaxRAMFraction (1/4 by default).

Directly override one of -XX:MaxRAM, -XX:MaxHeapSize or -Xmx.
This option involves hard-coding a value, but has the advantage of allowing a safety margin to
be calculated.

8.4.2.2. Understanding how to encourage the JVM to release unused memory to the
operating system

By default, the OpenJDK does not aggressively return unused memory to the operating system. This
may be appropriate for many containerized Java workloads, but notable exceptions include workloads
where additional active processes co-exist with a JVM within a container, whether those additional
processes are native, additional JVMs, or a combination of the two.

Java-based agents can use the following JVM arguments to encourage the JVM to release unused
memory to the operating system:

These arguments are intended to return heap memory to the operating system whenever allocated
memory exceeds 110% of in-use memory (-XX:MaxHeapFreeRatio), spending up to 20% of CPU time in
the garbage collector (-XX:GCTimeRatio). At no time will the application heap allocation be less than

-XX:+UseParallelGC
-XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4
-XX:AdaptiveSizePolicyWeight=90.

CHAPTER 8. WORKING WITH CLUSTERS

401

the initial heap allocation (overridden by -XX:InitialHeapSize / -Xms). Detailed additional information is
available Tuning Java’s footprint in OpenShift (Part 1) , Tuning Java’s footprint in OpenShift (Part 2) ,
and at OpenJDK and Containers.

8.4.2.3. Understanding how to ensure all JVM processes within a container are
appropriately configured

In the case that multiple JVMs run in the same container, it is essential to ensure that they are all
configured appropriately. For many workloads it will be necessary to grant each JVM a percentage
memory budget, leaving a perhaps substantial additional safety margin.

Many Java tools use different environment variables (JAVA_OPTS, GRADLE_OPTS, and so on) to
configure their JVMs and it can be challenging to ensure that the right settings are being passed to the
right JVM.

The JAVA_TOOL_OPTIONS environment variable is always respected by the OpenJDK, and values
specified in JAVA_TOOL_OPTIONS will be overridden by other options specified on the JVM
command line. By default, to ensure that these options are used by default for all JVM workloads run in
the Java-based agent image, the OpenShift Container Platform Jenkins Maven agent image sets:

NOTE

The UseCGroupMemoryLimitForHeap option has been removed in JDK 11. Use -
XX:+UseContainerSupport instead.

This does not guarantee that additional options are not required, but is intended to be a helpful starting
point.

8.4.3. Finding the memory request and limit from within a pod

An application wishing to dynamically discover its memory request and limit from within a pod should use
the Downward API.

Procedure

1. Configure the pod to add the MEMORY_REQUEST and MEMORY_LIMIT stanzas:

a. Create a YAML file similar to the following:

JAVA_TOOL_OPTIONS="-XX:+UnlockExperimentalVMOptions
-XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true"

apiVersion: v1
kind: Pod
metadata:
 name: test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test
 image: fedora:latest

OpenShift Container Platform 4.15 Nodes

402

https://developers.redhat.com/blog/2014/07/15/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-1/
https://developers.redhat.com/blog/2014/07/22/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-2/
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/

1

2

Add this stanza to discover the application memory request value.

Add this stanza to discover the application memory limit value.

b. Create the pod by running the following command:

Verification

1. Access the pod using a remote shell:

2. Check that the requested values were applied:

Example output

NOTE

The memory limit value can also be read from inside the container by the
/sys/fs/cgroup/memory/memory.limit_in_bytes file.

 command:
 - sleep
 - "3600"
 env:
 - name: MEMORY_REQUEST 1
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: requests.memory
 - name: MEMORY_LIMIT 2
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: limits.memory
 resources:
 requests:
 memory: 384Mi
 limits:
 memory: 512Mi
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f <file-name>.yaml

$ oc rsh test

$ env | grep MEMORY | sort

MEMORY_LIMIT=536870912
MEMORY_REQUEST=402653184

CHAPTER 8. WORKING WITH CLUSTERS

403

8.4.4. Understanding OOM kill policy

OpenShift Container Platform can kill a process in a container if the total memory usage of all the
processes in the container exceeds the memory limit, or in serious cases of node memory exhaustion.

When a process is Out of Memory (OOM) killed, this might result in the container exiting immediately. If
the container PID 1 process receives the SIGKILL, the container will exit immediately. Otherwise, the
container behavior is dependent on the behavior of the other processes.

For example, a container process exited with code 137, indicating it received a SIGKILL signal.

If the container does not exit immediately, an OOM kill is detectable as follows:

1. Access the pod using a remote shell:

2. Run the following command to see the current OOM kill count in
/sys/fs/cgroup/memory/memory.oom_control:

Example output

3. Run the following command to provoke an OOM kill:

Example output

4. Run the following command to view the exit status of the sed command:

Example output

The 137 code indicates the container process exited with code 137, indicating it received a
SIGKILL signal.

5. Run the following command to see that the OOM kill counter in
/sys/fs/cgroup/memory/memory.oom_control incremented:

Example output

oc rsh test

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control

oom_kill 0

$ sed -e '' </dev/zero

Killed

$ echo $?

137

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control

OpenShift Container Platform 4.15 Nodes

404

If one or more processes in a pod are OOM killed, when the pod subsequently exits, whether
immediately or not, it will have phase Failed and reason OOMKilled. An OOM-killed pod might
be restarted depending on the value of restartPolicy. If not restarted, controllers such as the
replication controller will notice the pod’s failed status and create a new pod to replace the old
one.

Use the follwing command to get the pod status:

Example output

If the pod has not restarted, run the following command to view the pod:

Example output

If restarted, run the following command to view the pod:

Example output

oom_kill 1

$ oc get pod test

NAME READY STATUS RESTARTS AGE
test 0/1 OOMKilled 0 1m

$ oc get pod test -o yaml

...
status:
 containerStatuses:
 - name: test
 ready: false
 restartCount: 0
 state:
 terminated:
 exitCode: 137
 reason: OOMKilled
 phase: Failed

$ oc get pod test -o yaml

...
status:
 containerStatuses:
 - name: test
 ready: true
 restartCount: 1
 lastState:
 terminated:
 exitCode: 137
 reason: OOMKilled

CHAPTER 8. WORKING WITH CLUSTERS

405

8.4.5. Understanding pod eviction

OpenShift Container Platform may evict a pod from its node when the node’s memory is exhausted.
Depending on the extent of memory exhaustion, the eviction may or may not be graceful. Graceful
eviction implies the main process (PID 1) of each container receiving a SIGTERM signal, then some time
later a SIGKILL signal if the process has not exited already. Non-graceful eviction implies the main
process of each container immediately receiving a SIGKILL signal.

An evicted pod has phase Failed and reason Evicted. It will not be restarted, regardless of the value of
restartPolicy. However, controllers such as the replication controller will notice the pod’s failed status
and create a new pod to replace the old one.

Example output

Example output

8.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON
OVERCOMMITTED NODES

In an overcommitted state, the sum of the container compute resource requests and limits exceeds the
resources available on the system. For example, you might want to use overcommitment in development
environments where a trade-off of guaranteed performance for capacity is acceptable.

Containers can specify compute resource requests and limits. Requests are used for scheduling your
container and provide a minimum service guarantee. Limits constrain the amount of compute resource
that can be consumed on your node.

The scheduler attempts to optimize the compute resource use across all nodes in your cluster. It places
pods onto specific nodes, taking the pods' compute resource requests and nodes' available capacity
into consideration.

OpenShift Container Platform administrators can control the level of overcommit and manage container
density on nodes. You can configure cluster-level overcommit using the ClusterResourceOverride
Operator to override the ratio between requests and limits set on developer containers. In conjunction

 state:
 running:
 phase: Running

$ oc get pod test

NAME READY STATUS RESTARTS AGE
test 0/1 Evicted 0 1m

$ oc get pod test -o yaml

...
status:
 message: 'Pod The node was low on resource: [MemoryPressure].'
 phase: Failed
 reason: Evicted

OpenShift Container Platform 4.15 Nodes

406

1

2

with node overcommit and project memory and CPU limits and defaults , you can adjust the resource
limit and request to achieve the desired level of overcommit.

NOTE

In OpenShift Container Platform, you must enable cluster-level overcommit. Node
overcommitment is enabled by default. See Disabling overcommitment for a node .

8.5.1. Resource requests and overcommitment

For each compute resource, a container may specify a resource request and limit. Scheduling decisions
are made based on the request to ensure that a node has enough capacity available to meet the
requested value. If a container specifies limits, but omits requests, the requests are defaulted to the
limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no
request or limit, the container is scheduled to a node with no resource guarantees. In practice, the
container is able to consume as much of the specified resource as is available with the lowest local
priority. In low resource situations, containers that specify no resource requests are given the lowest
quality of service.

Scheduling is based on resources requested, while quota and hard limits refer to resource limits, which
can be set higher than requested resources. The difference between request and limit determines the
level of overcommit; for instance, if a container is given a memory request of 1Gi and a memory limit of
2Gi, it is scheduled based on the 1Gi request being available on the node, but could use up to 2Gi; so it is
200% overcommitted.

8.5.2. Cluster-level overcommit using the Cluster Resource Override Operator

The Cluster Resource Override Operator is an admission webhook that allows you to control the level of
overcommit and manage container density across all the nodes in your cluster. The Operator controls
how nodes in specific projects can exceed defined memory and CPU limits.

You must install the Cluster Resource Override Operator using the OpenShift Container Platform
console or CLI as shown in the following sections. During the installation, you create a
ClusterResourceOverride custom resource (CR), where you set the level of overcommit, as shown in
the following example:

The name must be cluster.

Optional. If a container memory limit has been specified or defaulted, the memory request is
overridden to this percentage of the limit, between 1-100. The default is 50.

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster 1
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50 2
 cpuRequestToLimitPercent: 25 3
 limitCPUToMemoryPercent: 200 4
...

CHAPTER 8. WORKING WITH CLUSTERS

407

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/building_applications/#deployments-setting-resources_deployment-operations

3

4

Optional. If a container CPU limit has been specified or defaulted, the CPU request is overridden to
this percentage of the limit, between 1-100. The default is 25.

Optional. If a container memory limit has been specified or defaulted, the CPU limit is overridden to
a percentage of the memory limit, if specified. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU
core. This is processed prior to overriding the CPU request (if configured). The default is 200.

NOTE

The Cluster Resource Override Operator overrides have no effect if limits have not been
set on containers. Create a LimitRange object with default limits per individual project or
configure limits in Pod specs for the overrides to apply.

When configured, overrides can be enabled per-project by applying the following label to the
Namespace object for each project:

The Operator watches for the ClusterResourceOverride CR and ensures that the
ClusterResourceOverride admission webhook is installed into the same namespace as the operator.

8.5.2.1. Installing the Cluster Resource Override Operator using the web console

You can use the OpenShift Container Platform web console to install the Cluster Resource Override
Operator to help control overcommit in your cluster.

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the OpenShift Container Platform web console:

1. In the OpenShift Container Platform web console, navigate to Home → Projects

a. Click Create Project.

b. Specify clusterresourceoverride-operator as the name of the project.

c. Click Create.

2. Navigate to Operators → OperatorHub.

apiVersion: v1
kind: Namespace
metadata:

...

 labels:
 clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true"

...

OpenShift Container Platform 4.15 Nodes

408

1

2

3

4

a. Choose ClusterResourceOverride Operator from the list of available Operators and click
Install.

b. On the Install Operator page, make sure A specific Namespace on the cluster is selected
for Installation Mode.

c. Make sure clusterresourceoverride-operator is selected for Installed Namespace.

d. Select an Update Channel and Approval Strategy.

e. Click Install.

3. On the Installed Operators page, click ClusterResourceOverride.

a. On the ClusterResourceOverride Operator details page, click Create
ClusterResourceOverride.

b. On the Create ClusterResourceOverride page, click YAML view and edit the YAML
template to set the overcommit values as needed:

The name must be cluster.

Optional. Specify the percentage to override the container memory limit, if used,
between 1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between
1-100. The default is 25.

Optional. Specify the percentage to override the container memory limit, if used.
Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to
overriding the CPU request, if configured. The default is 200.

c. Click Create.

4. Check the current state of the admission webhook by checking the status of the cluster custom
resource:

a. On the ClusterResourceOverride Operator page, click cluster.

b. On the ClusterResourceOverride Details page, click YAML. The
mutatingWebhookConfigurationRef section appears when the webhook is called.

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster 1
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50 2
 cpuRequestToLimitPercent: 25 3
 limitCPUToMemoryPercent: 200 4
...

apiVersion: operator.autoscaling.openshift.io/v1

CHAPTER 8. WORKING WITH CLUSTERS

409

1 Reference to the ClusterResourceOverride admission webhook.

8.5.2.2. Installing the Cluster Resource Override Operator using the CLI

You can use the OpenShift Container Platform CLI to install the Cluster Resource Override Operator to
help control overcommit in your cluster.

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the CLI:

1. Create a namespace for the Cluster Resource Override Operator:

a. Create a Namespace object YAML file (for example, cro-namespace.yaml) for the Cluster
Resource Override Operator:

kind: ClusterResourceOverride
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","met
adata":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":
{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLi
mitPercent":50}}}}
 creationTimestamp: "2019-12-18T22:35:02Z"
 generation: 1
 name: cluster
 resourceVersion: "127622"
 selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
 uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
spec:
 podResourceOverride:
 spec:
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200
 memoryRequestToLimitPercent: 50
status:

...

 mutatingWebhookConfigurationRef: 1
 apiVersion: admissionregistration.k8s.io/v1
 kind: MutatingWebhookConfiguration
 name: clusterresourceoverrides.admission.autoscaling.openshift.io
 resourceVersion: "127621"
 uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3

...

OpenShift Container Platform 4.15 Nodes

410

b. Create the namespace:

For example:

2. Create an Operator group:

a. Create an OperatorGroup object YAML file (for example, cro-og.yaml) for the Cluster
Resource Override Operator:

b. Create the Operator Group:

For example:

3. Create a subscription:

a. Create a Subscription object YAML file (for example, cro-sub.yaml) for the Cluster
Resource Override Operator:

b. Create the subscription:

apiVersion: v1
kind: Namespace
metadata:
 name: clusterresourceoverride-operator

$ oc create -f <file-name>.yaml

$ oc create -f cro-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: clusterresourceoverride-operator
 namespace: clusterresourceoverride-operator
spec:
 targetNamespaces:
 - clusterresourceoverride-operator

$ oc create -f <file-name>.yaml

$ oc create -f cro-og.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: clusterresourceoverride
 namespace: clusterresourceoverride-operator
spec:
 channel: "4.15"
 name: clusterresourceoverride
 source: redhat-operators
 sourceNamespace: openshift-marketplace

CHAPTER 8. WORKING WITH CLUSTERS

411

1

2

3

4

For example:

4. Create a ClusterResourceOverride custom resource (CR) object in the
clusterresourceoverride-operator namespace:

a. Change to the clusterresourceoverride-operator namespace.

b. Create a ClusterResourceOverride object YAML file (for example, cro-cr.yaml) for the
Cluster Resource Override Operator:

The name must be cluster.

Optional. Specify the percentage to override the container memory limit, if used,
between 1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between
1-100. The default is 25.

Optional. Specify the percentage to override the container memory limit, if used.
Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to
overriding the CPU request, if configured. The default is 200.

c. Create the ClusterResourceOverride object:

For example:

5. Verify the current state of the admission webhook by checking the status of the cluster custom
resource.

$ oc create -f <file-name>.yaml

$ oc create -f cro-sub.yaml

$ oc project clusterresourceoverride-operator

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster 1
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50 2
 cpuRequestToLimitPercent: 25 3
 limitCPUToMemoryPercent: 200 4

$ oc create -f <file-name>.yaml

$ oc create -f cro-cr.yaml

$ oc get clusterresourceoverride cluster -n clusterresourceoverride-operator -o yaml

OpenShift Container Platform 4.15 Nodes

412

1

The mutatingWebhookConfigurationRef section appears when the webhook is called.

Example output

Reference to the ClusterResourceOverride admission webhook.

8.5.2.3. Configuring cluster-level overcommit

The Cluster Resource Override Operator requires a ClusterResourceOverride custom resource (CR)
and a label for each project where you want the Operator to control overcommit.

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","metadat
a":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":
{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLimitPe
rcent":50}}}}
 creationTimestamp: "2019-12-18T22:35:02Z"
 generation: 1
 name: cluster
 resourceVersion: "127622"
 selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
 uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
spec:
 podResourceOverride:
 spec:
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200
 memoryRequestToLimitPercent: 50
status:

...

 mutatingWebhookConfigurationRef: 1
 apiVersion: admissionregistration.k8s.io/v1
 kind: MutatingWebhookConfiguration
 name: clusterresourceoverrides.admission.autoscaling.openshift.io
 resourceVersion: "127621"
 uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3

...

CHAPTER 8. WORKING WITH CLUSTERS

413

1

2

3

1

To modify cluster-level overcommit:

1. Edit the ClusterResourceOverride CR:

Optional. Specify the percentage to override the container memory limit, if used, between
1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between 1-
100. The default is 25.

Optional. Specify the percentage to override the container memory limit, if used. Scaling
1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the
CPU request, if configured. The default is 200.

2. Ensure the following label has been added to the Namespace object for each project where you
want the Cluster Resource Override Operator to control overcommit:

Add this label to each project.

8.5.3. Node-level overcommit

You can use various ways to control overcommit on specific nodes, such as quality of service (QOS)
guarantees, CPU limits, or reserve resources. You can also disable overcommit for specific nodes and
specific projects.

8.5.3.1. Understanding compute resources and containers

The node-enforced behavior for compute resources is specific to the resource type.

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50 1
 cpuRequestToLimitPercent: 25 2
 limitCPUToMemoryPercent: 200 3
...

apiVersion: v1
kind: Namespace
metadata:

...

 labels:
 clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true" 1

...

OpenShift Container Platform 4.15 Nodes

414

8.5.3.1.1. Understanding container CPU requests

A container is guaranteed the amount of CPU it requests and is additionally able to consume excess
CPU available on the node, up to any limit specified by the container. If multiple containers are
attempting to use excess CPU, CPU time is distributed based on the amount of CPU requested by each
container.

For example, if one container requested 500m of CPU time and another container requested 250m of
CPU time, then any extra CPU time available on the node is distributed among the containers in a 2:1
ratio. If a container specified a limit, it will be throttled not to use more CPU than the specified limit. CPU
requests are enforced using the CFS shares support in the Linux kernel. By default, CPU limits are
enforced using the CFS quota support in the Linux kernel over a 100ms measuring interval, though this
can be disabled.

8.5.3.1.2. Understanding container memory requests

A container is guaranteed the amount of memory it requests. A container can use more memory than
requested, but once it exceeds its requested amount, it could be terminated in a low memory situation
on the node. If a container uses less memory than requested, it will not be terminated unless system
tasks or daemons need more memory than was accounted for in the node’s resource reservation. If a
container specifies a limit on memory, it is immediately terminated if it exceeds the limit amount.

8.5.3.2. Understanding overcomitment and quality of service classes

A node is overcommitted when it has a pod scheduled that makes no request, or when the sum of limits
across all pods on that node exceeds available machine capacity.

In an overcommitted environment, it is possible that the pods on the node will attempt to use more
compute resource than is available at any given point in time. When this occurs, the node must give
priority to one pod over another. The facility used to make this decision is referred to as a Quality of
Service (QoS) Class.

A pod is designated as one of three QoS classes with decreasing order of priority:

Table 8.19. Quality of Service Classes

Priority Class Name Description

1 (highest) Guarantee
d

If limits and optionally requests are set (not equal to 0) for all resources and
they are equal, then the pod is classified as Guaranteed.

2 Burstable If requests and optionally limits are set (not equal to 0) for all resources, and
they are not equal, then the pod is classified as Burstable.

3 (lowest) BestEffort If requests and limits are not set for any of the resources, then the pod is
classified as BestEffort.

Memory is an incompressible resource, so in low memory situations, containers that have the lowest
priority are terminated first:

Guaranteed containers are considered top priority, and are guaranteed to only be terminated if
they exceed their limits, or if the system is under memory pressure and there are no lower
priority containers that can be evicted.

CHAPTER 8. WORKING WITH CLUSTERS

415

Burstable containers under system memory pressure are more likely to be terminated once
they exceed their requests and no other BestEffort containers exist.

BestEffort containers are treated with the lowest priority. Processes in these containers are
first to be terminated if the system runs out of memory.

8.5.3.2.1. Understanding how to reserve memory across quality of service tiers

You can use the qos-reserved parameter to specify a percentage of memory to be reserved by a pod in
a particular QoS level. This feature attempts to reserve requested resources to exclude pods from
lower OoS classes from using resources requested by pods in higher QoS classes.

OpenShift Container Platform uses the qos-reserved parameter as follows:

A value of qos-reserved=memory=100% will prevent the Burstable and BestEffort QoS
classes from consuming memory that was requested by a higher QoS class. This increases the
risk of inducing OOM on BestEffort and Burstable workloads in favor of increasing memory
resource guarantees for Guaranteed and Burstable workloads.

A value of qos-reserved=memory=50% will allow the Burstable and BestEffort QoS classes to
consume half of the memory requested by a higher QoS class.

A value of qos-reserved=memory=0% will allow a Burstable and BestEffort QoS classes to
consume up to the full node allocatable amount if available, but increases the risk that a
Guaranteed workload will not have access to requested memory. This condition effectively
disables this feature.

8.5.3.3. Understanding swap memory and QOS

You can disable swap by default on your nodes to preserve quality of service (QOS) guarantees.
Otherwise, physical resources on a node can oversubscribe, affecting the resource guarantees the
Kubernetes scheduler makes during pod placement.

For example, if two guaranteed pods have reached their memory limit, each container could start using
swap memory. Eventually, if there is not enough swap space, processes in the pods can be terminated
due to the system being oversubscribed.

Failing to disable swap results in nodes not recognizing that they are experiencing MemoryPressure,
resulting in pods not receiving the memory they made in their scheduling request. As a result, additional
pods are placed on the node to further increase memory pressure, ultimately increasing your risk of
experiencing a system out of memory (OOM) event.

IMPORTANT

If swap is enabled, any out-of-resource handling eviction thresholds for available memory
will not work as expected. Take advantage of out-of-resource handling to allow pods to
be evicted from a node when it is under memory pressure, and rescheduled on an
alternative node that has no such pressure.

8.5.3.4. Understanding nodes overcommitment

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.
To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit

OpenShift Container Platform 4.15 Nodes

416

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit
memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating
system setting.

OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by
setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call oom_killer in an
Out of Memory (OOM) condition, which kills processes based on priority

You can view the current setting by running the following commands on your nodes:

Example output

Example output

NOTE

The above flags should already be set on nodes, and no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

8.5.3.5. Disabling or enforcing CPU limits using CPU CFS quotas

Nodes by default enforce specified CPU limits using the Completely Fair Scheduler (CFS) quota
support in the Linux kernel.

If you disable CPU limit enforcement, it is important to understand the impact on your node:

If a container has a CPU request, the request continues to be enforced by CFS shares in the
Linux kernel.

If a container does not have a CPU request, but does have a CPU limit, the CPU request
defaults to the specified CPU limit, and is enforced by CFS shares in the Linux kernel.

If a container has both a CPU request and limit, the CPU request is enforced by CFS shares in
the Linux kernel, and the CPU limit has no impact on the node.

$ sysctl -a |grep commit

#...
vm.overcommit_memory = 0
#...

$ sysctl -a |grep panic

#...
vm.panic_on_oom = 0
#...

CHAPTER 8. WORKING WITH CLUSTERS

417

1

1

2

Prerequisites

Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command:

For example:

Example output

The label appears under Labels.

TIP

If the label is not present, add a key/value pair such as:

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a disabling CPU limits

Assign a name to CR.

Specify the label from the machine config pool.

$ oc edit machineconfigpool <name>

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: "2022-11-16T15:34:25Z"
 generation: 4
 labels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1
 name: worker

$ oc label machineconfigpool worker custom-kubelet=small-pods

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: disable-cpu-units 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 2
 kubeletConfig:
 cpuCfsQuota: false 3

OpenShift Container Platform 4.15 Nodes

418

3 Set the cpuCfsQuota parameter to false.

2. Run the following command to create the CR:

8.5.3.6. Reserving resources for system processes

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by system daemons that are required to run on your node for
your cluster to function. In particular, it is recommended that you reserve resources for incompressible
resources such as memory.

Procedure

To explicitly reserve resources for non-pod processes, allocate node resources by specifying resources
available for scheduling. For more details, see Allocating Resources for Nodes.

8.5.3.7. Disabling overcommitment for a node

When enabled, overcommitment can be disabled on each node.

Procedure

To disable overcommitment in a node run the following command on that node:

8.5.4. Project-level limits

To help control overcommit, you can set per-project resource limit ranges, specifying memory and CPU
limits and defaults for a project that overcommit cannot exceed.

For information on project-level resource limits, see Additional resources.

Alternatively, you can disable overcommitment for specific projects.

8.5.4.1. Disabling overcommitment for a project

When enabled, overcommitment can be disabled per-project. For example, you can allow infrastructure
components to be configured independently of overcommitment.

Procedure

To disable overcommitment in a project:

1. Create or edit the namespace object file.

2. Add the following annotation:

$ oc create -f <file_name>.yaml

$ sysctl -w vm.overcommit_memory=0

apiVersion: v1
kind: Namespace
metadata:

CHAPTER 8. WORKING WITH CLUSTERS

419

1 Setting this annotation to false disables overcommit for this namespace.

8.5.5. Additional resources

Setting deployment resources.

Allocating resources for nodes .

8.6. CONFIGURING THE LINUX CGROUP VERSION ON YOUR NODES

As of OpenShift Container Platform 4.14, OpenShift Container Platform uses Linux control group
version 2 (cgroup v2) in your cluster. If you are using cgroup v1 on OpenShift Container Platform 4.13 or
earlier, migrating to OpenShift Container Platform 4.14 or later will not automatically update your cgroup
configuration to version 2. A fresh installation of OpenShift Container Platform 4.14 or later will use
cgroup v2 by default. However, you can enable Linux control group version 1 (cgroup v1) upon
installation.

cgroup v2 is the current version of the Linux cgroup API. cgroup v2 offers several improvements over
cgroup v1, including a unified hierarchy, safer sub-tree delegation, new features such as Pressure Stall
Information, and enhanced resource management and isolation. However, cgroup v2 has different CPU,
memory, and I/O management characteristics than cgroup v1. Therefore, some workloads might
experience slight differences in memory or CPU usage on clusters that run cgroup v2.

You can change between cgroup v1 and cgroup v2, as needed. Enabling cgroup v1 in OpenShift
Container Platform disables all cgroup v2 controllers and hierarchies in your cluster.

NOTE

If you run third-party monitoring and security agents that depend on the cgroup
file system, update the agents to a version that supports cgroup v2.

If you have configured cgroup v2 and run cAdvisor as a stand-alone daemon set
for monitoring pods and containers, update cAdvisor to v0.43.0 or later.

If you deploy Java applications, use versions that fully support cgroup v2, such as
the following packages:

OpenJDK / HotSpot: jdk8u372, 11.0.16, 15 and later

NodeJs 20.3.0 or later

IBM Semeru Runtimes: jdk8u345-b01, 11.0.16.0, 17.0.4.0, 18.0.2.0 and later

IBM SDK Java Technology Edition Version (IBM Java): 8.0.7.15 and later

8.6.1. Configuring Linux cgroup

You can enable Linux control group version 1 (cgroup v1) or Linux control group version 2 (cgroup v2)
by editing the node.config object. The default is cgroup v2.

NOTE

 annotations:
 quota.openshift.io/cluster-resource-override-enabled: "false" 1
...

OpenShift Container Platform 4.15 Nodes

420

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/building_applications/#deployments-triggers_deployment-operations
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/index.html
https://www.kernel.org/doc/html/latest/accounting/psi.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/index.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

1

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

Prerequisites

You have a running OpenShift Container Platform cluster that uses version 4.12 or later.

You are logged in to the cluster as a user with administrative privileges.

Procedure

1. Enable cgroup v1 on nodes:

a. Edit the node.config object:

b. Edit the spec.cgroupMode parameter:

Example node.config object

Specify v1 to enable cgroup v1 or v2 for cgroup v2.

Verification

1. Check the machine configs to see that the new machine configs were added:

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v2
kind: Node
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "true"
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
 release.openshift.io/create-only: "true"
 creationTimestamp: "2022-07-08T16:02:51Z"
 generation: 1
 name: cluster
 ownerReferences:
 - apiVersion: config.openshift.io/v2
 kind: ClusterVersion
 name: version
 uid: 36282574-bf9f-409e-a6cd-3032939293eb
 resourceVersion: "1865"
 uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
 cgroupMode: "v1" 1
...

$ oc get mc

CHAPTER 8. WORKING WITH CLUSTERS

421

1

Example output

New machine configs are created, as expected.

2. Check that the new kernelArguments were added to the new machine configs:

Example output for cgroup v2

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0
33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0
33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
97-master-generated-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-worker-generated-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-worker-ssh 3.2.0 40m
rendered-master-23d4317815a5f854bd3553d689cfe2e9
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 10s 1
rendered-master-23e785de7587df95a4b517e0647e5ab7
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-dcc7f1b92892d34db74d6832bcc9ccd4
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 10s

$ oc describe mc <name>

apiVersion: machineconfiguration.openshift.io/v2
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 05-worker-kernelarg-selinuxpermissive
spec:
 kernelArguments:

OpenShift Container Platform 4.15 Nodes

422

1

2

3

1

2

Enables cgroup v2 in systemd.

Disables cgroup v1.

Enables the Linux Pressure Stall Information (PSI) feature.

Example output for cgroup v1

Disables cgroup v2.

Enables cgroup v1 in systemd.

3. Check the nodes to see that scheduling on the nodes is disabled. This indicates that the change
is being applied:

Example output

4. After a node returns to the Ready state, start a debug session for that node:

5. Set /host as the root directory within the debug shell:

 systemd_unified_cgroup_hierarchy=1 1
 cgroup_no_v1="all" 2
 psi=1 3

apiVersion: machineconfiguration.openshift.io/v2
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 05-worker-kernelarg-selinuxpermissive
spec:
 kernelArguments:
 systemd.unified_cgroup_hierarchy=0 1
 systemd.legacy_systemd_cgroup_controller=1 2

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ci-ln-fm1qnwt-72292-99kt6-master-0 Ready,SchedulingDisabled master 58m
v1.28.5
ci-ln-fm1qnwt-72292-99kt6-master-1 Ready master 58m v1.28.5
ci-ln-fm1qnwt-72292-99kt6-master-2 Ready master 58m v1.28.5
ci-ln-fm1qnwt-72292-99kt6-worker-a-h5gt4 Ready,SchedulingDisabled worker 48m
v1.28.5
ci-ln-fm1qnwt-72292-99kt6-worker-b-7vtmd Ready worker 48m v1.28.5
ci-ln-fm1qnwt-72292-99kt6-worker-c-rhzkv Ready worker 48m v1.28.5

$ oc debug node/<node_name>

sh-4.4# chroot /host

CHAPTER 8. WORKING WITH CLUSTERS

423

6. Check that the sys/fs/cgroup/cgroup2fs or sys/fs/cgroup/tmpfs file is present on your nodes:

Example output for cgroup v2

Example output for cgroup v1

Additional resources

OpenShift Container Platform installation overview

8.7. ENABLING FEATURES USING FEATURE GATES

As an administrator, you can use feature gates to enable features that are not part of the default set of
features.

8.7.1. Understanding feature gates

You can use the FeatureGate custom resource (CR) to enable specific feature sets in your cluster. A
feature set is a collection of OpenShift Container Platform features that are not enabled by default.

You can activate the following feature set by using the FeatureGate CR:

TechPreviewNoUpgrade. This feature set is a subset of the current Technology Preview
features. This feature set allows you to enable these Technology Preview features on test
clusters, where you can fully test them, while leaving the features disabled on production
clusters.

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

The following Technology Preview features are enabled by this feature set:

External cloud providers. Enables support for external cloud providers for clusters on
vSphere, AWS, Azure, and GCP. Support for OpenStack is GA. This is an internal feature
that most users do not need to interact with. (ExternalCloudProvider)

Shared Resources CSI Driver in OpenShift Builds. Enables the Container Storage Interface
(CSI). (CSIDriverSharedResource)

Swap memory on nodes. Enables swap memory use for OpenShift Container Platform

$ stat -c %T -f /sys/fs/cgroup

cgroup2fs

tmpfs

OpenShift Container Platform 4.15 Nodes

424

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#ocp-installation-overview

Swap memory on nodes. Enables swap memory use for OpenShift Container Platform
workloads on a per-node basis. (NodeSwap)

OpenStack Machine API Provider. This gate has no effect and is planned to be removed
from this feature set in a future release. (MachineAPIProviderOpenStack)

Insights Operator. Enables the InsightsDataGather CRD, which allows users to configure
some Insights data gathering options. The feature set also enables the DataGather CRD,
which allows users to run Insights data gathering on-demand. (InsightsConfigAPI)

Retroactive Default Storage Class. Enables OpenShift Container Platform to retroactively
assign the default storage class to PVCs if there was no default storage class when the PVC
was created.(RetroactiveDefaultStorageClass)

Dynamic Resource Allocation API. Enables a new API for requesting and sharing resources
between pods and containers. This is an internal feature that most users do not need to
interact with. (DynamicResourceAllocation)

Pod security admission enforcement. Enables the restricted enforcement mode for pod
security admission. Instead of only logging a warning, pods are rejected if they violate pod
security standards. (OpenShiftPodSecurityAdmission)

StatefulSet pod availability upgrading limits. Enables users to define the maximum number
of statefulset pods unavailable during updates which reduces application downtime.
(MaxUnavailableStatefulSet)

Admin Network Policy and Baseline Admin Network Policy. Enables AdminNetworkPolicy
and BaselineAdminNetworkPolicy resources, which are part of the Network Policy V2 API,
in clusters running the OVN-Kubernetes CNI plugin. Cluster administrators can apply
cluster-scoped policies and safeguards for an entire cluster before namespaces are
created. Network administrators can secure clusters by enforcing network traffic controls
that cannot be overridden by users. Network administrators can enforce optional baseline
network traffic controls that can be overridden by users in the cluster, if necessary.
Currently, these APIs support only expressing policies for intra-cluster traffic.
(AdminNetworkPolicy)

MatchConditions is a list of conditions that must be met for a request to be sent to this
webhook. Match conditions filter requests that have already been matched by the rules,
namespaceSelector, and objectSelector. An empty list of matchConditions matches all
requests. (admissionWebhookMatchConditions)

Gateway API. To enable the OpenShift Container Platform Gateway API, set the value of
the enabled field to true in the techPreview.gatewayAPI specification of the
ServiceMeshControlPlane resource.(gateGatewayAPI)

gcpLabelsTags

vSphereStaticIPs

routeExternalCertificate

automatedEtcdBackup

gcpClusterHostedDNS

vSphereControlPlaneMachineset

CHAPTER 8. WORKING WITH CLUSTERS

425

dnsNameResolver

machineConfigNodes

metricsServer

installAlternateInfrastructureAWS

sdnLiveMigration

mixedCPUsAllocation

managedBootImages

onClusterBuild

signatureStores

For more information about the features activated by the TechPreviewNoUpgrade feature gate, see
the following topics:

Shared Resources CSI Driver and Build CSI Volumes in OpenShift Builds

CSI inline ephemeral volumes

Swap memory on nodes

Managing machines with the Cluster API

Disabling the Insights Operator gather operations

Enabling the Insights Operator gather operations

Running an Insights Operator gather operation

Managing the default storage class

Pod security admission enforcement .

8.7.2. Enabling feature sets at installation

You can enable feature sets for all nodes in the cluster by editing the install-config.yaml file before
you deploy the cluster.

Prerequisites

You have an install-config.yaml file.

Procedure

1. Use the featureSet parameter to specify the name of the feature set you want to enable, such
as TechPreviewNoUpgrade:

OpenShift Container Platform 4.15 Nodes

426

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/builds_using_buildconfig/#builds-running-entitled-builds-with-sharedsecret-objects_running-entitled-builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#ephemeral-storage-csi-inline
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/machine_management/#capi-machine-management
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/#disabling-insights-operator-gather_using-insights-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/#enabling-insights-operator-gather_using-insights-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/#running-insights-operator-gather_using-insights-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#persistent-storage-csi-sc-manage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

Sample install-config.yaml file with an enabled feature set

2. Save the file and reference it when using the installation program to deploy the cluster.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the
nodes return to the ready state.

1. From the Administrator perspective in the web console, navigate to Compute → Nodes.

2. Select a node.

3. In the Node details page, click Terminal.

4. In the terminal window, change your root directory to /host:

5. View the kubelet.conf file:

Sample output

compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 rootVolume:
 iops: 2000
 size: 500
 type: io1
 metadataService:
 authentication: Optional
 type: c5.4xlarge
 zones:
 - us-west-2c
 replicas: 3
featureSet: TechPreviewNoUpgrade

sh-4.2# chroot /host

sh-4.2# cat /etc/kubernetes/kubelet.conf

...
featureGates:

CHAPTER 8. WORKING WITH CLUSTERS

427

1

2

The features that are listed as true are enabled on your cluster.

NOTE

The features listed vary depending upon the OpenShift Container Platform
version.

8.7.3. Enabling feature sets using the web console

You can use the OpenShift Container Platform web console to enable feature sets for all of the nodes
in a cluster by editing the FeatureGate custom resource (CR).

Procedure

To enable feature sets:

1. In the OpenShift Container Platform web console, switch to the Administration → Custom
Resource Definitions page.

2. On the Custom Resource Definitions page, click FeatureGate.

3. On the Custom Resource Definition Details page, click the Instances tab.

4. Click the cluster feature gate, then click the YAML tab.

5. Edit the cluster instance to add specific feature sets:

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

Sample Feature Gate custom resource

The name of the FeatureGate CR must be cluster.

Add the feature set that you want to enable:

 InsightsOperatorPullingSCA: true,
 LegacyNodeRoleBehavior: false
...

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster 1
...
spec:
 featureSet: TechPreviewNoUpgrade 2

OpenShift Container Platform 4.15 Nodes

428

TechPreviewNoUpgrade enables specific Technology Preview features.

After you save the changes, new machine configs are created, the machine config pools are
updated, and scheduling on each node is disabled while the change is being applied.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the
nodes return to the ready state.

1. From the Administrator perspective in the web console, navigate to Compute → Nodes.

2. Select a node.

3. In the Node details page, click Terminal.

4. In the terminal window, change your root directory to /host:

5. View the kubelet.conf file:

Sample output

The features that are listed as true are enabled on your cluster.

NOTE

The features listed vary depending upon the OpenShift Container Platform
version.

8.7.4. Enabling feature sets using the CLI

You can use the OpenShift CLI (oc) to enable feature sets for all of the nodes in a cluster by editing the
FeatureGate custom resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

To enable feature sets:

1. Edit the FeatureGate CR named cluster:

sh-4.2# chroot /host

sh-4.2# cat /etc/kubernetes/kubelet.conf

...
featureGates:
 InsightsOperatorPullingSCA: true,
 LegacyNodeRoleBehavior: false
...

CHAPTER 8. WORKING WITH CLUSTERS

429

1

2

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

Sample FeatureGate custom resource

The name of the FeatureGate CR must be cluster.

Add the feature set that you want to enable:

TechPreviewNoUpgrade enables specific Technology Preview features.

After you save the changes, new machine configs are created, the machine config pools are
updated, and scheduling on each node is disabled while the change is being applied.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the
nodes return to the ready state.

1. From the Administrator perspective in the web console, navigate to Compute → Nodes.

2. Select a node.

3. In the Node details page, click Terminal.

4. In the terminal window, change your root directory to /host:

5. View the kubelet.conf file:

Sample output

$ oc edit featuregate cluster

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster 1
...
spec:
 featureSet: TechPreviewNoUpgrade 2

sh-4.2# chroot /host

sh-4.2# cat /etc/kubernetes/kubelet.conf

OpenShift Container Platform 4.15 Nodes

430

The features that are listed as true are enabled on your cluster.

NOTE

The features listed vary depending upon the OpenShift Container Platform
version.

8.8. IMPROVING CLUSTER STABILITY IN HIGH LATENCY
ENVIRONMENTS USING WORKER LATENCY PROFILES

If the cluster administrator has performed latency tests for platform verification, they can discover the
need to adjust the operation of the cluster to ensure stability in cases of high latency. The cluster
administrator need change only one parameter, recorded in a file, which controls four parameters
affecting how supervisory processes read status and interpret the health of the cluster. Changing only
the one parameter provides cluster tuning in an easy, supportable manner.

The Kubelet process provides the starting point for monitoring cluster health. The Kubelet sets status
values for all nodes in the OpenShift Container Platform cluster. The Kubernetes Controller Manager
(kube controller) reads the status values every 10 seconds, by default. If the kube controller cannot
read a node status value, it loses contact with that node after a configured period. The default behavior
is:

1. The node controller on the control plane updates the node health to Unhealthy and marks the
node Ready condition`Unknown`.

2. In response, the scheduler stops scheduling pods to that node.

3. The Node Lifecycle Controller adds a node.kubernetes.io/unreachable taint with a
NoExecute effect to the node and schedules any pods on the node for eviction after five
minutes, by default.

This behavior can cause problems if your network is prone to latency issues, especially if you have nodes
at the network edge. In some cases, the Kubernetes Controller Manager might not receive an update
from a healthy node due to network latency. The Kubelet evicts pods from the node even though the
node is healthy.

To avoid this problem, you can use worker latency profiles to adjust the frequency that the Kubelet and
the Kubernetes Controller Manager wait for status updates before taking action. These adjustments
help to ensure that your cluster runs properly if network latency between the control plane and the
worker nodes is not optimal.

These worker latency profiles contain three sets of parameters that are pre-defined with carefully tuned
values to control the reaction of the cluster to increased latency. No need to experimentally find the
best values manually.

You can configure worker latency profiles when installing a cluster or at any time you notice increased
latency in your cluster network.

...
featureGates:
 InsightsOperatorPullingSCA: true,
 LegacyNodeRoleBehavior: false
...

CHAPTER 8. WORKING WITH CLUSTERS

431

8.8.1. Understanding worker latency profiles

Worker latency profiles are four different categories of carefully-tuned parameters. The four parameters
which implement these values are node-status-update-frequency, node-monitor-grace-period,
default-not-ready-toleration-seconds and default-unreachable-toleration-seconds. These
parameters can use values which allow you control the reaction of the cluster to latency issues without
needing to determine the best values using manual methods.

IMPORTANT

Setting these parameters manually is not supported. Incorrect parameter settings
adversely affect cluster stability.

All worker latency profiles configure the following parameters:

node-status-update-frequency

Specifies how often the kubelet posts node status to the API server.

node-monitor-grace-period

Specifies the amount of time in seconds that the Kubernetes Controller Manager waits for an update
from a kubelet before marking the node unhealthy and adding the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint to the node.

default-not-ready-toleration-seconds

Specifies the amount of time in seconds after marking a node unhealthy that the Kube API Server
Operator waits before evicting pods from that node.

default-unreachable-toleration-seconds

Specifies the amount of time in seconds after marking a node unreachable that the Kube API Server
Operator waits before evicting pods from that node.

The following Operators monitor the changes to the worker latency profiles and respond accordingly:

The Machine Config Operator (MCO) updates the node-status-update-frequency parameter
on the worker nodes.

The Kubernetes Controller Manager updates the node-monitor-grace-period parameter on
the control plane nodes.

The Kubernetes API Server Operator updates the default-not-ready-toleration-seconds and
default-unreachable-toleration-seconds parameters on the control plane nodes.

Although the default configuration works in most cases, OpenShift Container Platform offers two other
worker latency profiles for situations where the network is experiencing higher latency than usual. The
three worker latency profiles are described in the following sections:

Default worker latency profile

With the Default profile, each Kubelet updates it’s status every 10 seconds (node-status-update-
frequency). The Kube Controller Manager checks the statuses of Kubelet every 5 seconds (node-
monitor-grace-period).
The Kubernetes Controller Manager waits 40 seconds for a status update from Kubelet before
considering the Kubelet unhealthy. If no status is made available to the Kubernetes Controller
Manager, it then marks the node with the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint and evicts the pods on that node.

If a pod on that node has the NoExecute taint, the pod is run according to tolerationSeconds. If the

OpenShift Container Platform 4.15 Nodes

432

If a pod on that node has the NoExecute taint, the pod is run according to tolerationSeconds. If the
pod has no taint, it will be evicted in 300 seconds (default-not-ready-toleration-seconds and
default-unreachable-toleration-seconds settings of the Kube API Server).

Profile Component Parameter Value

Default kubelet node-status-update-
frequency

10s

Kubelet
Controller
Manager

node-monitor-grace-period 40s

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

300s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

300s

Medium worker latency profile

Use the MediumUpdateAverageReaction profile if the network latency is slightly higher than usual.
The MediumUpdateAverageReaction profile reduces the frequency of kubelet updates to 20
seconds and changes the period that the Kubernetes Controller Manager waits for those updates to
2 minutes. The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has
the tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 2 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

Profile Component Parameter Value

MediumUpdateAverageReaction kubelet node-status-update-
frequency

20s

Kubelet
Controller
Manager

node-monitor-grace-period 2m

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

60s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

60s

Low worker latency profile

CHAPTER 8. WORKING WITH CLUSTERS

433

Use the LowUpdateSlowReaction profile if the network latency is extremely high.
The LowUpdateSlowReaction profile reduces the frequency of kubelet updates to 1 minute and
changes the period that the Kubernetes Controller Manager waits for those updates to 5 minutes.
The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has the
tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 5 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

Profile Component Parameter Value

LowUpdateSlowReaction kubelet node-status-update-
frequency

1m

Kubelet
Controller
Manager

node-monitor-grace-period 5m

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

60s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

60s

8.8.2. Using and changing worker latency profiles

To change a worker latency profile to deal with network latency, edit the node.config object to add the
name of the profile. You can change the profile at any time as latency increases or decreases.

You must move one worker latency profile at a time. For example, you cannot move directly from the
Default profile to the LowUpdateSlowReaction worker latency profile. You must move from the
Default worker latency profile to the MediumUpdateAverageReaction profile first, then to
LowUpdateSlowReaction. Similarly, when returning to the Default profile, you must move from the low
profile to the medium profile first, then to Default.

NOTE

You can also configure worker latency profiles upon installing an OpenShift Container
Platform cluster.

Procedure

To move from the default worker latency profile:

1. Move to the medium worker latency profile:

a. Edit the node.config object:

$ oc edit nodes.config/cluster

OpenShift Container Platform 4.15 Nodes

434

1

b. Add spec.workerLatencyProfile: MediumUpdateAverageReaction:

Example node.config object

Specifies the medium worker latency policy.

Scheduling on each worker node is disabled as the change is being applied.

2. Optional: Move to the low worker latency profile:

a. Edit the node.config object:

b. Change the spec.workerLatencyProfile value to LowUpdateSlowReaction:

Example node.config object

apiVersion: config.openshift.io/v1
kind: Node
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "true"
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
 release.openshift.io/create-only: "true"
 creationTimestamp: "2022-07-08T16:02:51Z"
 generation: 1
 name: cluster
 ownerReferences:
 - apiVersion: config.openshift.io/v1
 kind: ClusterVersion
 name: version
 uid: 36282574-bf9f-409e-a6cd-3032939293eb
 resourceVersion: "1865"
 uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
 workerLatencyProfile: MediumUpdateAverageReaction 1

...

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v1
kind: Node
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "true"
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
 release.openshift.io/create-only: "true"
 creationTimestamp: "2022-07-08T16:02:51Z"
 generation: 1
 name: cluster
 ownerReferences:
 - apiVersion: config.openshift.io/v1

CHAPTER 8. WORKING WITH CLUSTERS

435

1

1

Specifies use of the low worker latency policy.

Scheduling on each worker node is disabled as the change is being applied.

Verification

When all nodes return to the Ready condition, you can use the following command to look in the
Kubernetes Controller Manager to ensure it was applied:

Example output

Specifies that the profile is applied and active.

To change the medium profile to default or change the default to medium, edit the node.config object
and set the spec.workerLatencyProfile parameter to the appropriate value.

 kind: ClusterVersion
 name: version
 uid: 36282574-bf9f-409e-a6cd-3032939293eb
 resourceVersion: "1865"
 uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
 workerLatencyProfile: LowUpdateSlowReaction 1

...

$ oc get KubeControllerManager -o yaml | grep -i workerlatency -A 5 -B 5

...
 - lastTransitionTime: "2022-07-11T19:47:10Z"
 reason: ProfileUpdated
 status: "False"
 type: WorkerLatencyProfileProgressing
 - lastTransitionTime: "2022-07-11T19:47:10Z" 1
 message: all static pod revision(s) have updated latency profile
 reason: ProfileUpdated
 status: "True"
 type: WorkerLatencyProfileComplete
 - lastTransitionTime: "2022-07-11T19:20:11Z"
 reason: AsExpected
 status: "False"
 type: WorkerLatencyProfileDegraded
 - lastTransitionTime: "2022-07-11T19:20:36Z"
 status: "False"
...

OpenShift Container Platform 4.15 Nodes

436

CHAPTER 9. REMOTE WORKER NODES ON THE NETWORK
EDGE

9.1. USING REMOTE WORKER NODES AT THE NETWORK EDGE

You can configure OpenShift Container Platform clusters with nodes located at your network edge. In
this topic, they are called remote worker nodes . A typical cluster with remote worker nodes combines
on-premise master and worker nodes with worker nodes in other locations that connect to the cluster.
This topic is intended to provide guidance on best practices for using remote worker nodes and does not
contain specific configuration details.

There are multiple use cases across different industries, such as telecommunications, retail,
manufacturing, and government, for using a deployment pattern with remote worker nodes. For
example, you can separate and isolate your projects and workloads by combining the remote worker
nodes into Kubernetes zones .

However, having remote worker nodes can introduce higher latency, intermittent loss of network
connectivity, and other issues. Among the challenges in a cluster with remote worker node are:

Network separation: The OpenShift Container Platform control plane and the remote worker
nodes must be able communicate with each other. Because of the distance between the control
plane and the remote worker nodes, network issues could prevent this communication. See
Network separation with remote worker nodes for information on how OpenShift Container
Platform responds to network separation and for methods to diminish the impact to your
cluster.

Power outage: Because the control plane and remote worker nodes are in separate locations, a
power outage at the remote location or at any point between the two can negatively impact
your cluster. See Power loss on remote worker nodes for information on how OpenShift
Container Platform responds to a node losing power and for methods to diminish the impact to
your cluster.

Latency spikes or temporary reduction in throughput: As with any network, any changes in
network conditions between your cluster and the remote worker nodes can negatively impact
your cluster. OpenShift Container Platform offers multiple worker latency profiles that let you
control the reaction of the cluster to latency issues.

Note the following limitations when planning a cluster with remote worker nodes:

OpenShift Container Platform does not support remote worker nodes that use a different cloud
provider than the on-premise cluster uses.

Moving workloads from one Kubernetes zone to a different Kubernetes zone can be problematic
due to system and environment issues, such as a specific type of memory not being available in
a different zone.

Proxies and firewalls can present additional limitations that are beyond the scope of this
document. See the relevant OpenShift Container Platform documentation for how to address
such limitations, such as Configuring your firewall .

You are responsible for configuring and maintaining L2/L3-level network connectivity between
the control plane and the network-edge nodes.

9.1.1. Adding remote worker nodes

CHAPTER 9. REMOTE WORKER NODES ON THE NETWORK EDGE

437

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#configuring-firewall

Adding remote worker nodes to a cluster involves some additional considerations.

You must ensure that a route or a default gateway is in place to route traffic between the
control plane and every remote worker node.

You must place the Ingress VIP on the control plane.

Adding remote worker nodes with user-provisioned infrastructure is identical to adding other
worker nodes.

To add remote worker nodes to an installer-provisioned cluster at install time, specify the
subnet for each worker node in the install-config.yaml file before installation. There are no
additional settings required for the DHCP server. You must use virtual media, because the
remote worker nodes will not have access to the local provisioning network.

To add remote worker nodes to an installer-provisioned cluster deployed with a provisioning
network, ensure that virtualMediaViaExternalNetwork flag is set to true in the install-
config.yaml file so that it will add the nodes using virtual media. Remote worker nodes will not
have access to the local provisioning network. They must be deployed with virtual media rather
than PXE. Additionally, specify each subnet for each group of remote worker nodes and the
control plane nodes in the DHCP server.

Additional resources

Establishing communications between subnets

Configuring host network interfaces for subnets

Configuring network components to run on the control plane

9.1.2. Network separation with remote worker nodes

All nodes send heartbeats to the Kubernetes Controller Manager Operator (kube controller) in the
OpenShift Container Platform cluster every 10 seconds. If the cluster does not receive heartbeats from a
node, OpenShift Container Platform responds using several default mechanisms.

OpenShift Container Platform is designed to be resilient to network partitions and other disruptions. You
can mitigate some of the more common disruptions, such as interruptions from software upgrades,
network splits, and routing issues. Mitigation strategies include ensuring that pods on remote worker
nodes request the correct amount of CPU and memory resources, configuring an appropriate replication
policy, using redundancy across zones, and using Pod Disruption Budgets on workloads.

If the kube controller loses contact with a node after a configured period, the node controller on the
control plane updates the node health to Unhealthy and marks the node Ready condition as Unknown.
In response, the scheduler stops scheduling pods to that node. The on-premise node controller adds a
node.kubernetes.io/unreachable taint with a NoExecute effect to the node and schedules pods on
the node for eviction after five minutes, by default.

If a workload controller, such as a Deployment object or StatefulSet object, is directing traffic to pods
on the unhealthy node and other nodes can reach the cluster, OpenShift Container Platform routes the
traffic away from the pods on the node. Nodes that cannot reach the cluster do not get updated with
the new traffic routing. As a result, the workloads on those nodes might continue to attempt to reach
the unhealthy node.

You can mitigate the effects of connection loss by:

OpenShift Container Platform 4.15 Nodes

438

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#ipi-install-establishing-communication-between-subnets_ipi-install-installation-workflow
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#ipi-install-configuring-host-network-interfaces-for-subnets_ipi-install-installation-workflow
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#configure-network-components-to-run-on-the-control-plane_ipi-install-installation-workflow

using daemon sets to create pods that tolerate the taints

using static pods that automatically restart if a node goes down

using Kubernetes zones to control pod eviction

configuring pod tolerations to delay or avoid pod eviction

configuring the kubelet to control the timing of when it marks nodes as unhealthy.

For more information on using these objects in a cluster with remote worker nodes, see About remote
worker node strategies.

9.1.3. Power loss on remote worker nodes

If a remote worker node loses power or restarts ungracefully, OpenShift Container Platform responds
using several default mechanisms.

If the Kubernetes Controller Manager Operator (kube controller) loses contact with a node after a
configured period, the control plane updates the node health to Unhealthy and marks the node Ready
condition as Unknown. In response, the scheduler stops scheduling pods to that node. The on-premise
node controller adds a node.kubernetes.io/unreachable taint with a NoExecute effect to the node
and schedules pods on the node for eviction after five minutes, by default.

On the node, the pods must be restarted when the node recovers power and reconnects with the
control plane.

NOTE

If you want the pods to restart immediately upon restart, use static pods.

After the node restarts, the kubelet also restarts and attempts to restart the pods that were scheduled
on the node. If the connection to the control plane takes longer than the default five minutes, the
control plane cannot update the node health and remove the node.kubernetes.io/unreachable taint.
On the node, the kubelet terminates any running pods. When these conditions are cleared, the scheduler
can start scheduling pods to that node.

You can mitigate the effects of power loss by:

using daemon sets to create pods that tolerate the taints

using static pods that automatically restart with a node

configuring pods tolerations to delay or avoid pod eviction

configuring the kubelet to control the timing of when the node controller marks nodes as
unhealthy.

For more information on using these objects in a cluster with remote worker nodes, see About remote
worker node strategies.

9.1.4. Latency spikes or temporary reduction in throughput to remote workers

If the cluster administrator has performed latency tests for platform verification, they can discover the
need to adjust the operation of the cluster to ensure stability in cases of high latency. The cluster
administrator need change only one parameter, recorded in a file, which controls four parameters

CHAPTER 9. REMOTE WORKER NODES ON THE NETWORK EDGE

439

affecting how supervisory processes read status and interpret the health of the cluster. Changing only
the one parameter provides cluster tuning in an easy, supportable manner.

The Kubelet process provides the starting point for monitoring cluster health. The Kubelet sets status
values for all nodes in the OpenShift Container Platform cluster. The Kubernetes Controller Manager
(kube controller) reads the status values every 10 seconds, by default. If the kube controller cannot
read a node status value, it loses contact with that node after a configured period. The default behavior
is:

1. The node controller on the control plane updates the node health to Unhealthy and marks the
node Ready condition`Unknown`.

2. In response, the scheduler stops scheduling pods to that node.

3. The Node Lifecycle Controller adds a node.kubernetes.io/unreachable taint with a
NoExecute effect to the node and schedules any pods on the node for eviction after five
minutes, by default.

This behavior can cause problems if your network is prone to latency issues, especially if you have nodes
at the network edge. In some cases, the Kubernetes Controller Manager might not receive an update
from a healthy node due to network latency. The Kubelet evicts pods from the node even though the
node is healthy.

To avoid this problem, you can use worker latency profiles to adjust the frequency that the Kubelet and
the Kubernetes Controller Manager wait for status updates before taking action. These adjustments
help to ensure that your cluster runs properly if network latency between the control plane and the
worker nodes is not optimal.

These worker latency profiles contain three sets of parameters that are pre-defined with carefully tuned
values to control the reaction of the cluster to increased latency. No need to experimentally find the
best values manually.

You can configure worker latency profiles when installing a cluster or at any time you notice increased
latency in your cluster network.

Additional resources

Improving cluster stability in high latency environments using worker latency profiles

9.1.5. Remote worker node strategies

If you use remote worker nodes, consider which objects to use to run your applications.

It is recommended to use daemon sets or static pods based on the behavior you want in the event of
network issues or power loss. In addition, you can use Kubernetes zones and tolerations to control or
avoid pod evictions if the control plane cannot reach remote worker nodes.

Daemon sets

Daemon sets are the best approach to managing pods on remote worker nodes for the following
reasons:

Daemon sets do not typically need rescheduling behavior. If a node disconnects from the
cluster, pods on the node can continue to run. OpenShift Container Platform does not change
the state of daemon set pods, and leaves the pods in the state they last reported. For example,
if a daemon set pod is in the Running state, when a node stops communicating, the pod keeps
running and is assumed to be running by OpenShift Container Platform.

OpenShift Container Platform 4.15 Nodes

440

Daemon set pods, by default, are created with NoExecute tolerations for the
node.kubernetes.io/unreachable and node.kubernetes.io/not-ready taints with no
tolerationSeconds value. These default values ensure that daemon set pods are never evicted
if the control plane cannot reach a node. For example:

Tolerations added to daemon set pods by default

Daemon sets can use labels to ensure that a workload runs on a matching worker node.

You can use an OpenShift Container Platform service endpoint to load balance daemon set
pods.

NOTE

Daemon sets do not schedule pods after a reboot of the node if OpenShift Container
Platform cannot reach the node.

Static pods

If you want pods restart if a node reboots, after a power loss for example, consider static pods. The
kubelet on a node automatically restarts static pods as node restarts.

NOTE

Static pods cannot use secrets and config maps.

Kubernetes zones

Kubernetes zones can slow down the rate or, in some cases, completely stop pod evictions.

When the control plane cannot reach a node, the node controller, by default, applies
node.kubernetes.io/unreachable taints and evicts pods at a rate of 0.1 nodes per second. However, in
a cluster that uses Kubernetes zones, pod eviction behavior is altered.

If a zone is fully disrupted, where all nodes in the zone have a Ready condition that is False or Unknown,

 tolerations:
 - key: node.kubernetes.io/not-ready
 operator: Exists
 effect: NoExecute
 - key: node.kubernetes.io/unreachable
 operator: Exists
 effect: NoExecute
 - key: node.kubernetes.io/disk-pressure
 operator: Exists
 effect: NoSchedule
 - key: node.kubernetes.io/memory-pressure
 operator: Exists
 effect: NoSchedule
 - key: node.kubernetes.io/pid-pressure
 operator: Exists
 effect: NoSchedule
 - key: node.kubernetes.io/unschedulable
 operator: Exists
 effect: NoSchedule

CHAPTER 9. REMOTE WORKER NODES ON THE NETWORK EDGE

441

https://kubernetes.io/docs/tasks/configure-pod-container/static-pod/
https://kubernetes.io/docs/setup/best-practices/multiple-zones/

1

2

If a zone is fully disrupted, where all nodes in the zone have a Ready condition that is False or Unknown,
the control plane does not apply the node.kubernetes.io/unreachable taint to the nodes in that zone.

For partially disrupted zones, where more than 55% of the nodes have a False or Unknown condition,
the pod eviction rate is reduced to 0.01 nodes per second. Nodes in smaller clusters, with fewer than 50
nodes, are not tainted. Your cluster must have more than three zones for these behavior to take effect.

You assign a node to a specific zone by applying the topology.kubernetes.io/region label in the node
specification.

Sample node labels for Kubernetes zones

KubeletConfig objects

You can adjust the amount of time that the kubelet checks the state of each node.

To set the interval that affects the timing of when the on-premise node controller marks nodes with the
Unhealthy or Unreachable condition, create a KubeletConfig object that contains the node-status-
update-frequency and node-status-report-frequency parameters.

The kubelet on each node determines the node status as defined by the node-status-update-
frequency setting and reports that status to the cluster based on the node-status-report-frequency
setting. By default, the kubelet determines the pod status every 10 seconds and reports the status every
minute. However, if the node state changes, the kubelet reports the change to the cluster immediately.
OpenShift Container Platform uses the node-status-report-frequency setting only when the Node
Lease feature gate is enabled, which is the default state in OpenShift Container Platform clusters. If the
Node Lease feature gate is disabled, the node reports its status based on the node-status-update-
frequency setting.

Example kubelet config

Specify the type of node type to which this KubeletConfig object applies using the label from the
MachineConfig object.

Specify the frequency that the kubelet checks the status of a node associated with this
MachineConfig object. The default value is 10s. If you change this default, the node-status-

kind: Node
apiVersion: v1
metadata:
 labels:
 topology.kubernetes.io/region=east

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: disable-cpu-units
spec:
 machineConfigPoolSelector:
 matchLabels:
 machineconfiguration.openshift.io/role: worker 1
 kubeletConfig:
 node-status-update-frequency: 2
 - "10s"
 node-status-report-frequency: 3
 - "1m"

OpenShift Container Platform 4.15 Nodes

442

3

MachineConfig object. The default value is 10s. If you change this default, the node-status-
report-frequency value is changed to the same value.

Specify the frequency that the kubelet reports the status of a node associated with this
MachineConfig object. The default value is 1m.

The node-status-update-frequency parameter works with the node-monitor-grace-period parameter.

The node-monitor-grace-period parameter specifies how long OpenShift Container Platform
waits after a node associated with a MachineConfig object is marked Unhealthy if the
controller manager does not receive the node heartbeat. Workloads on the node continue to run
after this time. If the remote worker node rejoins the cluster after node-monitor-grace-period
expires, pods continue to run. New pods can be scheduled to that node. The node-monitor-
grace-period interval is 40s. The node-status-update-frequency value must be lower than the
node-monitor-grace-period value.

NOTE

Modifying the node-monitor-grace-period parameter is not supported.

Tolerations

You can use pod tolerations to mitigate the effects if the on-premise node controller adds a
node.kubernetes.io/unreachable taint with a NoExecute effect to a node it cannot reach.

A taint with the NoExecute effect affects pods that are running on the node in the following ways:

Pods that do not tolerate the taint are queued for eviction.

Pods that tolerate the taint without specifying a tolerationSeconds value in their toleration
specification remain bound forever.

Pods that tolerate the taint with a specified tolerationSeconds value remain bound for the
specified amount of time. After the time elapses, the pods are queued for eviction.

NOTE

Unless tolerations are explicitly set, Kubernetes automatically adds a toleration for
node.kubernetes.io/not-ready and node.kubernetes.io/unreachable with
tolerationSeconds=300, meaning that pods remain bound for 5 minutes if either of
these taints is detected.

You can delay or avoid pod eviction by configuring pods tolerations with the NoExecute effect for the
node.kubernetes.io/unreachable and node.kubernetes.io/not-ready taints.

Example toleration in a pod spec

...
tolerations:
- key: "node.kubernetes.io/unreachable"
 operator: "Exists"
 effect: "NoExecute" 1
- key: "node.kubernetes.io/not-ready"
 operator: "Exists"

CHAPTER 9. REMOTE WORKER NODES ON THE NETWORK EDGE

443

1

2

3

The NoExecute effect without tolerationSeconds lets pods remain forever if the control plane
cannot reach the node.

The NoExecute effect with tolerationSeconds: 600 lets pods remain for 10 minutes if the control
plane marks the node as Unhealthy.

You can specify your own tolerationSeconds value.

Other types of OpenShift Container Platform objects

You can use replica sets, deployments, and replication controllers. The scheduler can reschedule
these pods onto other nodes after the node is disconnected for five minutes. Rescheduling onto
other nodes can be beneficial for some workloads, such as REST APIs, where an administrator can
guarantee a specific number of pods are running and accessible.

NOTE

When working with remote worker nodes, rescheduling pods on different nodes might
not be acceptable if remote worker nodes are intended to be reserved for specific
functions.

stateful sets do not get restarted when there is an outage. The pods remain in the terminating state
until the control plane can acknowledge that the pods are terminated.

To avoid scheduling a to a node that does not have access to the same type of persistent storage,
OpenShift Container Platform cannot migrate pods that require persistent volumes to other zones in
the case of network separation.

Additional resources

For more information on Daemonesets, see DaemonSets.

For more information on taints and tolerations, see Controlling pod placement using node
taints.

For more information on configuring KubeletConfig objects, see Creating a KubeletConfig
CRD.

For more information on replica sets, see ReplicaSets.

For more information on deployments, see Deployments.

For more information on replication controllers, see Replication controllers.

For more information on the controller manager, see Kubernetes Controller Manager Operator .

 effect: "NoExecute" 2
 tolerationSeconds: 600 3
...

OpenShift Container Platform 4.15 Nodes

444

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/postinstallation_configuration/#create-a-kubeletconfig-crd-to-edit-kubelet-parameters_post-install-node-tasks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/building_applications/#deployments-repliasets_what-deployments-are
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/building_applications/#deployments-kube-deployments_what-deployments-are
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/building_applications/#deployments-replicationcontrollers_what-deployments-are
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#kube-controller-manager-operator_cluster-operators-ref

CHAPTER 10. WORKER NODES FOR SINGLE-NODE
OPENSHIFT CLUSTERS

10.1. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT
CLUSTERS

Single-node OpenShift clusters reduce the host prerequisites for deployment to a single host. This is
useful for deployments in constrained environments or at the network edge. However, sometimes you
need to add additional capacity to your cluster, for example, in telecommunications and network edge
scenarios. In these scenarios, you can add worker nodes to the single-node cluster.

NOTE

Unlike multi-node clusters, by default all ingress traffic is routed to the single control-
plane node, even after adding additional worker nodes.

There are several ways that you can add worker nodes to a single-node cluster. You can add worker
nodes to a cluster manually, using Red Hat OpenShift Cluster Manager , or by using the Assisted Installer
REST API directly.

IMPORTANT

Adding worker nodes does not expand the cluster control plane, and it does not provide
high availability to your cluster. For single-node OpenShift clusters, high availability is
handled by failing over to another site. When adding worker nodes to single-node
OpenShift clusters, a tested maximum of two worker nodes is recommended. Exceeding
the recommended number of worker nodes might result in lower overall performance,
including cluster failure.

NOTE

To add worker nodes, you must have access to the OpenShift Cluster Manager. This
method is not supported when using the Agent-based installer to install a cluster in a
disconnected environment.

10.1.1. Requirements for installing single-node OpenShift worker nodes

To install a single-node OpenShift worker node, you must address the following requirements:

Administration host: You must have a computer to prepare the ISO and to monitor the
installation.

Production-grade server: Installing single-node OpenShift worker nodes requires a server with
sufficient resources to run OpenShift Container Platform services and a production workload.

Table 10.1. Minimum resource requirements

Profile vCPU Memory Storage

Minimum 2 vCPU cores 8GB of RAM 100GB

NOTE

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

445

https://console.redhat.com/openshift/assisted-installer/clusters

NOTE

One vCPU is equivalent to one physical core when simultaneous multithreading
(SMT), or hyperthreading, is not enabled. When enabled, use the following
formula to calculate the corresponding ratio:

(threads per core × cores) × sockets = vCPUs

The server must have a Baseboard Management Controller (BMC) when booting with virtual
media.

Networking: The worker node server must have access to the internet or access to a local
registry if it is not connected to a routable network. The worker node server must have a DHCP
reservation or a static IP address and be able to access the single-node OpenShift cluster
Kubernetes API, ingress route, and cluster node domain names. You must configure the DNS to
resolve the IP address to each of the following fully qualified domain names (FQDN) for the
single-node OpenShift cluster:

Table 10.2. Required DNS records

Usage FQDN Description

Kubernetes API api.<cluster_name>.
<base_domain>

Add a DNS A/AAAA or CNAME
record. This record must be
resolvable by clients external
to the cluster.

Internal API api-int.<cluster_name>.
<base_domain>

Add a DNS A/AAAA or CNAME
record when creating the ISO
manually. This record must be
resolvable by nodes within the
cluster.

Ingress route *.apps.<cluster_name>.
<base_domain>

Add a wildcard DNS A/AAAA
or CNAME record that targets
the node. This record must be
resolvable by clients external
to the cluster.

Without persistent IP addresses, communications between the apiserver and etcd might fail.

Additional resources

Minimum resource requirements for cluster installation

Recommended practices for scaling the cluster

User-provisioned DNS requirements

Creating a bootable ISO image on a USB drive

Booting from an ISO image served over HTTP using the Redfish API

Deleting nodes from a cluster

OpenShift Container Platform 4.15 Nodes

446

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-minimum-resource-requirements_installing-restricted-networks-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#recommended-scale-practices_cluster-scaling
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-dns-user-infra_installing-bare-metal-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-with-usb-media_install-sno-installing-sno-with-the-assisted-installer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#install-booting-from-an-iso-over-http-redfish_install-sno-installing-sno-with-the-assisted-installer

10.1.2. Adding worker nodes using the Assisted Installer and OpenShift Cluster
Manager

You can add worker nodes to single-node OpenShift clusters that were created on Red Hat OpenShift
Cluster Manager using the Assisted Installer.

IMPORTANT

Adding worker nodes to single-node OpenShift clusters is only supported for clusters
running OpenShift Container Platform version 4.11 and up.

Prerequisites

Have access to a single-node OpenShift cluster installed using Assisted Installer.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Ensure that all the required DNS records exist for the cluster that you are adding the worker
node to.

Procedure

1. Log in to OpenShift Cluster Manager and click the single-node cluster that you want to add a
worker node to.

2. Click Add hosts, and download the discovery ISO for the new worker node, adding SSH public
key and configuring cluster-wide proxy settings as required.

3. Boot the target host using the discovery ISO, and wait for the host to be discovered in the
console. After the host is discovered, start the installation.

4. As the installation proceeds, the installation generates pending certificate signing requests
(CSRs) for the worker node. When prompted, approve the pending CSRs to complete the
installation.
When the worker node is sucessfully installed, it is listed as a worker node in the cluster web
console.

IMPORTANT

New worker nodes will be encrypted using the same method as the original cluster.

Additional resources

User-provisioned DNS requirements

Approving the certificate signing requests for your machines

10.1.3. Adding worker nodes using the Assisted Installer API

You can add worker nodes to single-node OpenShift clusters using the Assisted Installer REST API.
Before you add worker nodes, you must log in to OpenShift Cluster Manager and authenticate against
the API.

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

447

https://console.redhat.com
https://console.redhat.com/openshift/assisted-installer/clusters/~new
https://console.redhat.com/openshift/assisted-installer/clusters/~new
https://console.redhat.com/openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-dns-user-infra_installing-bare-metal-network-customizations
https://console.redhat.com/openshift/token/show

10.1.3.1. Authenticating against the Assisted Installer REST API

Before you can use the Assisted Installer REST API, you must authenticate against the API using a JSON
web token (JWT) that you generate.

Prerequisites

Log in to OpenShift Cluster Manager as a user with cluster creation privileges.

Install jq.

Procedure

1. Log in to OpenShift Cluster Manager and copy your API token.

2. Set the $OFFLINE_TOKEN variable using the copied API token by running the following
command:

3. Set the $JWT_TOKEN variable using the previously set $OFFLINE_TOKEN variable:

NOTE

The JWT token is valid for 15 minutes only.

Verification

Optional: Check that you can access the API by running the following command:

Example output

$ export OFFLINE_TOKEN=<copied_api_token>

$ export JWT_TOKEN=$(
 curl \
 --silent \
 --header "Accept: application/json" \
 --header "Content-Type: application/x-www-form-urlencoded" \
 --data-urlencode "grant_type=refresh_token" \
 --data-urlencode "client_id=cloud-services" \
 --data-urlencode "refresh_token=${OFFLINE_TOKEN}" \
 "https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/token" \
 | jq --raw-output ".access_token"
)

$ curl -s https://api.openshift.com/api/assisted-install/v2/component-versions -H
"Authorization: Bearer ${JWT_TOKEN}" | jq

{
 "release_tag": "v2.5.1",
 "versions":
 {
 "assisted-installer": "registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:v1.0.0-
175",
 "assisted-installer-controller": "registry.redhat.io/rhai-tech-preview/assisted-installer-

OpenShift Container Platform 4.15 Nodes

448

https://console.redhat.com/openshift/assisted-installer/clusters
https://console.redhat.com/openshift/token/show

1

10.1.3.2. Adding worker nodes using the Assisted Installer REST API

You can add worker nodes to clusters using the Assisted Installer REST API.

Prerequisites

Install the OpenShift Cluster Manager CLI (ocm).

Log in to OpenShift Cluster Manager as a user with cluster creation privileges.

Install jq.

Ensure that all the required DNS records exist for the cluster that you are adding the worker
node to.

Procedure

1. Authenticate against the Assisted Installer REST API and generate a JSON web token (JWT)
for your session. The generated JWT token is valid for 15 minutes only.

2. Set the $API_URL variable by running the following command:

Replace <api_url> with the Assisted Installer API URL, for example,
https://api.openshift.com

3. Import the single-node OpenShift cluster by running the following commands:

a. Set the $OPENSHIFT_CLUSTER_ID variable. Log in to the cluster and run the following
command:

b. Set the $CLUSTER_REQUEST variable that is used to import the cluster:

Replace <api_vip> with the hostname for the cluster’s API server. This can be the DNS

reporter-rhel8:v1.0.0-223",
 "assisted-installer-service": "quay.io/app-sre/assisted-service:ac87f93",
 "discovery-agent": "registry.redhat.io/rhai-tech-preview/assisted-installer-agent-
rhel8:v1.0.0-156"
 }
}

$ export API_URL=<api_url> 1

$ export OPENSHIFT_CLUSTER_ID=$(oc get clusterversion -o
jsonpath='{.items[].spec.clusterID}')

$ export CLUSTER_REQUEST=$(jq --null-input --arg openshift_cluster_id
"$OPENSHIFT_CLUSTER_ID" '{
 "api_vip_dnsname": "<api_vip>", 1
 "openshift_cluster_id": $openshift_cluster_id,
 "name": "<openshift_cluster_name>" 2
}')

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

449

https://console.redhat.com/openshift/assisted-installer/clusters
https://api.openshift.com

1

2

1

2

3

4

Replace <api_vip> with the hostname for the cluster’s API server. This can be the DNS
domain for the API server or the IP address of the single node which the worker node
can reach. For example, api.compute-1.example.com.

Replace <openshift_cluster_name> with the plain text name for the cluster. The
cluster name should match the cluster name that was set during the Day 1 cluster
installation.

c. Import the cluster and set the $CLUSTER_ID variable. Run the following command:

4. Generate the InfraEnv resource for the cluster and set the $INFRA_ENV_ID variable by
running the following commands:

a. Download the pull secret file from Red Hat OpenShift Cluster Manager at
console.redhat.com.

b. Set the $INFRA_ENV_REQUEST variable:

Replace <path_to_pull_secret_file> with the path to the local file containing the
downloaded pull secret from Red Hat OpenShift Cluster Manager at
console.redhat.com.

Replace <path_to_ssh_pub_key> with the path to the public SSH key required to
access the host. If you do not set this value, you cannot access the host while in
discovery mode.

Replace <infraenv_name> with the plain text name for the InfraEnv resource.

Replace <iso_image_type> with the ISO image type, either full-iso or minimal-iso.

c. Post the $INFRA_ENV_REQUEST to the /v2/infra-envs API and set the $INFRA_ENV_ID
variable:

5. Get the URL of the discovery ISO for the cluster worker node by running the following

$ CLUSTER_ID=$(curl "$API_URL/api/assisted-install/v2/clusters/import" -H
"Authorization: Bearer ${JWT_TOKEN}" -H 'accept: application/json' -H 'Content-Type:
application/json' \
 -d "$CLUSTER_REQUEST" | tee /dev/stderr | jq -r '.id')

export INFRA_ENV_REQUEST=$(jq --null-input \
 --slurpfile pull_secret <path_to_pull_secret_file> \ 1
 --arg ssh_pub_key "$(cat <path_to_ssh_pub_key>)" \ 2
 --arg cluster_id "$CLUSTER_ID" '{
 "name": "<infraenv_name>", 3
 "pull_secret": $pull_secret[0] | tojson,
 "cluster_id": $cluster_id,
 "ssh_authorized_key": $ssh_pub_key,
 "image_type": "<iso_image_type>" 4
}')

$ INFRA_ENV_ID=$(curl "$API_URL/api/assisted-install/v2/infra-envs" -H "Authorization:
Bearer ${JWT_TOKEN}" -H 'accept: application/json' -H 'Content-Type: application/json'
-d "$INFRA_ENV_REQUEST" | tee /dev/stderr | jq -r '.id')

OpenShift Container Platform 4.15 Nodes

450

console.redhat.com/openshift/install/pull-secret
console.redhat.com/openshift/install/pull-secret
https://api.openshift.com/?urls.primaryName=assisted-service service#/installer/RegisterInfraEnv

1

1

5. Get the URL of the discovery ISO for the cluster worker node by running the following
command:

Example output

6. Download the ISO:

Replace <iso_url> with the URL for the ISO from the previous step.

7. Boot the new worker host from the downloaded rhcos-live-minimal.iso.

8. Get the list of hosts in the cluster that are not installed. Keep running the following command
until the new host shows up:

Example output

9. Set the $HOST_ID variable for the new worker node, for example:

Replace <host_id> with the host ID from the previous step.

10. Check that the host is ready to install by running the following command:

NOTE

Ensure that you copy the entire command including the complete jq expression.

$ curl -s "$API_URL/api/assisted-install/v2/infra-envs/$INFRA_ENV_ID" -H "Authorization:
Bearer ${JWT_TOKEN}" | jq -r '.download_url'

https://api.openshift.com/api/assisted-images/images/41b91e72-c33e-42ee-b80f-
b5c5bbf6431a?
arch=x86_64&image_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2NTYwMjYz
NzEsInN1YiI6IjQxYjkxZTcyLWMzM2UtNDJlZS1iODBmLWI1YzViYmY2NDMxYSJ9.1EX_VGaM
NejMhrAvVRBS7PDPIQtbOOc8LtG8OukE1a4&type=minimal-iso&version=$VERSION

$ curl -L -s '<iso_url>' --output rhcos-live-minimal.iso 1

$ curl -s "$API_URL/api/assisted-install/v2/clusters/$CLUSTER_ID" -H "Authorization: Bearer
${JWT_TOKEN}" | jq -r '.hosts[] | select(.status != "installed").id'

2294ba03-c264-4f11-ac08-2f1bb2f8c296

$ HOST_ID=<host_id> 1

$ curl -s $API_URL/api/assisted-install/v2/clusters/$CLUSTER_ID -H "Authorization: Bearer
${JWT_TOKEN}" | jq '
def host_name($host):
 if (.suggested_hostname // "") == "" then
 if (.inventory // "") == "" then
 "Unknown hostname, please wait"

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

451

Example output

 else
 .inventory | fromjson | .hostname
 end
 else
 .suggested_hostname
 end;

def is_notable($validation):
 ["failure", "pending", "error"] | any(. == $validation.status);

def notable_validations($validations_info):
 [
 $validations_info // "{}"
 | fromjson
 | to_entries[].value[]
 | select(is_notable(.))
];

{
 "Hosts validations": {
 "Hosts": [
 .hosts[]
 | select(.status != "installed")
 | {
 "id": .id,
 "name": host_name(.),
 "status": .status,
 "notable_validations": notable_validations(.validations_info)
 }
]
 },
 "Cluster validations info": {
 "notable_validations": notable_validations(.validations_info)
 }
}
' -r

{
 "Hosts validations": {
 "Hosts": [
 {
 "id": "97ec378c-3568-460c-bc22-df54534ff08f",
 "name": "localhost.localdomain",
 "status": "insufficient",
 "notable_validations": [
 {
 "id": "ntp-synced",
 "status": "failure",
 "message": "Host couldn't synchronize with any NTP server"
 },
 {
 "id": "api-domain-name-resolved-correctly",
 "status": "error",
 "message": "Parse error for domain name resolutions result"

OpenShift Container Platform 4.15 Nodes

452

11. When the previous command shows that the host is ready, start the installation using the
/v2/infra-envs/{infra_env_id}/hosts/{host_id}/actions/install API by running the following
command:

12. As the installation proceeds, the installation generates pending certificate signing requests
(CSRs) for the worker node.

IMPORTANT

You must approve the CSRs to complete the installation.

Keep running the following API call to monitor the cluster installation:

Example output

 },
 {
 "id": "api-int-domain-name-resolved-correctly",
 "status": "error",
 "message": "Parse error for domain name resolutions result"
 },
 {
 "id": "apps-domain-name-resolved-correctly",
 "status": "error",
 "message": "Parse error for domain name resolutions result"
 }
]
 }
]
 },
 "Cluster validations info": {
 "notable_validations": []
 }
}

$ curl -X POST -s "$API_URL/api/assisted-install/v2/infra-
envs/$INFRA_ENV_ID/hosts/$HOST_ID/actions/install" -H "Authorization: Bearer
${JWT_TOKEN}"

$ curl -s "$API_URL/api/assisted-install/v2/clusters/$CLUSTER_ID" -H "Authorization: Bearer
${JWT_TOKEN}" | jq '{
 "Cluster day-2 hosts":
 [
 .hosts[]
 | select(.status != "installed")
 | {id, requested_hostname, status, status_info, progress, status_updated_at,
updated_at, infra_env_id, cluster_id, created_at}
]
}'

{
 "Cluster day-2 hosts": [
 {
 "id": "a1c52dde-3432-4f59-b2ae-0a530c851480",

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

453

https://api.openshift.com/?urls.primaryName=assisted-service service#/installer/v2InstallHost

13. Optional: Run the following command to see all the events for the cluster:

Example output

14. Log in to the cluster and approve the pending CSRs to complete the installation.

Verification

Check that the new worker node was successfully added to the cluster with a status of Ready:

 "requested_hostname": "control-plane-1",
 "status": "added-to-existing-cluster",
 "status_info": "Host has rebooted and no further updates will be posted. Please check
console for progress and to possibly approve pending CSRs",
 "progress": {
 "current_stage": "Done",
 "installation_percentage": 100,
 "stage_started_at": "2022-07-08T10:56:20.476Z",
 "stage_updated_at": "2022-07-08T10:56:20.476Z"
 },
 "status_updated_at": "2022-07-08T10:56:20.476Z",
 "updated_at": "2022-07-08T10:57:15.306369Z",
 "infra_env_id": "b74ec0c3-d5b5-4717-a866-5b6854791bd3",
 "cluster_id": "8f721322-419d-4eed-aa5b-61b50ea586ae",
 "created_at": "2022-07-06T22:54:57.161614Z"
 }
]
}

$ curl -s "$API_URL/api/assisted-install/v2/events?cluster_id=$CLUSTER_ID" -H
"Authorization: Bearer ${JWT_TOKEN}" | jq -c '.[] | {severity, message, event_time, host_id}'

{"severity":"info","message":"Host compute-0: updated status from insufficient to known (Host
is ready to be installed)","event_time":"2022-07-08T11:21:46.346Z","host_id":"9d7b3b44-
1125-4ad0-9b14-76550087b445"}
{"severity":"info","message":"Host compute-0: updated status from known to installing
(Installation is in progress)","event_time":"2022-07-08T11:28:28.647Z","host_id":"9d7b3b44-
1125-4ad0-9b14-76550087b445"}
{"severity":"info","message":"Host compute-0: updated status from installing to installing-in-
progress (Starting installation)","event_time":"2022-07-
08T11:28:52.068Z","host_id":"9d7b3b44-1125-4ad0-9b14-76550087b445"}
{"severity":"info","message":"Uploaded logs for host compute-0 cluster 8f721322-419d-4eed-
aa5b-61b50ea586ae","event_time":"2022-07-08T11:29:47.802Z","host_id":"9d7b3b44-1125-
4ad0-9b14-76550087b445"}
{"severity":"info","message":"Host compute-0: updated status from installing-in-progress to
added-to-existing-cluster (Host has rebooted and no further updates will be posted. Please
check console for progress and to possibly approve pending CSRs)","event_time":"2022-07-
08T11:29:48.259Z","host_id":"9d7b3b44-1125-4ad0-9b14-76550087b445"}
{"severity":"info","message":"Host: compute-0, reached installation stage
Rebooting","event_time":"2022-07-08T11:29:48.261Z","host_id":"9d7b3b44-1125-4ad0-9b14-
76550087b445"}

$ oc get nodes

OpenShift Container Platform 4.15 Nodes

454

1

1

Example output

Additional resources

User-provisioned DNS requirements

Approving the certificate signing requests for your machines

10.1.4. Adding worker nodes to single-node OpenShift clusters manually

You can add a worker node to a single-node OpenShift cluster manually by booting the worker node
from Red Hat Enterprise Linux CoreOS (RHCOS) ISO and by using the cluster worker.ign file to join
the new worker node to the cluster.

Prerequisites

Install a single-node OpenShift cluster on bare metal.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Ensure that all the required DNS records exist for the cluster that you are adding the worker
node to.

Procedure

1. Set the OpenShift Container Platform version:

Replace <ocp_version> with the current version, for example, latest-4.15

2. Set the host architecture:

Replace <architecture> with the target host architecture, for example, aarch64 or
x86_64.

3. Get the worker.ign data from the running single-node cluster by running the following
command:

4. Host the worker.ign file on a web server accessible from your network.

5. Download the OpenShift Container Platform installer and make it available for use by running

NAME STATUS ROLES AGE VERSION
control-plane-1.example.com Ready master,worker 56m v1.28.5
compute-1.example.com Ready worker 11m v1.28.5

$ OCP_VERSION=<ocp_version> 1

$ ARCH=<architecture> 1

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

455

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-dns-user-infra_installing-bare-metal-network-customizations

5. Download the OpenShift Container Platform installer and make it available for use by running
the following commands:

6. Retrieve the RHCOS ISO URL:

7. Download the RHCOS ISO:

8. Use the RHCOS ISO and the hosted worker.ign file to install the worker node:

a. Boot the target host with the RHCOS ISO and your preferred method of installation.

b. When the target host has booted from the RHCOS ISO, open a console on the target host.

c. If your local network does not have DHCP enabled, you need to create an ignition file with
the new hostname and configure the worker node static IP address before running the
RHCOS installation. Perform the following steps:

i. Configure the worker host network connection with a static IP. Run the following
command on the target host console:

where:

<static_ip>

Is the host static IP address and CIDR, for example, 10.1.101.50/24

<network_gateway>

Is the network gateway, for example, 10.1.101.1

ii. Activate the modified network interface:

iii. Create a new ignition file new-worker.ign that includes a reference to the original
worker.ign and an additional instruction that the coreos-installer program uses to
populate the /etc/hostname file on the new worker host. For example:

$ curl -k https://mirror.openshift.com/pub/openshift-
v4/clients/ocp/$OCP_VERSION/openshift-install-linux.tar.gz > openshift-install-linux.tar.gz

$ tar zxvf openshift-install-linux.tar.gz

$ chmod +x openshift-install

$ ISO_URL=$(./openshift-install coreos print-stream-json | grep location | grep $ARCH | grep
iso | cut -d\" -f4)

$ curl -L $ISO_URL -o rhcos-live.iso

$ nmcli con mod <network_interface> ipv4.method manual /
ipv4.addresses <static_ip> ipv4.gateway <network_gateway> ipv4.dns <dns_server>
/
802-3-ethernet.mtu 9000

$ nmcli con up <network_interface>

{

OpenShift Container Platform 4.15 Nodes

456

1

2

<hosted_worker_ign_file> is the locally accessible URL for the original
worker.ign file. For example, http://webserver.example.com/worker.ign

<new_fqdn> is the new FQDN that you set for the worker node. For example,
new-worker.example.com.

iv. Host the new-worker.ign file on a web server accessible from your network.

v. Run the following coreos-installer command, passing in the ignition-url and hard disk
details:

where:

<new_worker_ign_file>

is the locally accessible URL for the hosted new-worker.ign file, for example,
http://webserver.example.com/new-worker.ign

<hard_disk>

Is the hard disk where you install RHCOS, for example, /dev/sda

d. For networks that have DHCP enabled, you do not need to set a static IP. Run the following
coreos-installer command from the target host console to install the system:

e. To manually enable DHCP, apply the following NMStateConfig CR to the single-node

 "ignition":{
 "version":"3.2.0",
 "config":{
 "merge":[
 {
 "source":"<hosted_worker_ign_file>" 1
 }
]
 }
 },
 "storage":{
 "files":[
 {
 "path":"/etc/hostname",
 "contents":{
 "source":"data:,<new_fqdn>" 2
 },
 "mode":420,
 "overwrite":true,
 "path":"/etc/hostname"
 }
]
 }
}

$ sudo coreos-installer install --copy-network /
--ignition-url=<new_worker_ign_file> <hard_disk> --insecure-ignition

$ coreos-installer install --ignition-url=<hosted_worker_ign_file> <hard_disk>

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

457

http://webserver.example.com/worker.ign
http://webserver.example.com/new-worker.ign

e. To manually enable DHCP, apply the following NMStateConfig CR to the single-node
OpenShift cluster:

IMPORTANT

The NMStateConfig CR is required for successful deployments of worker
nodes with static IP addresses and for adding a worker node with a dynamic
IP address if the single-node OpenShift was deployed with a static IP
address. The cluster network DHCP does not automatically set these
network settings for the new worker node.

9. As the installation proceeds, the installation generates pending certificate signing requests
(CSRs) for the worker node. When prompted, approve the pending CSRs to complete the
installation.

10. When the install is complete, reboot the host. The host joins the cluster as a new worker node.

Verification

Check that the new worker node was successfully added to the cluster with a status of Ready:

Example output

Additional resources

User-provisioned DNS requirements

apiVersion: agent-install.openshift.io/v1
kind: NMStateConfig
metadata:
 name: nmstateconfig-dhcp
 namespace: example-sno
 labels:
 nmstate_config_cluster_name: <nmstate_config_cluster_label>
spec:
 config:
 interfaces:
 - name: eth0
 type: ethernet
 state: up
 ipv4:
 enabled: true
 dhcp: true
 ipv6:
 enabled: false
 interfaces:
 - name: "eth0"
 macAddress: "AA:BB:CC:DD:EE:11"

$ oc get nodes

NAME STATUS ROLES AGE VERSION
control-plane-1.example.com Ready master,worker 56m v1.28.5
compute-1.example.com Ready worker 11m v1.28.5

OpenShift Container Platform 4.15 Nodes

458

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-dns-user-infra_installing-bare-metal-network-customizations

Approving the certificate signing requests for your machines

10.1.5. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.28.5
master-1 Ready master 63m v1.28.5
master-2 Ready master 64m v1.28.5

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

459

1

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

OpenShift Container Platform 4.15 Nodes

460

1

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.28.5
master-1 Ready master 73m v1.28.5
master-2 Ready master 74m v1.28.5
worker-0 Ready worker 11m v1.28.5
worker-1 Ready worker 11m v1.28.5

CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS

461

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/

CHAPTER 11. NODE METRICS DASHBOARD
The node metrics dashboard is a visual analytics dashboard that helps you identify potential pod scaling
issues.

11.1. ABOUT THE NODE METRICS DASHBOARD

The node metrics dashboard enables administrative and support team members to monitor metrics
related to pod scaling, including scaling limits used to diagnose and troubleshoot scaling issues.
Particularly, you can use the visual analytics displayed through the dashboard to monitor workload
distributions across nodes. Insights gained from these analytics help you determine the health of your
CRI-O and Kubelet system components as well as identify potential sources of excessive or imbalanced
resource consumption and system instability.

The dashboard displays visual analytics widgets organized into the following categories:

Critical

Includes visualizations that can help you identify node issues that could result in system instability
and inefficiency

Outliers

Includes histograms that visualize processes with runtime durations that fall outside of the 95th
percentile

Average durations

Helps you track change in the time that system components take to process operations

Number of operations

Displays visualizations that help you identify changes in the number of operations being run, which in
turn helps you determine the load balance and efficiency of your system

11.2. ACCESSING THE NODE METRICS DASHBOARD

You can access the node metrics dashboard from the Administrator perspective.

Procedure

1. Expand the Observe menu option and select Dashboards.

2. Under the Dashboard filter, select Node cluster.

NOTE

If no data appears in the visualizations under the Critical category, no critical anomalies
were detected. The dashboard is working as intended.

11.3. IDENTIFY METRICS FOR INDICATING OPTIMAL NODE RESOURCE
USAGE

The node metrics dashboard is organized into four categories: Critical, Outliers, Average durations,
and Number of Operations. The metrics in the Critical category help you indicate optimal node
resource usage. These metrics include:

Top 3 containers with the most OOM kills in the last day

OpenShift Container Platform 4.15 Nodes

462

Failure rate for image pulls in the last hour

Nodes with system reserved memory utilization > 80%

Nodes with Kubelet system reserved memory utilization > 50%

Nodes with CRI-O system reserved memory utilization > 50%

Nodes with system reserved CPU utilization > 80%

Nodes with Kubelet system reserved CPU utilization > 50%

Nodes with CRI-O system reserved CPU utilization > 50%

11.3.1. Top 3 containers with the most OOM kills in the last day

The Top 3 containers with the most OOM kills in the last day query fetches details regarding the top
three containers that have experienced the most Out-Of-Memory (OOM) kills in the previous day.

Example default query

topk(3, sum(increase(container_runtime_crio_containers_oom_count_total[1d])) by (name))

OOM kills force the system to terminate some processes due to low memory. Frequent OOM kills can
hinder the functionality of the node and even the entire Kubernetes ecosystem. Containers
experiencing frequent OOM kills might be consuming more memory than they should, which causes
system instability.

Use this metric to identify containers that are experiencing frequent OOM kills and investigate why
these containers are consuming an excessive amount of memory. Adjust the resource allocation if
necessary and consider resizing the containers based on their memory usage. You can also review the
metrics under the Outliers, Average durations, and Number of operations categories to gain further
insights into the health and stability of your nodes.

11.3.2. Failure rate for image pulls in the last hour

The Failure rate for image pulls in the last hour query divides the total number of failed image pulls by
the sum of successful and failed image pulls to provide a ratio of failures.

Example default query

rate(container_runtime_crio_image_pulls_failure_total[1h]) /
(rate(container_runtime_crio_image_pulls_success_total[1h]) +
rate(container_runtime_crio_image_pulls_failure_total[1h]))

Understanding the failure rate of image pulls is crucial for maintaining the health of the node. A high
failure rate might indicate networking issues, storage problems, misconfigurations, or other issues that
could disrupt pod density and the deployment of new containers.

If the outcome of this query is high, investigate possible causes such as network connections, the
availability of remote repositories, node storage, and the accuracy of image references. You can also
review the metrics under the Outliers, Average durations, and Number of operations categories to
gain further insights.

CHAPTER 11. NODE METRICS DASHBOARD

463

11.3.3. Nodes with system reserved memory utilization > 80%

The Nodes with system reserved memory utilization > 80% query calculates the percentage of system
reserved memory that is utilized for each node. The calculation divides the total resident set size (RSS)
by the total memory capacity of the node subtracted from the allocatable memory. RSS is the portion of
the system’s memory occupied by a process that is held in main memory (RAM). Nodes are flagged if
their resulting value equals or exceeds an 80% threshold.

Example default query

sum by (node) (container_memory_rss{id="/system.slice"}) / sum by (node)
(kube_node_status_capacity{resource="memory"} -
kube_node_status_allocatable{resource="memory"}) * 100 >= 80

System reserved memory is crucial for a Kubernetes node as it is utilized to run system daemons and
Kubernetes system daemons. System reserved memory utilization that exceeds 80% indicates that the
system and Kubernetes daemons are consuming too much memory and can suggest node instability
that could affect the performance of running pods. Excessive memory consumption can cause Out-of-
Memory (OOM) killers that can terminate critical system processes to free up memory.

If a node is flagged by this metric, identify which system or Kubernetes processes are consuming
excessive memory and take appropriate actions to mitigate the situation. These actions may include
scaling back non-critical processes, optimizing program configurations to reduce memory usage, or
upgrading node systems to hardware with greater memory capacity. You can also review the metrics
under the Outliers, Average durations, and Number of operations categories to gain further insights
into node performance.

11.3.4. Nodes with Kubelet system reserved memory utilization > 50%

The Nodes with Kubelet system reserved memory utilization > 50% query indicates nodes where the
Kubelet’s system reserved memory utilization exceeds 50%. The query examines the memory that the
Kubelet process itself is consuming on a node.

Example default query

sum by (node) (container_memory_rss{id="/system.slice/kubelet.service"}) / sum by (node)
(kube_node_status_capacity{resource="memory"} -
kube_node_status_allocatable{resource="memory"}) * 100 >= 50

This query helps you identify any possible memory pressure situations in your nodes that could affect
the stability and efficiency of node operations. Kubelet memory utilization that consistently exceeds
50% of the system reserved memory, indicate that the system reserved settings are not configured
properly and that there is a high risk of the node becoming unstable.

If this metric is highlighted, review your configuration policy and consider adjusting the system reserved
settings or the resource limits settings for the Kubelet. Additionally, if your Kubelet memory utilization
consistently exceeds half of your total reserved system memory, examine metrics under the Outliers,
Average durations, and Number of operations categories to gain further insights for more precise
diagnostics.

11.3.5. Nodes with CRI-O system reserved memory utilization > 50%

The Nodes with CRI-O system reserved memory utilization > 50% query calculates all nodes where
the percentage of used memory reserved for the CRI-O system is greater than or equal to 50%. In this

OpenShift Container Platform 4.15 Nodes

464

case, memory usage is defined by the resident set size (RSS), which is the portion of the CRI-O system’s
memory held in RAM.

Example default query

sum by (node) (container_memory_rss{id="/system.slice/crio.service"}) / sum by (node)
(kube_node_status_capacity{resource="memory"} -
kube_node_status_allocatable{resource="memory"}) * 100 >= 50

This query helps you monitor the status of memory reserved for the CRI-O system on each node. High
utilization could indicate a lack of available resources and potential performance issues. If the memory
reserved for the CRI-O system exceeds the advised limit of 50%, it indicates that half of the system
reserved memory is being used by CRI-O on a node.

Check memory allocation and usage and assess whether memory resources need to be shifted or
increased to prevent possible node instability. You can also examine the metrics under the Outliers,
Average durations, and Number of operations categories to gain further insights.

11.3.6. Nodes with System Reserved CPU Utilization > 80%

The Nodes with system reserved CPU utilization > 80% query identifies nodes where the system-
reserved CPU utilization is more than 80%. The query focuses on the system-reserved capacity to
calculate the rate of CPU usage in the last 5 minutes and compares that to the CPU resources available
on the nodes. If the ratio exceeds 80%, the node’s result is displayed in the metric.

Example default query

sum by (node) (rate(container_cpu_usage_seconds_total{id="/system.slice"}[5m]) * 100) / sum by
(node) (kube_node_status_capacity{resource="cpu"} -
kube_node_status_allocatable{resource="cpu"}) >= 80

This query indicates a critical level of system-reserved CPU usage, which can lead to resource
exhaustion. High system-reserved CPU usage can result in the inability of the system processes
(including the Kubelet and CRI-O) to adequately manage resources on the node. This query can indicate
excessive system processes or misconfigured CPU allocation.

Potential corrective measures include rebalancing workloads to other nodes or increasing the CPU
resources allocated to the nodes. Investigate the cause of the high system CPU utilization and review
the corresponding metrics in the Outliers, Average durations, and Number of operations categories
for additional insights into the node’s behavior.

11.3.7. Nodes with Kubelet system reserved CPU utilization > 50%

The Nodes with Kubelet system reserved CPU utilization > 50% query calculates the percentage of
the CPU that the Kubelet system is currently using from system reserved.

Example default query

sum by (node) (rate(container_cpu_usage_seconds_total{id="/system.slice/kubelet.service"}[5m]) *
100) / sum by (node) (kube_node_status_capacity{resource="cpu"} -
kube_node_status_allocatable{resource="cpu"}) >= 50

The Kubelet uses the system reserved CPU for its own operations and for running critical system
services. For the node’s health, it is important to ensure that system reserve CPU usage does not

CHAPTER 11. NODE METRICS DASHBOARD

465

exceed the 50% threshold. Exceeding this limit could indicate heavy utilization or load on the Kubelet,
which affects node stability and potentially the performance of the entire Kubernetes cluster.

If any node is displayed in this metric, the Kubelet and the system overall are under heavy load. You can
reduce overload on a particular node by balancing the load across other nodes in the cluster. Check
other query metrics under the Outliers, Average durations, and Number of operations categories to
gain further insights and take necessary corrective action.

11.3.8. Nodes with CRI-O system reserved CPU utilization > 50%

The Nodes with CRI-O system reserved CPU utilization > 50% query identifies nodes where the CRI-O
system reserved CPU utilization has exceeded 50% in the last 5 minutes. The query monitors CPU
resource consumption by CRI-O, your container runtime, on a per-node basis.

Example default query

sum by (node) (rate(container_cpu_usage_seconds_total{id="/system.slice/crio.service"}[5m]) * 100)
/ sum by (node) (kube_node_status_capacity{resource="cpu"} -
kube_node_status_allocatable{resource="cpu"}) >= 50

This query allows for quick identification of abnormal start times that could negatively impact pod
performance. If this query returns a high value, your pod start times are slower than usual, which
suggests potential issues with the kubelet, pod configuration, or resources.

Investigate further by checking your pod configurations and allocated resources. Make sure that they
align with your system capabilities. If you still see high start times, explore metrics panels from other
categories on the dashboard to determine the state of your system components.

11.4. CUSTOMIZING DASHBOARD QUERIES

You can customize the default queries used to build the node metrics dashboard.

Procedure

1. Choose a metric and click Inspect to navigate into the data. This page displays the metric in
detail, including an expanded visualization of the results of the query, the Prometheus query
used to analyze the data, and the data subset used in the query.

2. Make any required changes to the query parameters.

3. Optional: Click Add query to run additional queries against the data.

4. Click Run query to rerun the query using your specified parameters.

OpenShift Container Platform 4.15 Nodes

466

	Table of Contents
	CHAPTER 1. OVERVIEW OF NODES
	1.1. ABOUT NODES
	Read operations
	Management operations
	Enhancement operations

	1.2. ABOUT PODS
	Read operations
	Management operations
	Enhancement operations

	1.3. ABOUT CONTAINERS
	1.4. ABOUT AUTOSCALING PODS ON A NODE
	1.5. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NODES

	CHAPTER 2. WORKING WITH PODS
	2.1. USING PODS
	2.1.1. Understanding pods
	2.1.2. Example pod configurations
	2.1.3. Additional resources

	2.2. VIEWING PODS
	2.2.1. About pods
	2.2.2. Viewing pods in a project
	2.2.3. Viewing pod usage statistics
	2.2.4. Viewing resource logs

	2.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER FOR PODS
	2.3.1. Configuring how pods behave after restart
	2.3.2. Limiting the bandwidth available to pods
	2.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up
	2.3.3.1. Specifying the number of pods that must be up with pod disruption budgets
	2.3.3.2. Specifying the eviction policy for unhealthy pods

	2.3.4. Preventing pod removal using critical pods
	2.3.5. Reducing pod timeouts when using persistent volumes with high file counts

	2.4. AUTOMATICALLY SCALING PODS WITH THE HORIZONTAL POD AUTOSCALER
	2.4.1. Understanding horizontal pod autoscalers
	2.4.1.1. Supported metrics

	2.4.2. How does the HPA work?
	2.4.3. About requests and limits
	2.4.4. Best practices
	2.4.4.1. Scaling policies

	2.4.5. Creating a horizontal pod autoscaler by using the web console
	2.4.6. Creating a horizontal pod autoscaler for CPU utilization by using the CLI
	2.4.7. Creating a horizontal pod autoscaler object for memory utilization by using the CLI
	2.4.8. Understanding horizontal pod autoscaler status conditions by using the CLI
	2.4.8.1. Viewing horizontal pod autoscaler status conditions by using the CLI

	2.4.9. Additional resources

	2.5. AUTOMATICALLY ADJUST POD RESOURCE LEVELS WITH THE VERTICAL POD AUTOSCALER
	2.5.1. About the Vertical Pod Autoscaler Operator
	2.5.2. Installing the Vertical Pod Autoscaler Operator
	2.5.3. About Using the Vertical Pod Autoscaler Operator
	2.5.3.1. Changing the VPA minimum value
	2.5.3.2. Automatically applying VPA recommendations
	2.5.3.3. Automatically applying VPA recommendations on pod creation
	2.5.3.4. Manually applying VPA recommendations
	2.5.3.5. Exempting containers from applying VPA recommendations
	2.5.3.6. Performance tuning the VPA Operator
	2.5.3.7. Using an alternative recommender

	2.5.4. Using the Vertical Pod Autoscaler Operator
	2.5.5. Uninstalling the Vertical Pod Autoscaler Operator

	2.6. PROVIDING SENSITIVE DATA TO PODS BY USING SECRETS
	2.6.1. Understanding secrets
	2.6.1.1. Types of secrets
	2.6.1.2. Secret data keys
	2.6.1.3. Automatically generated secrets

	2.6.2. Understanding how to create secrets
	2.6.2.1. Secret creation restrictions
	2.6.2.2. Creating an opaque secret
	2.6.2.3. Creating a service account token secret
	2.6.2.4. Creating a basic authentication secret
	2.6.2.5. Creating an SSH authentication secret
	2.6.2.6. Creating a Docker configuration secret
	2.6.2.7. Creating a secret using the web console

	2.6.3. Understanding how to update secrets
	2.6.4. Creating and using secrets
	2.6.5. About using signed certificates with secrets
	2.6.5.1. Generating signed certificates for use with secrets

	2.6.6. Troubleshooting secrets

	2.7. PROVIDING SENSITIVE DATA TO PODS BY USING AN EXTERNAL SECRETS STORE
	2.7.1. About the Secrets Store CSI Driver Operator
	2.7.1.1. Secrets store providers
	2.7.1.2. Automatic rotation

	2.7.2. Installing the Secrets Store CSI driver
	2.7.3. Mounting secrets from an external secrets store to a CSI volume
	2.7.3.1. Mounting secrets from AWS Secrets Manager
	2.7.3.2. Mounting secrets from AWS Systems Manager Parameter Store
	2.7.3.3. Mounting secrets from Azure Key Vault

	2.7.4. Enabling synchronization of mounted content as Kubernetes secrets
	2.7.5. Viewing the status of secrets in the pod volume mount
	2.7.6. Uninstalling the Secrets Store CSI Driver Operator

	2.8. CREATING AND USING CONFIG MAPS
	2.8.1. Understanding config maps
	Config map restrictions

	2.8.2. Creating a config map in the OpenShift Container Platform web console
	2.8.3. Creating a config map by using the CLI
	2.8.3.1. Creating a config map from a directory
	2.8.3.2. Creating a config map from a file
	2.8.3.3. Creating a config map from literal values

	2.8.4. Use cases: Consuming config maps in pods
	2.8.4.1. Populating environment variables in containers by using config maps
	2.8.4.2. Setting command-line arguments for container commands with config maps
	2.8.4.3. Injecting content into a volume by using config maps

	2.9. USING DEVICE PLUGINS TO ACCESS EXTERNAL RESOURCES WITH PODS
	2.9.1. Understanding device plugins
	Example device plugins
	2.9.1.1. Methods for deploying a device plugin

	2.9.2. Understanding the Device Manager
	2.9.3. Enabling Device Manager

	2.10. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS
	2.10.1. Understanding pod priority
	2.10.1.1. Pod priority classes
	2.10.1.2. Pod priority names

	2.10.2. Understanding pod preemption
	2.10.2.1. Non-preempting priority classes
	2.10.2.2. Pod preemption and other scheduler settings
	2.10.2.3. Graceful termination of preempted pods

	2.10.3. Configuring priority and preemption

	2.11. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
	2.11.1. Using node selectors to control pod placement

	2.12. RUN ONCE DURATION OVERRIDE OPERATOR
	2.12.1. Run Once Duration Override Operator overview
	2.12.1.1. About the Run Once Duration Override Operator

	2.12.2. Run Once Duration Override Operator release notes
	2.12.2.1. Run Once Duration Override Operator 1.1.0

	2.12.3. Overriding the active deadline for run-once pods
	2.12.3.1. Installing the Run Once Duration Override Operator
	2.12.3.2. Enabling the run-once duration override on a namespace
	2.12.3.3. Updating the run-once active deadline override value

	2.12.4. Uninstalling the Run Once Duration Override Operator
	2.12.4.1. Uninstalling the Run Once Duration Override Operator
	2.12.4.2. Uninstalling Run Once Duration Override Operator resources

	CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR
	3.1. RELEASE NOTES
	3.1.1. Custom Metrics Autoscaler Operator release notes
	3.1.1.1. Supported versions
	3.1.1.2. Custom Metrics Autoscaler Operator 2.12.1-384 release notes

	3.1.2. Release notes for past releases of the Custom Metrics Autoscaler Operator
	3.1.2.1. Custom Metrics Autoscaler Operator 2.12.1-376 release notes
	3.1.2.2. Custom Metrics Autoscaler Operator 2.11.2-322 release notes
	3.1.2.3. Custom Metrics Autoscaler Operator 2.11.2-311 release notes
	3.1.2.4. Custom Metrics Autoscaler Operator 2.10.1-267 release notes
	3.1.2.5. Custom Metrics Autoscaler Operator 2.10.1 release notes
	3.1.2.6. Custom Metrics Autoscaler Operator 2.8.2-174 release notes
	3.1.2.7. Custom Metrics Autoscaler Operator 2.8.2 release notes

	3.2. CUSTOM METRICS AUTOSCALER OPERATOR OVERVIEW
	3.3. INSTALLING THE CUSTOM METRICS AUTOSCALER
	3.3.1. Installing the custom metrics autoscaler

	3.4. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGERS
	3.4.1. Understanding the Prometheus trigger
	3.4.1.1. Configuring the custom metrics autoscaler to use OpenShift Container Platform monitoring

	3.4.2. Understanding the CPU trigger
	3.4.3. Understanding the memory trigger
	3.4.4. Understanding the Kafka trigger

	3.5. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGER AUTHENTICATIONS
	3.5.1. Using trigger authentications

	3.6. PAUSING THE CUSTOM METRICS AUTOSCALER FOR A SCALED OBJECT
	3.6.1. Pausing a custom metrics autoscaler
	3.6.2. Restarting the custom metrics autoscaler for a scaled object

	3.7. GATHERING AUDIT LOGS
	3.7.1. Configuring audit logging

	3.8. GATHERING DEBUGGING DATA
	3.8.1. Gathering debugging data

	3.9. VIEWING OPERATOR METRICS
	3.9.1. Accessing performance metrics
	3.9.1.1. Provided Operator metrics

	3.10. UNDERSTANDING HOW TO ADD CUSTOM METRICS AUTOSCALERS
	3.10.1. Adding a custom metrics autoscaler to a workload
	3.10.2. Adding a custom metrics autoscaler to a job
	3.10.3. Additional resources

	3.11. REMOVING THE CUSTOM METRICS AUTOSCALER OPERATOR
	3.11.1. Uninstalling the Custom Metrics Autoscaler Operator

	CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)
	4.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER
	4.1.1. About the default scheduler
	4.1.1.1. Understanding default scheduling

	4.1.2. Scheduler use cases
	4.1.2.1. Infrastructure topological levels
	4.1.2.2. Affinity
	4.1.2.3. Anti-affinity

	4.2. SCHEDULING PODS USING A SCHEDULER PROFILE
	4.2.1. About scheduler profiles
	4.2.2. Configuring a scheduler profile

	4.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND ANTI-AFFINITY RULES
	4.3.1. Understanding pod affinity
	4.3.2. Configuring a pod affinity rule
	4.3.3. Configuring a pod anti-affinity rule
	4.3.4. Sample pod affinity and anti-affinity rules
	4.3.4.1. Pod Affinity
	4.3.4.2. Pod Anti-affinity
	4.3.4.3. Pod Affinity with no Matching Labels

	4.3.5. Using pod affinity and anti-affinity to control where an Operator is installed

	4.4. CONTROLLING POD PLACEMENT ON NODES USING NODE AFFINITY RULES
	4.4.1. Understanding node affinity
	4.4.2. Configuring a required node affinity rule
	4.4.3. Configuring a preferred node affinity rule
	4.4.4. Sample node affinity rules
	4.4.4.1. Node affinity with matching labels
	4.4.4.2. Node affinity with no matching labels

	4.4.5. Using node affinity to control where an Operator is installed
	4.4.6. Additional resources

	4.5. PLACING PODS ONTO OVERCOMMITED NODES
	4.5.1. Understanding overcommitment
	4.5.2. Understanding nodes overcommitment

	4.6. CONTROLLING POD PLACEMENT USING NODE TAINTS
	4.6.1. Understanding taints and tolerations
	4.6.1.1. Understanding how to use toleration seconds to delay pod evictions
	4.6.1.2. Understanding how to use multiple taints
	4.6.1.3. Understanding pod scheduling and node conditions (taint node by condition)
	4.6.1.4. Understanding evicting pods by condition (taint-based evictions)
	4.6.1.5. Tolerating all taints

	4.6.2. Adding taints and tolerations
	4.6.2.1. Adding taints and tolerations using a compute machine set
	4.6.2.2. Binding a user to a node using taints and tolerations
	4.6.2.3. Creating a project with a node selector and toleration
	4.6.2.4. Controlling nodes with special hardware using taints and tolerations

	4.6.3. Removing taints and tolerations

	4.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
	4.7.1. About node selectors
	4.7.2. Using node selectors to control pod placement
	4.7.3. Creating default cluster-wide node selectors
	4.7.4. Creating project-wide node selectors

	4.8. CONTROLLING POD PLACEMENT BY USING POD TOPOLOGY SPREAD CONSTRAINTS
	4.8.1. About pod topology spread constraints
	4.8.2. Configuring pod topology spread constraints
	4.8.3. Example pod topology spread constraints
	4.8.3.1. Single pod topology spread constraint example
	4.8.3.2. Multiple pod topology spread constraints example

	4.8.4. Additional resources

	4.9. DESCHEDULER
	4.9.1. Descheduler overview
	4.9.1.1. About the descheduler
	4.9.1.2. Descheduler profiles

	4.9.2. Kube Descheduler Operator release notes
	4.9.2.1. Release notes for Kube Descheduler Operator 5.0.0

	4.9.3. Evicting pods using the descheduler
	4.9.3.1. Installing the descheduler
	4.9.3.2. Configuring descheduler profiles
	4.9.3.3. Configuring the descheduler interval

	4.9.4. Uninstalling the Kube Descheduler Operator
	4.9.4.1. Uninstalling the descheduler

	4.10. SECONDARY SCHEDULER
	4.10.1. Secondary scheduler overview
	4.10.1.1. About the Secondary Scheduler Operator

	4.10.2. Secondary Scheduler Operator for Red Hat OpenShift release notes
	4.10.2.1. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.2.1
	4.10.2.2. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.2.0

	4.10.3. Scheduling pods using a secondary scheduler
	4.10.3.1. Installing the Secondary Scheduler Operator
	4.10.3.2. Deploying a secondary scheduler
	4.10.3.3. Scheduling a pod using the secondary scheduler

	4.10.4. Uninstalling the Secondary Scheduler Operator
	4.10.4.1. Uninstalling the Secondary Scheduler Operator
	4.10.4.2. Removing Secondary Scheduler Operator resources

	CHAPTER 5. USING JOBS AND DAEMONSETS
	5.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY WITH DAEMON SETS
	5.1.1. Scheduled by default scheduler
	5.1.2. Creating daemonsets

	5.2. RUNNING TASKS IN PODS USING JOBS
	5.2.1. Understanding jobs and cron jobs
	5.2.1.1. Understanding how to create jobs
	5.2.1.2. Understanding how to set a maximum duration for jobs
	5.2.1.3. Understanding how to set a job back off policy for pod failure
	5.2.1.4. Understanding how to configure a cron job to remove artifacts
	5.2.1.5. Known limitations

	5.2.2. Creating jobs
	5.2.3. Creating cron jobs

	CHAPTER 6. WORKING WITH NODES
	6.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT CONTAINER PLATFORM CLUSTER
	6.1.1. About listing all the nodes in a cluster
	6.1.2. Listing pods on a node in your cluster
	6.1.3. Viewing memory and CPU usage statistics on your nodes

	6.2. WORKING WITH NODES
	6.2.1. Understanding how to evacuate pods on nodes
	6.2.2. Understanding how to update labels on nodes
	6.2.3. Understanding how to mark nodes as unschedulable or schedulable
	6.2.4. Handling errors in single-node OpenShift clusters when the node reboots without draining application pods
	6.2.5. Deleting nodes
	6.2.5.1. Deleting nodes from a cluster
	6.2.5.2. Deleting nodes from a bare metal cluster

	6.3. MANAGING NODES
	6.3.1. Modifying nodes
	6.3.2. Configuring control plane nodes as schedulable
	6.3.3. Setting SELinux booleans
	6.3.4. Adding kernel arguments to nodes
	6.3.5. Enabling swap memory use on nodes
	6.3.6. Migrating control plane nodes from one RHOSP host to another manually

	6.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE
	6.4.1. Configuring the maximum number of pods per node

	6.5. USING THE NODE TUNING OPERATOR
	Purpose
	6.5.1. Accessing an example Node Tuning Operator specification
	6.5.2. Custom tuning specification
	6.5.3. Default profiles set on a cluster
	6.5.4. Supported TuneD daemon plugins

	6.6. REMEDIATING, FENCING, AND MAINTAINING NODES
	6.7. UNDERSTANDING NODE REBOOTING
	6.7.1. About rebooting nodes running critical infrastructure
	6.7.2. Rebooting a node using pod anti-affinity
	6.7.3. Understanding how to reboot nodes running routers
	6.7.4. Rebooting a node gracefully

	6.8. FREEING NODE RESOURCES USING GARBAGE COLLECTION
	6.8.1. Understanding how terminated containers are removed through garbage collection
	6.8.2. Understanding how images are removed through garbage collection
	6.8.3. Configuring garbage collection for containers and images

	6.9. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	6.9.1. Understanding how to allocate resources for nodes
	6.9.1.1. How OpenShift Container Platform computes allocated resources
	6.9.1.2. How nodes enforce resource constraints
	6.9.1.3. Understanding Eviction Thresholds
	6.9.1.4. How the scheduler determines resource availability

	6.9.2. Automatically allocating resources for nodes
	6.9.3. Manually allocating resources for nodes

	6.10. ALLOCATING SPECIFIC CPUS FOR NODES IN A CLUSTER
	6.10.1. Reserving CPUs for nodes

	6.11. ENABLING TLS SECURITY PROFILES FOR THE KUBELET
	6.11.1. Understanding TLS security profiles
	6.11.2. Configuring the TLS security profile for the kubelet

	6.12. MACHINE CONFIG DAEMON METRICS
	6.12.1. Machine Config Daemon metrics

	6.13. CREATING INFRASTRUCTURE NODES
	6.13.1. OpenShift Container Platform infrastructure components
	6.13.1.1. Creating an infrastructure node

	CHAPTER 7. WORKING WITH CONTAINERS
	7.1. UNDERSTANDING CONTAINERS
	7.1.1. About containers and RHEL kernel memory
	7.1.2. About the container engine and container runtime

	7.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS DEPLOYED
	7.2.1. Understanding Init Containers
	7.2.2. Creating Init Containers

	7.3. USING VOLUMES TO PERSIST CONTAINER DATA
	7.3.1. Understanding volumes
	7.3.2. Working with volumes using the OpenShift Container Platform CLI
	7.3.3. Listing volumes and volume mounts in a pod
	7.3.4. Adding volumes to a pod
	7.3.5. Updating volumes and volume mounts in a pod
	7.3.6. Removing volumes and volume mounts from a pod
	7.3.7. Configuring volumes for multiple uses in a pod

	7.4. MAPPING VOLUMES USING PROJECTED VOLUMES
	7.4.1. Understanding projected volumes
	7.4.1.1. Example Pod specs
	7.4.1.2. Pathing Considerations

	7.4.2. Configuring a Projected Volume for a Pod

	7.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS
	7.5.1. Expose pod information to Containers using the Downward API
	7.5.2. Understanding how to consume container values using the downward API
	7.5.2.1. Consuming container values using environment variables
	7.5.2.2. Consuming container values using a volume plugin

	7.5.3. Understanding how to consume container resources using the Downward API
	7.5.3.1. Consuming container resources using environment variables
	7.5.3.2. Consuming container resources using a volume plugin

	7.5.4. Consuming secrets using the Downward API
	7.5.5. Consuming configuration maps using the Downward API
	7.5.6. Referencing environment variables
	7.5.7. Escaping environment variable references

	7.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER PLATFORM CONTAINER
	7.6.1. Understanding how to copy files
	7.6.1.1. Requirements

	7.6.2. Copying files to and from containers
	7.6.3. Using advanced Rsync features

	7.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER PLATFORM CONTAINER
	7.7.1. Executing remote commands in containers
	7.7.2. Protocol for initiating a remote command from a client

	7.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A CONTAINER
	7.8.1. Understanding port forwarding
	7.8.2. Using port forwarding
	7.8.3. Protocol for initiating port forwarding from a client

	7.9. USING SYSCTLS IN CONTAINERS
	7.9.1. About sysctls
	7.9.2. Namespaced and node-level sysctls
	7.9.3. Safe and unsafe sysctls
	7.9.4. Updating the interface-specific safe sysctls list
	7.9.5. Starting a pod with safe sysctls
	7.9.6. Starting a pod with unsafe sysctls
	7.9.7. Enabling unsafe sysctls
	7.9.8. Additional resources

	7.10. ACCESSING FASTER BUILDS WITH /DEV/FUSE
	7.10.1. Configuring /dev/fuse on unprivileged pods

	CHAPTER 8. WORKING WITH CLUSTERS
	8.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	8.1.1. Understanding events
	8.1.2. Viewing events using the CLI
	8.1.3. List of events

	8.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT CONTAINER PLATFORM NODES CAN HOLD
	8.2.1. Understanding the OpenShift Cluster Capacity Tool
	8.2.2. Running the OpenShift Cluster Capacity Tool on the command line
	8.2.3. Running the OpenShift Cluster Capacity Tool as a job inside a pod

	8.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES
	8.3.1. About limit ranges
	8.3.1.1. About component limits

	8.3.2. Creating a Limit Range
	8.3.3. Viewing a limit
	8.3.4. Deleting a Limit Range

	8.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS
	8.4.1. Understanding managing application memory
	8.4.1.1. Managing application memory strategy

	8.4.2. Understanding OpenJDK settings for OpenShift Container Platform
	8.4.2.1. Understanding how to override the JVM maximum heap size
	8.4.2.2. Understanding how to encourage the JVM to release unused memory to the operating system
	8.4.2.3. Understanding how to ensure all JVM processes within a container are appropriately configured

	8.4.3. Finding the memory request and limit from within a pod
	8.4.4. Understanding OOM kill policy
	8.4.5. Understanding pod eviction

	8.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON OVERCOMMITTED NODES
	8.5.1. Resource requests and overcommitment
	8.5.2. Cluster-level overcommit using the Cluster Resource Override Operator
	8.5.2.1. Installing the Cluster Resource Override Operator using the web console
	8.5.2.2. Installing the Cluster Resource Override Operator using the CLI
	8.5.2.3. Configuring cluster-level overcommit

	8.5.3. Node-level overcommit
	8.5.3.1. Understanding compute resources and containers
	8.5.3.2. Understanding overcomitment and quality of service classes
	8.5.3.3. Understanding swap memory and QOS
	8.5.3.4. Understanding nodes overcommitment
	8.5.3.5. Disabling or enforcing CPU limits using CPU CFS quotas
	8.5.3.6. Reserving resources for system processes
	8.5.3.7. Disabling overcommitment for a node

	8.5.4. Project-level limits
	8.5.4.1. Disabling overcommitment for a project

	8.5.5. Additional resources

	8.6. CONFIGURING THE LINUX CGROUP VERSION ON YOUR NODES
	8.6.1. Configuring Linux cgroup

	8.7. ENABLING FEATURES USING FEATURE GATES
	8.7.1. Understanding feature gates
	8.7.2. Enabling feature sets at installation
	8.7.3. Enabling feature sets using the web console
	8.7.4. Enabling feature sets using the CLI

	8.8. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES
	8.8.1. Understanding worker latency profiles
	8.8.2. Using and changing worker latency profiles

	CHAPTER 9. REMOTE WORKER NODES ON THE NETWORK EDGE
	9.1. USING REMOTE WORKER NODES AT THE NETWORK EDGE
	9.1.1. Adding remote worker nodes
	9.1.2. Network separation with remote worker nodes
	9.1.3. Power loss on remote worker nodes
	9.1.4. Latency spikes or temporary reduction in throughput to remote workers
	9.1.5. Remote worker node strategies

	CHAPTER 10. WORKER NODES FOR SINGLE-NODE OPENSHIFT CLUSTERS
	10.1. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT CLUSTERS
	10.1.1. Requirements for installing single-node OpenShift worker nodes
	10.1.2. Adding worker nodes using the Assisted Installer and OpenShift Cluster Manager
	10.1.3. Adding worker nodes using the Assisted Installer API
	10.1.3.1. Authenticating against the Assisted Installer REST API
	10.1.3.2. Adding worker nodes using the Assisted Installer REST API

	10.1.4. Adding worker nodes to single-node OpenShift clusters manually
	10.1.5. Approving the certificate signing requests for your machines

	CHAPTER 11. NODE METRICS DASHBOARD
	11.1. ABOUT THE NODE METRICS DASHBOARD
	11.2. ACCESSING THE NODE METRICS DASHBOARD
	11.3. IDENTIFY METRICS FOR INDICATING OPTIMAL NODE RESOURCE USAGE
	11.3.1. Top 3 containers with the most OOM kills in the last day
	11.3.2. Failure rate for image pulls in the last hour
	11.3.3. Nodes with system reserved memory utilization > 80%
	11.3.4. Nodes with Kubelet system reserved memory utilization > 50%
	11.3.5. Nodes with CRI-O system reserved memory utilization > 50%
	11.3.6. Nodes with System Reserved CPU Utilization > 80%
	11.3.7. Nodes with Kubelet system reserved CPU utilization > 50%
	11.3.8. Nodes with CRI-O system reserved CPU utilization > 50%

	11.4. CUSTOMIZING DASHBOARD QUERIES

