
Red Hat Enterprise Linux 9.4

Using image mode for RHEL to build, deploy,
and manage operating systems

Using RHEL bootable container images on Red Hat Enterprise Linux 9

Last Updated: 2024-05-02

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy,
and manage operating systems

Using RHEL bootable container images on Red Hat Enterprise Linux 9

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

RHEL bootable container images enable you to build, deploy, and manage the operating system as
if it is any other container. You can converge on a single container-native workflow to manage
everything from your applications to the underlying OS.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL
1.1. PREREQUISITES
1.2. ADDITIONAL RESOURCES

CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE CONTAINER IMAGES
2.1. BUILDING A CONTAINER IMAGE
2.2. RUNNING A CONTAINER IMAGE
2.3. PUSHING A CONTAINER IMAGE TO THE REGISTRY

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER
3.1. INTRODUCING IMAGE MODE FOR RHEL FOR BOOTC-IMAGE-BUILDER
3.2. INSTALLING BOOTC-IMAGE-BUILDER
3.3. CREATING QCOW2 IMAGES BY USING BOOTC-IMAGE-BUILDER
3.4. CREATING AMI IMAGES BY USING BOOTC-IMAGE-BUILDER AND UPLOADING IT TO AWS
3.5. CREATING RAW DISK IMAGES BY USING BOOTC-IMAGE-BUILDER
3.6. CREATING ISO IMAGES BY USING BOOTC-IMAGE-BUILDER
3.7. VERIFICATION AND TROUBLESHOOTING

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES
4.1. DEPLOYING A CONTAINER IMAGE BY USING KVM WITH A QCOW2 DISK IMAGE
4.2. DEPLOYING A CONTAINER IMAGE TO AWS WITH AN AMI DISK IMAGE
4.3. DEPLOYING A CONTAINER IMAGE BY USING ANACONDA AND KICKSTART
4.4. DEPLOYING A CUSTOM ISO CONTAINER IMAGE
4.5. DEPLOYING AN ISO BOOTABLE CONTAINER OVER PXE BOOT
4.6. BUILDING, CONFIGURING, AND LAUNCHING DISK IMAGES WITH BOOTC-IMAGE-BUILDER
4.7. DEPLOYING A CONTAINER IMAGE BY USING BOOTC
4.8. ADVANCED INSTALLATION WITH TO-FILESYSTEM

4.8.1. Using bootc install to-existing-root

CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES
5.1. SWITCHING THE CONTAINER IMAGE REFERENCE
5.2. PERFORMING MANUAL UPDATES FROM AN INSTALLED OPERATING SYSTEM
5.3. TURNING OFF AUTOMATIC UPDATES
5.4. MANUALLY UPDATING AN INSTALLED OPERATING SYSTEM
5.5. PERFORMING ROLLBACKS FROM A UPDATED OPERATING SYSTEM
5.6. DEPLOYING UPDATES TO SYSTEM GROUPS
5.7. CHECKING INVENTORY HEALTH
5.8. AUTOMATION AND GITOPS

CHAPTER 6. APPENDIX: MANAGING USERS, GROUPS, SSH KEYS, AND SECRETS IN IMAGE MODE FOR
RHEL

6.1. USERS AND GROUPS CONFIGURATION
6.2. INJECTING SECRETS IN IMAGE MODE FOR RHEL

3

4

5
6
7

8
9
9

10

11
11

12
12
13
15
16
17

18
18
19

20
21
22
23
24
24
25

27
27
27
28
28
29
29
30
30

31
31

33

Table of Contents

1

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

4

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL
Use image mode for RHEL to build, test, and deploy operating systems by using the same tools and
techniques as application containers. Image mode for RHEL is available by using the
registry.redhat.io/rhel9/rhel-bootc bootable container image. The RHEL bootable container images
differ from the existing application Universal Base Images (UBI) in that they contain additional
components necessary to boot that were traditionally excluded, such as, kernel, initrd, boot loader,
firmware, among others.

IMPORTANT

Red Hat provides the rhel9/rhel-bootc container image as a Technology Preview.
Technology Preview features provide early access to upcoming product innovations,
enabling customers to test functionality and provide feedback during the development
process. However, these features are not fully supported. Documentation for a
Technology Preview feature might be incomplete or include only basic installation and
configuration information. See Technology Preview Features Support Scope on the Red
Hat Customer Portal for information about the support scope for Technology Preview
features.

The benefits of image mode for RHEL occur across the lifecycle of a system. The following list contains
some of the most important advantages:

Container images are easier to understand and use than other image formats and are fast to build

Containerfiles, also known as Dockerfiles, provide a straightforward approach to defining the content
and build instructions for an image. Container images are often significantly faster to build and
iterate on compared to other image creation tools.

Consolidate process, infrastructure, and release artifacts

As you distribute applications as containers, you can use the same infrastructure and processes to
manage the underlying operating system.

Immutable updates

Just as containerized applications are updated in an immutable way, with image mode for RHEL, the
operating system is also. You can boot into updates and roll back when needed in the same way that
you use rpm-ostree systems.

Portability across hybrid cloud environments

You can use bootable container images across physical, virtualized, cloud, and edge environments.

Although containers provide the foundation to build, transport, and run images, it is important to
understand that after you deploy these bootable container images, either by using an installation
mechanism, or you convert them to a disk image, the system does not run as a container.

The supported image types are the following:

Container image formats: OCI

Disk image formats:

ISO

QEMU copy-on-write (QCOW2), Raw

Amazon Machine Image (AMI)

CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL

5

https://access.redhat.com/support/offerings/techpreview

Virtual Machine Image (VMI)

Virtual Machine Disk (VMDK)

Containers help streamline the lifecycle of a RHEL system by offering the following possibilities:

Building container images

You can configure your operating system at a build time by modifying the Containerfile. Image mode
for RHEL is available by using the registry.redhat.io/rhel9/rhel-bootc container image. You can use
Podman, OpenShift Container Platform, or other standard container build tools to manage your
containers and container images. You can automate the build process by using CI/CD pipelines.

Versioning, mirroring, and testing container images

You can version, mirror, introspect, and sign your derived bootable container image by using any
container tools such as Podman or OpenShift Container Platform.

Deploying container images to the target environment

You have several options on how to deploy your image:

Anaconda: is the installation program used by RHEL. You can deploy all image types to the
target environment by using Anaconda and Kickstart to automate the installation process.

bootc-image-builder: is a containerized tool that converts the container image to different
types of disk images, and optionally uploads them to an image registry or object storage.

bootc: is a tool responsible for fetching container images from a container registry and
installing them to a system, updating the operating system, or switching from an existing
ostree-based system. The RHEL bootable container image contains the bootc utility by
default and works with all image types.

Updating your operating system

The system supports in-place transactional updates with rollback after deployment. Automatic
updates are on by default. A systemd service unit and systemd timer unit files check the container
registry for updates and apply them to the system. As the updates are transactional, a reboot is
required. For environments that require more sophisticated or scheduled rollouts, disable auto
updates and use the bootc utility to update your operating system.

RHEL has two deployment modes. Both provide the same stability, reliability, and performance during
deployment.

1. Package mode: the operating system uses RPM packages and is updated by using the dnf
package manager. The root filesystem is mutable.

2. Image mode: a container-native approach to build, deploy, and manage RHEL. The same RPM
packages are delivered as a base image and updates are deployed as a container image. The
root filesystem is immutable by default, except for /etc and /var, with most content coming
from the container image.

You can use both deployment modes to build, test, share, deploy, and manage your operating system in
the same way as any other containerized application.

1.1. PREREQUISITES

You have a subscribed RHEL 9 system. For more information, see Getting Started with RHEL
System Registration documentation.

You have a container registry. You can create your registry locally or create a free account on

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

6

https://access.redhat.com/documentation/en-us/subscription_central/1-latest/html-single/getting_started_with_rhel_system_registration/index

You have a container registry. You can create your registry locally or create a free account on
the Quay.io service. To create the Quay.io account, see Red Hat Quay.io page.

You have a Red Hat account with either production or developer subscriptions. No cost
developer subscriptions are available on the Red Hat Enterprise Linux Overview page.

You have authenticated to registry.redhat.io. For more information, see Red Hat Container
Registry Authentication article.

1.2. ADDITIONAL RESOURCES

Customizing Anaconda product documentation

Performing an advanced RHEL 9 installation product documentation (Kickstart)

Composing a customized RHEL system image product documentation

Composing, installing, and managing RHEL for Edge images product documentation

CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL

7

https://quay.io/signin
https://developers.redhat.com/products/rhel/overview
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/customizing_anaconda
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_an_advanced_rhel_9_installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_a_customized_rhel_system_image
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images

CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE
CONTAINER IMAGES

The following procedures use Podman to build and test your container image. You can also use other
tools, for example, OpenShift Container Platform. For more examples of configuring RHEL systems by
using containers, see the rhel-bootc-examples repository.

IMPORTANT

Red Hat provides the rhel9/rhel-bootc container image as a Technology Preview.
Technology Preview features provide early access to upcoming product innovations,
enabling customers to test functionality and provide feedback during the development
process. However, these features are not fully supported. Documentation for a
Technology Preview feature might be incomplete or include only basic installation and
configuration information. See Technology Preview Features Support Scope on the Red
Hat Customer Portal for information about the support scope for Technology Preview
features.

A general Containerfile structure is the following:

FROM registry.redhat.io/rhel9/rhel-bootc:latest

RUN dnf -y install [software] [dependencies] && dnf clean all

ADD [application]
ADD [configuration files]

RUN [config scripts]

The rhel-9-bootc container image reuses the OCI image format.

The rhel-9-bootc container image ignores the container config section (Config) when it is
installed to a system.

The rhel-9-bootc container image does not ignore the container config section (Config) when
you run this image by using container runtimes such as podman or docker.

For example, the following commands in a Containerfile are ignored when the rhel-9-bootc image is
installed to a system:

ENTRYPOINT and CMD (OCI: Entrypoint/Cmd): you can set CMD /sbin/init instead.

ENV (OCI: Env): change the systemd configuration to configure the global system
environment.

EXPOSE (OCI: exposedPorts): it is independent of how the system firewall and network
function at runtime.

USER (OCI: User): configure individual services inside the RHEL bootable container to run as
unprivileged users instead.

NOTE

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

8

https://github.com/redhat-cop/rhel-bootc-examples
https://access.redhat.com/support/offerings/techpreview

NOTE

The available commands that are usable inside a Containerfile and a Dockerfile are
equivalent.

2.1. BUILDING A CONTAINER IMAGE

Use the podman build command to build an image using instructions from a Containerfile.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a Containerfile:

$ cat Containerfile
FROM registry.redhat.io/rhel9/rhel-bootc:latest
RUN dnf -y install cloud-init && \
 ln -s ../cloud-init.target /usr/lib/systemd/system/default.target.wants && \
 dnf clean all

This Containerfile example adds the cloud-init tool, so it automatically fetches SSH keys and
can run scripts from the infrastructure and also gather configuration and secrets from the
instance metadata. For example, you can use this container image for pre-generated AWS or
KVM guest systems.

2. Build the <image> image by using Containerfile in the current directory:

$ podman build -t quay.io/<namespace>/<image>:<tag>

Verification

List all images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/<image> latest b28cd00741b3 About a minute ago 2.1 GB

Additional resources

Working with container registries

Building an image from a Containerfile with Buildah

2.2. RUNNING A CONTAINER IMAGE

Use the podman run command to run and test your container.

Prerequisites

The container-tools meta-package is installed.

CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE CONTAINER IMAGES

9

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#working-with-container-registries_building-running-and-managing-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_building-an-image-from-a-containerfile-with-buildah_assembly_building-container-images-with-buildah

Procedure

Run the container named mybootc based on the quay.io/<namespace>/<image>:<tag>
container image:

$ podman run -it --rm --name mybootc quay.io/<namespace>/<image>:<tag> /bin/bash

The -i option creates an interactive session. Without the -t option, the shell stays open, but
you cannot type anything to the shell.

The -t option opens a terminal session. Without the -i option, the shell opens and then exits.

The --rm option removes the quay.io/<namespace>/<image>:<tag> container image
after the container exits.

Verification

List all running containers:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
7ccd6001166e quay.io/<namespace>/<image>:<tag> /sbin/init 6 seconds ago Up 5
seconds ago mybootc

Additional resources

Podman run command

2.3. PUSHING A CONTAINER IMAGE TO THE REGISTRY

Use the podman push command to push an image to your own, or a third party, registry and share it
with others. The following procedure uses the Red Hat Quay registry.

Prerequisites

The container-tools meta-package is installed.

An image is built and available on the local system.

You have created the Red Hat Quay registry. For more information see Proof of Concept -
Deploying Red Hat Quay.

Procedure

Push the quay.io/<namespace>/<image>:<tag> container image from your local storage to
the registry:

$ podman push quay.io/<namespace>/<image>:<tag>

Additional resources

Redistributing UBI images

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#con_podman-run-command_assembly_working-with-containers
https://access.redhat.com/documentation/en-us/red_hat_quay/3.10/html-single/proof_of_concept_-_deploying_red_hat_quay/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_redistributing-ubi-images_assembly_working-with-container-images

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK
IMAGES WITH BOOTC-IMAGE-BUILDER

The bootc-image-builder, available as a Technology Preview, is a containerized tool to create disk
images from bootable container images. You can use the images that you build to deploy disk images in
different environments, such as the edge, server, and clouds.

IMPORTANT

Red Hat provides the bootc-image-builder tool as a Technology Preview. Technology
Preview features provide early access to upcoming product innovations, enabling
customers to test functionality and provide feedback during the development process.
However, these features are not fully supported. Documentation for a Technology
Preview feature might be incomplete or include only basic installation and configuration
information. See Technology Preview Features Support Scope on the Red Hat Customer
Portal for information about the support scope for Technology Preview features.

3.1. INTRODUCING IMAGE MODE FOR RHEL FOR BOOTC-IMAGE-
BUILDER

With the bootc-image-builder tool, you can convert bootable container images into disk images for a
variety of different platforms and formats. Converting bootable container images into disk images is
equivalent to installing a bootable container. After you deploy these disk images to the target
environment, you can update them directly from the container registry.

The bootc-image-builder tool supports generating the following image types:

Disk image formats, such as ISO, suitable for disconnected installations.

Virtual disk images formats, such as:

QEMU copy-on-write (QCOW2)

Amazon Machine Image (AMI)/ — Raw

Virtual Machine Image (VMI)

Deploying from a container image is beneficial when you run VMs or servers because you can achieve
the same installation result. That consistency extends across multiple different image types and
platforms when you build them from the same container image. Consequently, you can minimize the
effort in maintaining operating system images across platforms. You can also update systems that you
deploy from these disk images by using the bootc tool, instead of re-creating and uploading new disk
images with bootc-image-builder.

NOTE

Generic base container images do not include any default passwords or SSH keys. Also,
the disk images that you create by using the bootc-image-builder tool do not contain the
tools that are available in common disk images, such as cloud-init. These disk images are
transformed container images only.

Although you can deploy a rhel-9-bootc image directly, you can also create your own customized
images that are derived from this bootable base image. The bootc-image-builder tool takes the rhel-9-
bootc OCI container image as an input.

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER

11

https://access.redhat.com/support/offerings/techpreview

Additional resources

Red Hat products that use cloud-init

3.2. INSTALLING BOOTC-IMAGE-BUILDER

The bootc-image-builder is intended to be used as a container and it is not available as an RPM package
in RHEL. To access it, follow the procedure.

Prerequisites

The container-tools meta-package is installed. The meta-package contains all container tools,
such as Podman, Buildah, and Skopeo.

You are authenticated to registry.redhat.io. For details, see Red Hat Container Registry
Authentication.

Procedure

1. Login to authenticate to registry.redhat.io:

$ podman login registry.redhat.io

2. Install the bootc-image-builder tool:

$ podman pull registry.redhat.io/rhel9/bootc-image-builder

Verification

List all images pulled to your local system:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/rhel9/bootc-image-builder latest b361f3e845ea 24 hours ago 676 MB

Additional resources

Red Hat Container Registry Authentication

Pulling images from registries

3.3. CREATING QCOW2 IMAGES BY USING BOOTC-IMAGE-BUILDER

Build a RHEL bootable container image into a QEMU Disk Images (QCOW2) image for the architecture
that you are running the commands on.

The RHEL base image does not include a default user. Optionally, you can inject a user configuration
with the --config option to run the bootc-image-builder container. Alternatively, you can configure the
base image with cloud-init to inject users and SSH keys on first boot. See Injecting users and SSH keys
by using cloud-init.

Prerequisites

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_cloud-init_for_rhel_9/red-hat-support-for-cloud-init_cloud-content#red-hat-products-that-user-cloud-init_red-hat-support-for-cloud-init
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#proc_pulling-images-from-registries_working-with-container-registries

You have Podman installed on your host machine.

You have virt-install installed on your host machine.

You have root access to run the bootc-image-builder tool, and run the containers in --
privileged mode, to build the images.

Procedure

1. Optional: Create a config.json to configure user access, for example:

[[blueprint.customizations.user]]
name = "user"
password = "pass"
key = "ssh-rsa AAA ... user@email.com"
groups = ["wheel"]

2. Run bootc-image-builder. If you want to use user access configuration, pass the config.json as
an argument:

sudo podman run \
 --rm \
 -it \
 --privileged \
 --pull=newer \
 --security-opt label=type:unconfined_t \
 -v ./config.json:/config.json \
 -v ./output:/output \
 quay.io/rhel-bootc/bootc-image-builder:latest \
 --type qcow2 \
 --config /config.json \
 quay.io/<namespace>/<image>:<tag>

You can find the .qcow2 image in the output folder.

Next steps

You can deploy your image. See Deploying a container image using KVM with a QCOW2 disk
image. You can make updates to the image and push the changes to a registry. See Managing
RHEL bootable images.

3.4. CREATING AMI IMAGES BY USING BOOTC-IMAGE-BUILDER AND
UPLOADING IT TO AWS

Create an Amazon Machine Image (AMI) from a bootable container image and use it to launch an
Amazon Web Service EC2 (Amazon Elastic Compute Cloud) instance.

Prerequisites

You have Podman installed on your host machine.

You have an existing AWS S3 bucket within your AWS account.

You have root access to run the bootc-image-builder tool, and run the containers in --

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER

13

You have root access to run the bootc-image-builder tool, and run the containers in --
privileged mode, to build the images.

You have the vmimport service role configured on your account to import an AMI into your
AWS account.

Procedure

1. Create a disk image from the bootable container image.

Configure the user details in the Containerfile. Make sure that you assign it with sudo
access.

Build a customized operating system image with the configured user from the Containerfile.
It creates a default user with passwordless sudo access.

2. Optional: Configure the machine image with cloud-init. See Injecting users and SSH keys by
using cloud-init. The following is an example:

FROM registry.redhat.io/rhel9-beta/rhel-bootc:9.4

RUN dnf -y install cloud-init && \
 ln -s ../cloud-init.target /usr/lib/systemd/system/default.target.wants && \
 rm -rf /var/{cache,log} /var/lib/{dnf,rhsm}

NOTE

You can also use cloud-init to add users and additional configuration by using
instance metadata.

3. Build the bootable container image. For example, to deploy the image to an x86_64 AWS
machine, use the following commands:

$ podman build -t quay.io/<namespace>/<image>:<tag> .
$ podman push quay.io/<namespace>/<image>:<tag> .

4. Use the bootc-image-builder tool to create an AMI from the bootc container image.

$ sudo podman run \
 --rm \
 -it \
 --privileged \
 --pull=newer \
 -v $HOME/.aws:/root/.aws:ro \
 --env AWS_PROFILE=default \
 quay.io/rhel-bootc/bootc-image-builder:latest \
 --type ami \
 --aws-ami-name rhel-bootc-x86 \
 --aws-bucket rhel-bootc-bucket \
 --aws-region us-east-1 \
quay.io/<namespace>/<image>:<tag>

NOTE

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

14

NOTE

The following flags must be specified all together. If you do not specify any flag,
the AMI is exported to your output directory.

--aws-ami-name - The name of the AMI image in AWS

--aws-bucket - The target S3 bucket name for intermediate storage when you are creating
the AMI

--aws-region - The target region for AWS uploads
The bootc-image-builder tool builds an AMI image and uploads it to your AWS s3 bucket by
using your AWS credentials to push and register an AMI image after building it.

Next steps

You can deploy your image. See Deploying a container image to AWS with an AMI disk image .

You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

Additional resources

AWS CLI documentation

3.5. CREATING RAW DISK IMAGES BY USING BOOTC-IMAGE-BUILDER

You can convert a bootable container image to a Raw image with an MBR or GPT partition table by using
bootc-image-builder. The RHEL base image does not include a default user, so optionally, you can
inject a user configuration with the --config option to run the bootc-image-builder container.
Alternatively, you can configure the base image with cloud-init to inject users and SSH keys on first
boot. See Injecting users and SSH keys by using cloud-init .

Prerequisites

You have Podman installed on your host machine.

You have root access to run the bootc-image-builder tool, and run the containers in --
privileged mode, to build the images.

Procedure

1. Optional: Create a /config.json to configure user access, for example:

[[blueprint.customizations.user]]
name = "user"
password = "pass"
key = "ssh-rsa AAA ... user@email.com"
groups = ["wheel"]

2. Run bootc-image-builder. If you want to use user access configuration, pass the config.json as
an argument:

sudo podman run \

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER

15

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html

 --rm \
 -it \
 --privileged \
 --pull=newer \
 --security-opt label=type:unconfined_t \
 -v ./config.json:/config.json \
 -v ./output:/output \
 quay.io/rhel-bootc/bootc-image-builder:latest \
 --type raw \
 --config /config.json \
 quay.io/<namespace>/<image>:<tag>

You can find the .raw image in the output folder.

Next steps

You can deploy your image. See Deploying a container image by using KVM with a QCOW2 disk
image.

You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

3.6. CREATING ISO IMAGES BY USING BOOTC-IMAGE-BUILDER

You can use bootc-image-builder to create an ISO from which you can perform an offline deployment
of a bootable container.

Prerequisites

You have Podman installed on your host machine.

You have root access to run the bootc-image-builder tool, and run the containers in --
privileged mode, to build the images.

Procedure

Run bootc-image-builder:

sudo podman run \
 --rm \
 -it \
 --privileged \
 --pull=newer \
 --security-opt label=type:unconfined_t \
 -v $(pwd)/config.json:/config.json \
 -v $(pwd)/output:/output \
 quay.io/rhel-bootc/bootc-image-builder:latest \
 --type iso \
 --config /config.json \
 quay.io/<namespace>/<image>:<tag>

You can find the .iso image in the output folder.

Next steps

You can use the ISO image on unattended installation methods, such as USB sticks or Install-

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

16

You can use the ISO image on unattended installation methods, such as USB sticks or Install-
on-boot. The installable boot ISO contains a configured Kickstart file. See Deploying a
container image by using Anaconda and Kickstart.

WARNING

Booting the ISO on a machine with an existing operating system or data can
be destructive, because the Kickstart is configured to automatically
reformat the first disk on the system.

You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

3.7. VERIFICATION AND TROUBLESHOOTING

If you have any issues configuring the requirements for your AWS image, see the following
documentation

AWS IAM account manager

Using high-level (s3) commands with the AWS CLI .

S3 buckets.

Regions and Zones.

Launching a customized RHEL image on AWS .

For more details on users, groups, SSH keys, and secrets, see

Managing users, groups, SSH keys, and secrets in image mode for RHEL

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER

17

deploying-a-container-image-by-using-anaconda-and-kickstart_deploying-the-rhel-bootable-images
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-regions
https://access.redhat.com/documentation/en-us/red_hat_insights/1-latest/html-single/deploying_and_managing_rhel_systems_in_hybrid_clouds/index#proc_launching-customized-rhel-image-to-aws.adoc_host-management-services

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES
You can deploy the rhel-bootc container image by using the following different mechanisms.

Anaconda

bootc-image-builder

bootc install

The following bootable image types are available:

Disk images that you generated by using the bootc image-builder such as:

QCOW2 (QEMU copy-on-write, virtual disk)

Raw (Mac Format)

AMI (Amazon Cloud)

ISO: Unattended installation method, by using an USB Sticks or Install-on-boot.

After you have created a layered image that you can deploy, there are several ways that the image can
be installed to a host:

You can use RHEL installer and Kickstart to install the layered image to a bare metal system, by
using the following mechanisms:

Deploy by using USB

PXE

You can also use bootc-image-builder to convert the container image to a bootable image and
deploy it to a bare metal or to a cloud environment.

The installation method happens only one time. After you deploy your image, any future updates will
apply directly from the container registry as the updates are published.

4.1. DEPLOYING A CONTAINER IMAGE BY USING KVM WITH A QCOW2
DISK IMAGE

After creating a QEMU disk image from a RHEL bootable container image by using the bootc-image-
builder tool, you can use a virtualization software to boot it.

Prerequisites

You created a container image. See Creating QCOW2 images by using bootc-image-builder .

You pushed the container image to an accessible repository.

Procedure

Run the container image that you create by using either libvirt. See Creating virtual machines by
using the command-line interface for more details.

The following example uses libvirt:

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

18

creating-qcow2-images-by-using-bootc-image-builder_creating-bootc-compatible-base-disk-images-with-bootc-image-builder
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/assembly_creating-virtual-machines_configuring-and-managing-virtualization#creating-virtual-machines-using-the-command-line-interface_assembly_creating-virtual-machines

$ sudo virt-install \
 --name bootc \
 --memory 4096 \
 --vcpus 2 \
 --disk qcow2/disk.qcow2 \
 --import \
 --os-variant rhel9-unknown

Verification

Connect to the VM in which you are running the container image. See Connecting to virtual
machines for more details.

Next steps

You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

Additional resources

Configuring and managing virtualization

4.2. DEPLOYING A CONTAINER IMAGE TO AWS WITH AN AMI DISK
IMAGE

After using the bootc-image-builder tool to create an AMI from a bootable container image, and
uploading it to a AWS s3 bucket, you can deploy a container image to AWS with the AMI disk image.

Prerequisites

You created an Amazon Machine Image (AMI) from a bootable container image. See Creating
AMI images by using bootc-image-builder and uploading it to AWS.

cloud-init is available in the Containerfile that you previously created so that you can create a
layered image for your use case.

Procedure

1. In a browser, access Service→EC2 and log in.

2. On the AWS console dashboard menu, choose the correct region. The image must have the
Available status, to indicate that it was correctly uploaded.

3. On the AWS dashboard, select your image and click Launch.

4. In the new window that opens, choose an instance type according to the resources you need to
start your image. Click Review and Launch.

5. Review your instance details. You can edit each section if you need to make any changes. Click
Launch.

6. Before you start the instance, select a public key to access it. You can either use the key pair
you already have or you can create a new key pair.

7. Click Launch Instance to start your instance. You can check the status of the instance, which

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/assembly_connecting-to-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/index
https://us-east-2.console.aws.amazon.com/ec2/v2/home?region=us-east-2#Images:sort=name

7. Click Launch Instance to start your instance. You can check the status of the instance, which
displays as Initializing.
After the instance status is Running, the Connect button becomes available.

8. Click Connect. A window appears with instructions on how to connect by using SSH.

9. Run the following command to set the permissions of your private key file so that only you can
read it. See Connect to your Linux instance .

$ chmod 400 <your-instance-name.pem>

10. Connect to your instance by using its Public DNS:

$ ssh -i <your-instance-name.pem>ec2-user@<your-instance-IP-address>

NOTE

Your instance continues to run unless you stop it.

Verification

After launching your image, you can:

Try to connect to http://<your_instance_ip_address> in a browser.

Check if you are able to perform any action while connected to your instance by using SSH.

Next steps

After you deploy your image, you can make updates to the image and push the changes to a
registry. See Managing RHEL bootable images .

Additional resources

Pushing images to AWS Cloud AMI

Amazon Machine Images (AMI)

4.3. DEPLOYING A CONTAINER IMAGE BY USING ANACONDA AND
KICKSTART

After you convert your bootable container image to an ISO image by using bootc-image-builder, you
can deploy the ISO image by using Anaconda and Kickstart to install your container image. The
installable boot ISO already contains the ostreecontainer Kickstart file configured that you can use to
provision your custom container image.

Prerequisites

You have downloaded the 9.4 Boot ISO for your architecture from Red Hat. See Downloading
RH boot images.

Procedure

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

20

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/composing_a_customized_rhel_system_image/index#uploading-an-ami-image-to-aws_creating-cloud-images-with-composer
https://github.com/osbuild/bootc-image-builder?tab=readme-ov-file#amazon-machine-images-amis
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index#downloading-rh-boot-images_working-with-iso-images

1. Create an ostreecontainer Kickstart file. For example:

Basic setup
text
network --bootproto=dhcp --device=link --activate
Basic partitioning
clearpart --all --initlabel --disklabel=gpt
reqpart --add-boot
part / --grow --fstype xfs

Reference the container image to install - The kickstart
has no %packages section. A container image is being installed.
ostreecontainer --url quay.io/rhel-bootc/bootc-image-builder:latest

firewall --disabled
services --enabled=sshd

Only inject a SSH key for root
rootpw --iscrypted locked
sshkey --username root "<your key here>"
reboot

2. Boot a system by using the 9.4 Boot ISO installation media.

a. Append the Kickstart file with the following to the kernel argument:

inst.ks=http://<path_to_your_kickstart>

3. Press CTRL+X to boot the system.

Next steps

After you deploy your container image, you can make updates to the image and push the
changes to a registry. See Managing RHEL bootable images .

Additional resources

ostreecontainer

4.4. DEPLOYING A CUSTOM ISO CONTAINER IMAGE

Convert a bootable container image to an ISO image by using bootc-image-builder. This creates a
system similar to the RHEL ISOs available for download, except that your container image content is
embedded in the ISO disk image. You do not need to have access to the network during installation.
Then, you install the ISO disk image that you created from bootc-image-builder to a bare metal system.

Prerequisites

You have created a customized container image.

Procedure

1. Create a custom installer ISO disk image with bootc-image-builder. See Creating ISO images
by using bootc-image-builder.

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

21

https://pykickstart.readthedocs.io/en/latest/kickstart-docs.html#ostreecontainer

2. Copy the ISO disk image to a USB flash drive.

3. Perform a bare metal installation by using the content in the USB stick into a disconnected
environment.

Next steps

After you deploy your container image, you can make updates to the image and push the
changes to a registry. See Managing RHEL bootable images .

4.5. DEPLOYING AN ISO BOOTABLE CONTAINER OVER PXE BOOT

You can use a network installation to deploy the RHEL ISO image over PXE boot to run your ISO
bootable container image.

Prerequisites

You have downloaded the 9.4 Boot ISO for your architecture from Red Hat. See Downloading
RH boot images.

You have configured the server for the PXE boot. Choose one of the following options:

For HTTP clients, see Configuring the DHCPv4 server for HTTP and PXE boot .

For UEFI-based clients, see Configuring a TFTP server for UEFI-based clients .

For BIOS-based clients, see Configuring a TFTP server for BIOS-based clients .

You have a client, also known as the system to which you are installing your ISO image.

Procedure

1. Export the RHEL installation ISO image to the HTTP server. The PXE boot server is now ready
to serve PXE clients.

2. Boot the client and start the installation.

3. Select PXE Boot when prompted to specify a boot source. If the boot options are not displayed,
press the Enter key on your keyboard or wait until the boot window opens.

4. From the Red Hat Enterprise Linux boot window, select the boot option that you want, and
press Enter.

5. Start the network installation.

Next steps

You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

Additional resources

Preparing to install from the network using PXE

Booting the installation from a network by using PXE

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index#downloading-rh-boot-images_working-with-iso-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#configuring-the-dhcpv4-server-for-http-and-pxe-boot_preparing-for-a-network-install
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#configuring-a-tftp-server-for-uefi-based-clients_preparing-for-a-network-install
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#configuring-a-tftp-server-for-bios-based-clients_preparing-for-a-network-install
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#preparing-for-a-network-install_assembly_preparing-for-your-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#booting-the-installation-using-pxe_booting-the-installer

4.6. BUILDING, CONFIGURING, AND LAUNCHING DISK IMAGES WITH
BOOTC-IMAGE-BUILDER

You can inject configuration into a custom image by using a Containerfile.

Procedure

1. Create a disk image. The following example shows how to add a user to the disk image.

{
 "blueprint": {
 "customizations": {
 "user": [
 {
 "name": "user1",
 "password": "password",
 "key": "ssh-rsa AAA ... user@email.com",
 "groups": [
 "wheel"
]
 }
]
 }
 }
}

name - User name. Mandatory

password - Nonencrypted password. Not mandatory

key - Public SSH key contents. Not mandatory

groups - An array of groups to add the user into. Not mandatory

2. Run bootc-image-builder and pass the following arguments:

$ sudo podman run \
 --rm \
 -it \
 --privileged \
 --pull=newer \
 --security-opt label=type:unconfined_t \
 -v $(pwd)/config.json:/config.json \
 -v $(pwd)/output:/output \
 quay.io/rhel-bootc/bootc-image-builder:latest \
 --type qcow2 \
 --config /config.json \
 quay.io/<namespace>/<image>:<tag>

3. Launch a VM, for example, by using virt-install:

$ sudo virt-install \
 --name bootc \
 --memory 4096 \
 --vcpus 2 \

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

23

 --disk qcow2/disk.qcow2 \
 --import \
 --os-variant rhel9

Verification

Access the system with SSH:

ssh -i /<path_to_private_ssh-key> <user1>@<ip-address>

Next steps

After you deploy your container image, you can make updates to the image and push the
changes to a registry. See Managing RHEL bootable images .

4.7. DEPLOYING A CONTAINER IMAGE BY USING BOOTC

With bootc, you have a container that is the source of truth. It contains a basic build installer and it is
available as bootc install to-disk or bootc install to-filesystem. By using the bootc install methods
you do not need to perform any additional steps to deploy the container image, because the container
images include a basic installer.

With image mode for RHEL, you can install unconfigured images, for example, images that do not have a
default password or SSH key.

Perform a bare metal installation to a device by using a RHEL ISO image.

Prerequisites

You have downloaded the 9.4 Boot ISO for your architecture from Red Hat. See Downloading
RH boot images.

You have created a configuration file.

Procedure

inject a configuration into the running ISO image, for example:

$ podman run --rm --privileged --pid=host -v /var/lib/containers:/var/lib/containers --
security-opt label=type:unconfined_t <image> bootc install to-disk <path-to-disk>

Next steps

After you deploy your container image, you can make updates to the image and push the
changes to a registry. See Managing RHEL bootable images .

4.8. ADVANCED INSTALLATION WITH TO-FILESYSTEM

The bootc install contains two subcommands: bootc install to-disk and bootc install to-filesystem.

The bootc-install-to-filesystem performs installation to the target filesystem.

The bootc install to-disk subcommand consists of a set of opinionated lower level tools that

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index#downloading-rh-boot-images_working-with-iso-images

The bootc install to-disk subcommand consists of a set of opinionated lower level tools that
you can also call independently. The command consist of the following tools:

mkfs.$fs /dev/disk

mount /dev/disk /mnt

bootc install to-filesystem --karg=root=UUID=<uuid of /mnt> --imgref $self /mnt

4.8.1. Using bootc install to-existing-root

The bootc install to-existing-root is a variant of install to-filesystem. You can use it to convert an
existing system into the target container image.

WARNING

This conversion eliminates the /boot and /boot/efi partitions and can delete the
existing Linux installation. The conversion process reuses the filesystem, and even
though the user data is preserved, the system no longer boots in package mode.

Prerequisites

You must have root permissions to complete the procedure.

You must match the host environment and the target container version, for example, if your
host is a RHEL 9 host, then you must have a RHEL 9 container. Installing a RHEL container on a
Fedora host by using btrfs as the RHEL kernel will not support that filesystem.

Procedure

Run the following command to convert an existing system into the target container image. Pass
the target rootfs by using the -v /:/target option.

podman run --rm --privileged -v /dev:/dev -v /var/lib/containers:/var/lib/containers -v
/:/target \
 --pid=host --security-opt label=type:unconfined_t \
 <image> \
 bootc install to-existing-root

This command deletes the data in /boot, but everything else in the existing operating system is
not automatically deleted. This can be useful because the new image can automatically import
data from the previous host system. Consequently, container images, database, the user home
directory data, configuration files in /etc are all available after the subsequent reboot in
/sysroot.

You can also use the --root-ssh-authorized-keys flag to inherit the root user SSH keys, by
adding --root-ssh-authorized-keys /target/root/.ssh/authorized_keys. For example:

podman run --rm --privileged -v /dev:/dev -v /var/lib/containers:/var/lib/containers -v
/:/target \
 --pid=host --security-opt label=type:unconfined_t \

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

25

 <image> \
 bootc install to-existing-root --root-ssh-authorized-keys
/target/root/.ssh/authorized_keys

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

26

CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES
After installing and deploying RHEL bootable images, you can perform management operations on your
container images, such as changing or updating the systems.

This kind of management, also known as Day 2 management baseline, consists of transactionally
fetching new operating system updates from a container registry and booting the system into them,
while supporting manual, or automated rollbacks in case of failures.

You can also rely on automatic updates, that are turned on by default. You can trigger an update process
with different events, such as updating an application. There are automation tools watching these
updates and then triggering the CI/CD pipelines.

See Day 2 operations support for more details.

5.1. SWITCHING THE CONTAINER IMAGE REFERENCE

You can change the container image reference used for upgrades by using the bootc switch command.
For example, you can switch from the stage to the production tag. The bootc switch command
performs the same operations as the bootc upgrade command and additionally changes the container
image reference.

To manually switch an existing ostree-based container image reference, use the bootc switch
command.

Prerequisites

A booted system using bootc.

Procedure

Run the following command:

$ bootc switch [--apply] quay.io/<namespace>/<image>:<tag>

Optionally, you can use the --apply option when you want to automatically take actions, such as
rebooting if the system has changed.

NOTE

The bootc switch command has the same effect as bootc upgrade. The only difference
is the container image reference is changed. This allows preserving the existing states in
/etc and /var, for example, host SSH keys and home directories.

Additional resources

The bootc-switch man page

5.2. PERFORMING MANUAL UPDATES FROM AN INSTALLED
OPERATING SYSTEM

Installing image mode for RHEL is a one time task. You can perform any other management task, such
as changing or updating the system, by pushing the changes to the container registry.

CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES

27

https://www.redhat.com/en/blog/how-does-red-hat-support-day-2-operations
https://containers.github.io/bootc/man/bootc-upgrade.html

When using image mode for RHEL, you can choose to perform manual updates for your systems. Manual
updates are also useful if you have an automated way to perform updates, for example, by using Ansible.
Because the automatic updates are enabled by default, to perform manual updates you must turn the
automatic updates off. You can do this by choosing one of the following options:

Running the bootc upgrade command

Modifying the systemd timer file

5.3. TURNING OFF AUTOMATIC UPDATES

To perform manual updates you must turn off automatic updates. You can do this by choosing one of
the following options in the procedure below.

Procedure

Disable the timer of a container build.

By running the bootc upgrade command:

$ systemctl mask bootc-fetch-apply-updates.timer

By modifying the systemd timer file. Use systemd "drop-ins" to override the timer. In the
following example, updates are scheduled for once a week.

1. Create an updates.conf file with the following content:

[Timer]
Clear previous timers
OnBootSec= OnBootSec=1w OnUnitInactiveSec=1w

2. Add your container to the file that you created:

$ mkdir -p /usr/lib/systemd/system/bootc-fetch-apply-updates.timer.d
$ cp updates.conf /usr/lib/systemd/system/bootc-fetch-apply-updates.timer.d

5.4. MANUALLY UPDATING AN INSTALLED OPERATING SYSTEM

To manually fetch updates from a registry and boot the system into the new updates, use bootc
upgrade. This command fetches the transactional in-place updates from the installed operating system
to the container image registry. The command queries the registry and queues an updated container
image for the next boot. It stages the changes to the base image, while not changing the running system
by default.

Procedure

Run the following command:

$ bootc upgrade [--apply]

The apply argument is optional and you can use it when you want to automatically take actions,
such as rebooting if the system has changed.

NOTE

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

28

NOTE

The bootc upgrade and bootc update commands are aliases.

Additional resources

The bootc-upgrade man page

5.5. PERFORMING ROLLBACKS FROM A UPDATED OPERATING
SYSTEM

You can roll back to a previous boot entry to revert changes by using the bootc rollback command. This
command changes the boot loader entry ordering by making the deployment under rollback queued for
the next boot. The current deployment then becomes the rollback. Any staged changes, such as a
queued upgrade that was not applied, are discarded.

Prerequisites

You performed an update to the system.

Procedure

Run the following command:

$ bootc-rollback [-h|--help] [-V|--version]

NOTE

The bootc-rollback command has the same effect as bootc upgrade. The only
difference is the container image being tracked. This enables preserving the existing
states in /etc and /var, for example, host SSH keys and home directories.

Verification

Use systemd journal to check the logged message for the detected rollback invocation.

$ journalctl -b

You can see a log similar to:

MESSAGE_ID=26f3b1eb24464d12aa5e7b544a6b5468

Additional resources

The bootc-rollback man page

5.6. DEPLOYING UPDATES TO SYSTEM GROUPS

You can change the configuration of your operating system by modifying the Containerfile. Then you
can build and push your container image to the registry. When you next boot your operating system, an
update will be applied.

You can also change the container image source by using the bootc switch command. The container

CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES

29

https://containers.github.io/bootc/man/bootc-upgrade.html
https://containers.github.io/bootc/man/bootc-upgrade.html

You can also change the container image source by using the bootc switch command. The container
registry is the source of truth. See Switching the container image reference .

Usually, when deploying updates to system groups, you can use a central management service to
provide a client to be installed on each system which connects to the central service. Often, the
management service requires the client to perform a one time registration. The following is an example
on how to deploy updates to system groups. You can modify it to create a persistent systemd service, if
required.

NOTE

For clarity reasons, the Containerfile in the example is not optimized. For example, a
better optimization to avoid creating multiple layers in the image is by invoking RUN a
single time.

You can install a client into a image mode for RHEL image and run it at startup to register the system.

Prerequisites

The management-client handles future connections to the server, by using a cron job or a
separate systemd service.

Procedure

Create a management service with the following characteristics. It determines when to upgrade
the system.

1. Disable bootc-fetch-apply-updates.timer if it is included in the base image.

2. Install the client by using dnf, or some other method that applies for your client.

3. Inject the credentials for the management service into the image.

5.7. CHECKING INVENTORY HEALTH

Health checks are one of the Day 2 Operations. You can manually check the system health of the
container images and events that are running inside the container.

You can set health checks by creating the container on the command line. You can display the health
check status of a container by using the podman inspect or podman ps commands.

You can monitor and print events that occur in Podman by using the podman events command. Each
event includes a timestamp, a type, a status, a name, if applicable, and an image, if applicable.

For more information about health checks and events, see chapter Monitoring containers.

5.8. AUTOMATION AND GITOPS

You can automate the building process by using CI/CD pipelines so that an update process can be
triggered by events, such as updating an application. You can use automation tools that track these
updates and trigger the CI/CD pipelines. The pipeline keeps the systems up to date by using the
transactional background operating system updates.

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#assembly_monitoring-containers

CHAPTER 6. APPENDIX: MANAGING USERS, GROUPS, SSH
KEYS, AND SECRETS IN IMAGE MODE FOR RHEL

Learn more about users, groups, SSH keys, and secrets management in image mode for RHEL.

6.1. USERS AND GROUPS CONFIGURATION

RHEL image mode is a generic operating system update and configuration mechanism. You cannot use
it to configure users or groups. The only exception is the bootc install command that has the --root-
ssh-authorized-keys option.

Users and groups configuration for generic base images

Usually, the distribution base images do not have any configuration. Do not encrypt passwords and
SSH keys with publicly-available private keys in generic images because of security risks.

Injecting SSH keys through systemd credentials

You can use systemd to inject a root password or SSH authorized_keys file in some environments.
For example, use System Management BIOS (SMBIOS) to inject SSH keys system firmware. You can
configure this in local virtualization environments, such as qemu.

Injecting users and SSH keys by using cloud-init

Many Infrastructure as a service (IaaS) and virtualization systems use metadata servers that are
commonly processed by software such as cloud-init or ignition. See AWS instance metadata. The
base image you are using might include cloud-init or Ignition, or you can install it in your own derived
images. In this model, the SSH configuration is managed outside of the bootable image.

Adding users and credentials by using container or unit custom logic

Systems such as cloud-init are not privileged. You can inject any logic you want to manage
credentials in the way you want to launch a container image, for example, by using a systemd unit. To
manage the credentials, you can use a custom network-hosted source, for example, FreeIPA.

Adding users and credentials statically in the container build

In package-oriented systems, you can use the derived build to inject users and credentials by using
the following command:

RUN useradd someuser

You can find issues in the default shadow-utils implementation of useradd: Users and groups IDs
are allocated dynamically, and this can cause drift.

User and group home directories and /var directory

For systems configured with persistent /home → /var/home, any changes to /var made in the
container image after initial installation will not be applied on subsequent updates.
For example, if you inject /var/home/someuser/.ssh/authorized_keys into a container build, existing
systems do not get the updated authorized_keys file.

Using DynamicUser=yes for systemd units

Use the systemd DynamicUser=yes option where possible for system users.
This is significantly better than the pattern of allocating users or groups at package install time,
because it avoids potential UID or GID drift.

Using systemd-sysusers

Use systemd-sysusers, for example, in your derived build. For more information, see the systemd -

CHAPTER 6. APPENDIX: MANAGING USERS, GROUPS, SSH KEYS, AND SECRETS IN IMAGE MODE FOR RHEL

31

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://www.freeipa.org/page/Main_Page

Use systemd-sysusers, for example, in your derived build. For more information, see the systemd -
sysusers documentation.

COPY mycustom-user.conf /usr/lib/sysusers.d

The sysusers tool makes changes to the traditional /etc/passwd file as necessary during boot time.
If /etc is persistent, this can avoid UID or GID drift. It means that the UID or GID allocation depends
on how a specific machine was upgraded over time.

Using systemd JSON user records

See JSON user records systemd documentation. Unlike sysusers, the canonical state for these
users lives in /usr. If a subsequent image drops a user record, then it also vanishes from the system.

Using nss-altfiles

With nss-altfiles, you can remove the systemd JSON user records. It splits system users into
/usr/lib/passwd and /usr/lib/group, aligning with the way the OSTree project handles the 3 way
merge for /etc as it relates to /etc/passwd. Currently, if the /etc/passwd file is modified in any way
on the local system, then subsequent changes to /etc/passwd in the container image are not applied.
Base images built by rpm-ostree have nns-altfiles enabled by default.

Also, base images have a system users pre-allocated and managed by the NSS file to avoid UID or
GID drift.

In a derived container build, you can also append users to /usr/lib/passwd, for example. Use
sysusers.d or DynamicUser=yes.

Machine-local state for users

The filesystem layout depends on the base image.
By default, the user data is stored in both /etc, /etc/passwd, /etc/shadow and groups, and /home,
depending on the base image. However, the generic base images have to both be machine-local
persistent state. In this model /home is a symlink to /var/home/user.

Injecting users and SSH keys at system provisioning time

For base images where /etc and /var are configured to persist by default, you can inject users by
using installers such as Anaconda or Kickstart.
Typically, generic installers are designed for one time bootstrap. Then, the configuration becomes a
mutable machine-local state that you can change in Day 2 operations, by using some other
mechanism.

You can use the Anaconda installer to set the initial password. However, changing this initial
password requires a different in-system tool, such as passwd.

These flows work equivalently in a bootc-compatible system, to support users directly installing
generic base images, without requiring changes to the different in-system tool.

Transient home directories

Many operating system deployments minimize persistent, mutable, and executable state. This can
damage user home directories.
The /home directory can be set as tmpfs, to ensure that user data is cleared across reboots. This
approach works especially well when combined with a transient /etc directory.

To set up the user’s home directory to, for example, inject SSH authorized_keys or other files, use
the systemd tmpfiles.d snippets:

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

32

https://www.freedesktop.org/software/systemd/man/latest/systemd-sysusers.html
https://systemd.io/USER_RECORD/

f~ /home/user/.ssh/authorized_keys 600 user user - <base64 encoded data>

SSH is embedded in the image as: /usr/lib/tmpfiles.d/<username-keys.conf. Another example is a
service embedded in the image that can fetch keys from the network and write them. This is the
pattern used by cloud-init.

UID and GID drift

The /etc/passwd and similar files are a mapping between names and numeric identifiers. When the
mapping is dynamic and mixed with "stateless" container image builds, it can cause issues. Each
container image build might result in the UID changing due to RPM installation ordering or other
reasons. This can be a problem if that user maintains a persistent state. To handle such cases,
convert it to use sysusers.d or use DynamicUser=yes.

6.2. INJECTING SECRETS IN IMAGE MODE FOR RHEL

Image mode for RHEL does not have an opinionated mechanism for secrets. You can inject container
pull secrets in your system for some cases, for example:

For bootc to fetch updates from a registry that requires authentication, you must include a pull
secret in a file. In the following example, the creds secret contains the registry pull secret.

FROM quay.io/rhel-bootc/bootc-image-builder:latest
COPY containers-auth.conf /usr/lib/tmpfiles.d/link-podman-credentials.conf
RUN --mount=type=secret,id=creds,required=true cp /run/secrets/creds /usr/lib/container-
auth.json && \
 chmod 0600 /usr/lib/container-auth.json && \
 ln -sr /usr/lib/container-auth.json /etc/ostree/auth.json

To build it, run podman build --secret id=creds,src=$HOME/.docker/config.json. Use a single
pull secret for bootc and Podman by using a symlink to both locations to a common persistent
file embedded in the container image, for example /usr/lib/container-auth.json.

For Podman to fetch container images, include a pull secret to /etc/containers/auth.json. With
this configuration, the two stacks share the /usr/lib/container-auth.json file.

Injecting secrets by embedding them in a container build

You can include secrets in the container image if the registry server is suitably protected. In
some cases, embedding only bootstrap secrets into the container image is a viable pattern,
especially alongside a mechanism for having a machine authenticate to a cluster. In this
pattern, a provisioning tool, whether run as part of the host system or a container image,
uses the bootstrap secret to inject or update other secrets, such as SSH keys, certificates,
among others.

Injecting secrets by using cloud metadata

Most production Infrastructure as a Service (IaaS) systems support a metadata server or
equivalent which can securely host secrets, particularly bootstrap secrets. Your container
image can include tools such as cloud-init or ignition to fetch these secrets.

Injecting secrets by embedding them in disk images

You can embed bootstrap secrets only in disk images. For example, when you generate a
cloud disk image from an input container image, such as AMI or OpenStack, the disk image
can contain secrets that are effectively machine-local state. Rotating them requires an
additional management tool or refreshing the disk images.

Injecting secrets by using bare metal installers

CHAPTER 6. APPENDIX: MANAGING USERS, GROUPS, SSH KEYS, AND SECRETS IN IMAGE MODE FOR RHEL

33

Installer tools usually support injecting configuration through secrets.

Injecting secrets through systemd credentials

The systemd project has a credential concept for securely acquiring and passing credential
data to systems and services, which applies in some deployment methodologies. See the
systemd credentials documentation for more details.

Additional resources

See Example bootable containers.

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

34

https://systemd.io/CREDENTIALS/
https://github.com/redhat-cop/rhel-bootc-examples

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL
	1.1. PREREQUISITES
	1.2. ADDITIONAL RESOURCES

	CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE CONTAINER IMAGES
	2.1. BUILDING A CONTAINER IMAGE
	2.2. RUNNING A CONTAINER IMAGE
	2.3. PUSHING A CONTAINER IMAGE TO THE REGISTRY

	CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER
	3.1. INTRODUCING IMAGE MODE FOR RHEL FOR BOOTC-IMAGE-BUILDER
	3.2. INSTALLING BOOTC-IMAGE-BUILDER
	3.3. CREATING QCOW2 IMAGES BY USING BOOTC-IMAGE-BUILDER
	3.4. CREATING AMI IMAGES BY USING BOOTC-IMAGE-BUILDER AND UPLOADING IT TO AWS
	3.5. CREATING RAW DISK IMAGES BY USING BOOTC-IMAGE-BUILDER
	3.6. CREATING ISO IMAGES BY USING BOOTC-IMAGE-BUILDER
	3.7. VERIFICATION AND TROUBLESHOOTING

	CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES
	4.1. DEPLOYING A CONTAINER IMAGE BY USING KVM WITH A QCOW2 DISK IMAGE
	4.2. DEPLOYING A CONTAINER IMAGE TO AWS WITH AN AMI DISK IMAGE
	4.3. DEPLOYING A CONTAINER IMAGE BY USING ANACONDA AND KICKSTART
	4.4. DEPLOYING A CUSTOM ISO CONTAINER IMAGE
	4.5. DEPLOYING AN ISO BOOTABLE CONTAINER OVER PXE BOOT
	4.6. BUILDING, CONFIGURING, AND LAUNCHING DISK IMAGES WITH BOOTC-IMAGE-BUILDER
	4.7. DEPLOYING A CONTAINER IMAGE BY USING BOOTC
	4.8. ADVANCED INSTALLATION WITH TO-FILESYSTEM
	4.8.1. Using bootc install to-existing-root

	CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES
	5.1. SWITCHING THE CONTAINER IMAGE REFERENCE
	5.2. PERFORMING MANUAL UPDATES FROM AN INSTALLED OPERATING SYSTEM
	5.3. TURNING OFF AUTOMATIC UPDATES
	5.4. MANUALLY UPDATING AN INSTALLED OPERATING SYSTEM
	5.5. PERFORMING ROLLBACKS FROM A UPDATED OPERATING SYSTEM
	5.6. DEPLOYING UPDATES TO SYSTEM GROUPS
	5.7. CHECKING INVENTORY HEALTH
	5.8. AUTOMATION AND GITOPS

	CHAPTER 6. APPENDIX: MANAGING USERS, GROUPS, SSH KEYS, AND SECRETS IN IMAGE MODE FOR RHEL
	6.1. USERS AND GROUPS CONFIGURATION
	6.2. INJECTING SECRETS IN IMAGE MODE FOR RHEL

