
Red Hat OpenShift Service on AWS 4

Cluster administration

Configuring Red Hat OpenShift Service on AWS clusters

Last Updated: 2024-05-03

Red Hat OpenShift Service on AWS 4 Cluster administration

Configuring Red Hat OpenShift Service on AWS clusters

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about configuring Red Hat OpenShift Service on AWS (ROSA)
clusters.

. .

. .

. .

Table of Contents

CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS
1.1. CONFIGURING PRIVATE CONNECTIONS
1.2. CONFIGURING AWS VPC PEERING

1.2.1. VPC peering terms
1.2.2. Initiating the VPC peer request
1.2.3. Accepting the VPC peer request
1.2.4. Configuring the routing tables
1.2.5. Verifying and troubleshooting VPC peering

1.3. CONFIGURING AWS VPN
1.3.1. Creating a VPN connection

1.3.1.1. Configuring the VPN connection
1.3.1.2. Establishing the VPN Connection
1.3.1.3. Enabling VPN route propagation

1.3.2. Verifying the VPN connection
1.3.3. Troubleshooting the VPN connection

Tunnel does not connect
Tunnel does not stay connected
Secondary tunnel in Down state

1.4. CONFIGURING AWS DIRECT CONNECT
1.4.1. AWS Direct Connect methods
1.4.2. Creating the hosted Virtual Interface

1.4.2.1. Determining the type of Direct Connect connection
1.4.2.2. Creating a Private Direct Connect
1.4.2.3. Creating a Public Direct Connect
1.4.2.4. Verifying the Virtual Interfaces

1.4.3. Connecting to an existing Direct Connect Gateway
1.4.4. Troubleshooting Direct Connect

CHAPTER 2. CLUSTER AUTOSCALING
2.1. ABOUT THE CLUSTER AUTOSCALER
2.2. ENABLE AUTOSCALING DURING CLUSTER CREATION WITH OPENSHIFT CLUSTER MANAGER
2.3. ENABLE AUTOSCALING AFTER CLUSTER CREATION WITH OPENSHIFT CLUSTER MANAGER
2.4. CLUSTER AUTOSCALING SETTINGS USING OPENSHIFT CLUSTER MANAGER

2.4.1. General settings
2.4.2. Resource limits
2.4.3. Scale down configuration

2.5. ENABLE AUTOSCALING DURING CLUSTER CREATION BY USING THE INTERACTIVE MODE WITH THE
ROSA CLI

2.5.1. Enable autoscaling after cluster creation by using the interactive mode with the ROSA CLI
2.6. ENABLE AUTOSCALING DURING CLUSTER CREATION WITH THE ROSA CLI

2.6.1. Enable autoscaling after cluster creation with the ROSA CLI
2.6.2. Edit autoscaling after cluster creation with the ROSA CLI
2.6.3. Delete autoscaling using the ROSA CLI

2.7. CLUSTER AUTOSCALING PARAMETERS USING THE ROSA CLI

CHAPTER 3. MANAGE NODES USING MACHINE POOLS
3.1. ABOUT MACHINE POOLS

3.1.1. Machines
3.1.2. Machine sets
3.1.3. Machine pools
3.1.4. Machine pools in multiple zone clusters
3.1.5. Additional resources

4
4
4
4
5
6
6
7
8
8
9
9

10
10
11
11

12
12
12
12
13
13
13
14
15
15
16

17
17
18
19
19
19
21
22

23
24
24
24
25
25
25

29
29
29
29
29
30
30

Table of Contents

1

. .

3.2. MANAGING COMPUTE NODES
3.2.1. Creating a machine pool

3.2.1.1. Creating a machine pool using OpenShift Cluster Manager
3.2.1.2. Creating a machine pool using the ROSA CLI

3.2.2. Configuring machine pool disk volume
3.2.2.1. Configuring machine pool disk volume using OpenShift Cluster Manager
3.2.2.2. Configuring machine pool disk volume using the ROSA CLI

3.2.3. Deleting a machine pool
3.2.3.1. Deleting a machine pool using OpenShift Cluster Manager
3.2.3.2. Deleting a machine pool using the ROSA CLI

3.2.4. Scaling compute nodes manually
3.2.5. Node labels

3.2.5.1. Adding node labels to a machine pool
3.2.6. Adding taints to a machine pool

3.2.6.1. Adding taints to a machine pool using OpenShift Cluster Manager
3.2.6.2. Adding taints to a machine pool using the ROSA CLI

3.2.7. Adding node tuning to a machine pool
3.2.8. Additional resources

3.3. CONFIGURING MACHINE POOLS IN LOCAL ZONES
3.3.1. Configuring machine pools in Local Zones

3.4. ABOUT AUTOSCALING NODES ON A CLUSTER
3.4.1. Enabling autoscaling nodes on a cluster

Enabling autoscaling nodes in an existing cluster using Red Hat OpenShift Cluster Manager
Enabling autoscaling nodes in an existing cluster using the ROSA CLI

3.4.2. Disabling autoscaling nodes on a cluster
Disabling autoscaling nodes in an existing cluster using Red Hat OpenShift Cluster Manager
Disabling autoscaling nodes in an existing cluster using the ROSA CLI

3.4.3. Additional resources
3.5. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS

3.5.1. Understanding managing application memory
3.5.1.1. Managing application memory strategy

3.5.2. Understanding OpenJDK settings for Red Hat OpenShift Service on AWS
3.5.2.1. Understanding how to override the JVM maximum heap size
3.5.2.2. Understanding how to encourage the JVM to release unused memory to the operating system
3.5.2.3. Understanding how to ensure all JVM processes within a container are appropriately configured

3.5.3. Finding the memory request and limit from within a pod
3.5.4. Understanding OOM kill policy
3.5.5. Understanding pod eviction

CHAPTER 4. CONFIGURING PID LIMITS
4.1. UNDERSTANDING PROCESS ID LIMITS
4.2. RISKS OF SETTING HIGHER PROCESS ID LIMITS FOR RED HAT OPENSHIFT SERVICE ON AWS PODS

4.3. SETTING A HIGHER PID LIMIT ON AN EXISTING RED HAT OPENSHIFT SERVICE ON AWS CLUSTER

30
30
31

33
38
38
39
40
40
40
41

42
42
45
45
46
48
49
50
50
51
52
52
52
53
53
54
54
54
54
55
56
56
57
57
58
59
61

63
63

63
64

Red Hat OpenShift Service on AWS 4 Cluster administration

2

Table of Contents

3

CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS

1.1. CONFIGURING PRIVATE CONNECTIONS

Private cluster access can be implemented to suit the needs of your Red Hat OpenShift Service on AWS
(ROSA) environment.

Procedure

1. Access your ROSA AWS account and use one or more of the following methods to establish a
private connection to your cluster:

Configuring AWS VPC peering: Enable VPC peering to route network traffic between two
private IP addresses.

Configuring AWS VPN : Establish a Virtual Private Network to securely connect your private
network to your Amazon Virtual Private Cloud.

Configuring AWS Direct Connect: Configure AWS Direct Connect to establish a dedicated
network connection between your private network and an AWS Direct Connect location.

2. Configure a private cluster on ROSA.

1.2. CONFIGURING AWS VPC PEERING

This sample process configures an Amazon Web Services (AWS) VPC containing an Red Hat OpenShift
Service on AWS cluster to peer with another AWS VPC network. For more information about creating an
AWS VPC Peering connection or for other possible configurations, see the AWS VPC Peering guide.

1.2.1. VPC peering terms

When setting up a VPC peering connection between two VPCs on two separate AWS accounts, the
following terms are used:

Red Hat
OpenShift
Service on
AWS AWS
Account

The AWS account that contains the Red Hat OpenShift Service on AWS cluster.

Red Hat
OpenShift
Service on
AWS Cluster
VPC

The VPC that contains the Red Hat OpenShift Service on AWS cluster.

Customer
AWS
Account

Your non-Red Hat OpenShift Service on AWS AWS Account that you would like to peer with.

Customer
VPC

The VPC in your AWS Account that you would like to peer with.

Red Hat OpenShift Service on AWS 4 Cluster administration

4

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-private-cluster
http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/Welcome.html

Customer
VPC Region

The region where the customer’s VPC resides.

NOTE

As of July 2018, AWS supports inter-region VPC peering between all commercial regions
excluding China.

1.2.2. Initiating the VPC peer request

You can send a VPC peering connection request from the Red Hat OpenShift Service on AWS AWS
Account to the Customer AWS Account.

Prerequisites

Gather the following information about the Customer VPC required to initiate the peering
request:

Customer AWS account number

Customer VPC ID

Customer VPC Region

Customer VPC CIDR

Check the CIDR block used by the Red Hat OpenShift Service on AWS Cluster VPC. If it
overlaps or matches the CIDR block for the Customer VPC, then peering between these two
VPCs is not possible; see the Amazon VPC Unsupported VPC Peering Configurations
documentation for details. If the CIDR blocks do not overlap, you can continue with the
procedure.

Procedure

1. Log in to the Web Console for the Red Hat OpenShift Service on AWS AWS Account and
navigate to the VPC Dashboard in the region where the cluster is being hosted.

2. Go to the Peering Connections page and click the Create Peering Connection button.

3. Verify the details of the account you are logged in to and the details of the account and VPC
you are connecting to:

a. Peering connection name tag: Set a descriptive name for the VPC Peering Connection.

b. VPC (Requester): Select the Red Hat OpenShift Service on AWS Cluster VPC ID from the
dropdown *list.

c. Account: Select Another account and provide the Customer AWS Account number *
(without dashes).

d. Region: If the Customer VPC Region differs from the current region, select Another Region
and select the customer VPC Region from the dropdown list.

e. VPC (Accepter): Set the Customer VPC ID.

CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS

5

https://aws.amazon.com/vpc/faqs/#Peering_Connections
https://docs.aws.amazon.com/vpc/latest/peering/invalid-peering-configurations.html

4. Click Create Peering Connection.

5. Confirm that the request enters a Pending state. If it enters a Failed state, confirm the details
and repeat the process.

1.2.3. Accepting the VPC peer request

After you create the VPC peering connection, you must accept the request in the Customer AWS
Account.

Prerequisites

Initiate the VPC peer request.

Procedure

1. Log in to the AWS Web Console.

2. Navigate to VPC Service.

3. Go to Peering Connections.

4. Click on Pending peering connection.

5. Confirm the AWS Account and VPC ID that the request originated from. This should be from
the Red Hat OpenShift Service on AWS AWS Account and Red Hat OpenShift Service on AWS
Cluster VPC.

6. Click Accept Request.

1.2.4. Configuring the routing tables

After you accept the VPC peering request, both VPCs must configure their routes to communicate
across the peering connection.

Prerequisites

Initiate and accept the VPC peer request.

Procedure

1. Log in to the AWS Web Console for the Red Hat OpenShift Service on AWS AWS Account.

2. Navigate to the VPC Service, then Route Tables.

3. Select the Route Table for the Red Hat OpenShift Service on AWS Cluster VPC.

NOTE

On some clusters, there may be more than one route table for a particular VPC.
Select the private one that has a number of explicitly associated subnets.

4. Select the Routes tab, then Edit.

Red Hat OpenShift Service on AWS 4 Cluster administration

6

5. Enter the Customer VPC CIDR block in the Destination text box.

6. Enter the Peering Connection ID in the Target text box.

7. Click Save.

8. You must complete the same process with the other VPC’s CIDR block:

a. Log into the Customer AWS Web Console → VPC Service → Route Tables.

b. Select the Route Table for your VPC.

c. Select the Routes tab, then Edit.

d. Enter the Red Hat OpenShift Service on AWS Cluster VPC CIDR block in the Destination
text box.

e. Enter the Peering Connection ID in the Target text box.

f. Click Save.

The VPC peering connection is now complete. Follow the verification procedure to ensure connectivity
across the peering connection is working.

1.2.5. Verifying and troubleshooting VPC peering

After you set up a VPC peering connection, it is best to confirm it has been configured and is working
correctly.

Prerequisites

Initiate and accept the VPC peer request.

Configure the routing tables.

Procedure

In the AWS console, look at the route table for the cluster VPC that is peered. Ensure that the
steps for configuring the routing tables were followed and that there is a route table entry
pointing the VPC CIDR range destination to the peering connection target.
If the routes look correct on both the Red Hat OpenShift Service on AWS Cluster VPC route
table and Customer VPC route table, then the connection should be tested using the netcat
method below. If the test calls are successful, then VPC peering is working correctly.

To test network connectivity to an endpoint device, nc (or netcat) is a helpful troubleshooting
tool. It is included in the default image and provides quick and clear output if a connection can
be established:

a. Create a temporary pod using the busybox image, which cleans up after itself:

$ oc run netcat-test \
 --image=busybox -i -t \
 --restart=Never --rm \
 -- /bin/sh

b. Check the connection using nc.

CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS

7

Example successful connection results:

/ nc -zvv 192.168.1.1 8080
10.181.3.180 (10.181.3.180:8080) open
sent 0, rcvd 0

Example failed connection results:

/ nc -zvv 192.168.1.2 8080
nc: 10.181.3.180 (10.181.3.180:8081): Connection refused
sent 0, rcvd 0

c. Exit the container, which automatically deletes the Pod:

/ exit

1.3. CONFIGURING AWS VPN

This sample process configures an Amazon Web Services (AWS) Red Hat OpenShift Service on AWS
cluster to use a customer’s on-site hardware VPN device.

NOTE

AWS VPN does not currently provide a managed option to apply NAT to VPN traffic. See
the AWS Knowledge Center for more details.

NOTE

Routing all traffic, for example 0.0.0.0/0, through a private connection is not supported.
This requires deleting the internet gateway, which disables SRE management traffic.

For more information about connecting an AWS VPC to remote networks using a hardware VPN device,
see the Amazon VPC VPN Connections documentation.

1.3.1. Creating a VPN connection

You can configure an Amazon Web Services (AWS) Red Hat OpenShift Service on AWS cluster to use a
customer’s on-site hardware VPN device using the following procedures.

Prerequisites

Hardware VPN gateway device model and software version, for example Cisco ASA running
version 8.3. See the Amazon VPC Network Administrator Guide to confirm whether your
gateway device is supported by AWS.

Public, static IP address for the VPN gateway device.

BGP or static routing: if BGP, the ASN is required. If static routing, you must configure at least
one static route.

Optional: IP and Port/Protocol of a reachable service to test the VPN connection.

Red Hat OpenShift Service on AWS 4 Cluster administration

8

https://aws.amazon.com/premiumsupport/knowledge-center/configure-nat-for-vpn-traffic/
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Introduction.html#DevicesTested

1.3.1.1. Configuring the VPN connection

Procedure

1. Log in to the Red Hat OpenShift Service on AWS AWS Account Dashboard, and navigate to the
VPC Dashboard.

2. Click on Your VPCs and identify the name and VPC ID for the VPC containing the Red Hat
OpenShift Service on AWS cluster.

3. From the VPC Dashboard, click Customer Gateway.

4. Click Create Customer Gateway and give it a meaningful name.

5. Select the routing method: Dynamic or Static.

6. If Dynamic, enter the BGP ASN in the field that appears.

7. Paste in the VPN gateway endpoint IP address.

8. Click Create.

9. If you do not already have a Virtual Private Gateway attached to the intended VPC:

a. From the VPC Dashboard, click on Virtual Private Gateway.

b. Click Create Virtual Private Gateway, give it a meaningful name, and click Create.

c. Leave the default Amazon default ASN.

d. Select the newly created gateway, click Attach to VPC, and attach it to the cluster VPC you
identified earlier.

1.3.1.2. Establishing the VPN Connection

Procedure

1. From the VPC dashboard, click on Site-to-Site VPN Connections.

2. Click Create VPN Connection.

a. Give it a meaningful name tag.

b. Select the virtual private gateway created previously.

c. For Customer Gateway, select Existing.

d. Select the customer gateway device by name.

e. If the VPN will use BGP, select Dynamic, otherwise select Static. Enter Static IP CIDRs. If
there are multiple CIDRs, add each CIDR as Another Rule.

f. Click Create.

g. Wait for VPN status to change to Available, approximately 5 to 10 minutes.

3. Select the VPN you just created and click Download Configuration.

CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS

9

a. From the dropdown list, select the vendor, platform, and version of the customer gateway
device, then click Download.

b. The Generic vendor configuration is also available for retrieving information in a plain text
format.

NOTE

After the VPN connection has been established, be sure to set up Route Propagation or
the VPN may not function as expected.

NOTE

Note the VPC subnet information, which you must add to your configuration as the
remote network.

1.3.1.3. Enabling VPN route propagation

After you have set up the VPN connection, you must ensure that route propagation is enabled so that
the necessary routes are added to the VPC’s route table.

Procedure

1. From the VPC Dashboard, click on Route Tables.

2. Select the private Route table associated with the VPC that contains your Red Hat OpenShift
Service on AWS cluster.

NOTE

On some clusters, there may be more than one route table for a particular VPC.
Select the private one that has a number of explicitly associated subnets.

3. Click on the Route Propagation tab.

4. In the table that appears, you should see the virtual private gateway you created previously.
Check the value in the Propagate column.

a. If Propagate is set to No, click Edit route propagation, check the Propagate checkbox next
to the virtual private gateway’s name and click Save.

After you configure your VPN tunnel and AWS detects it as Up, your static or BGP routes are
automatically added to the route table.

1.3.2. Verifying the VPN connection

After you have set up your side of the VPN tunnel, you can verify that the tunnel is up in the AWS
console and that connectivity across the tunnel is working.

Prerequisites

Created a VPN connection.

Procedure

Red Hat OpenShift Service on AWS 4 Cluster administration

10

1. Verify the tunnel is up in AWS.

a. From the VPC Dashboard, click on VPN Connections.

b. Select the VPN connection you created previously and click the Tunnel Details tab.

c. You should be able to see that at least one of the VPN tunnels is Up.

2. Verify the connection.
To test network connectivity to an endpoint device, nc (or netcat) is a helpful troubleshooting
tool. It is included in the default image and provides quick and clear output if a connection can
be established:

a. Create a temporary pod using the busybox image, which cleans up after itself:

$ oc run netcat-test \
 --image=busybox -i -t \
 --restart=Never --rm \
 -- /bin/sh

b. Check the connection using nc.

Example successful connection results:

/ nc -zvv 192.168.1.1 8080
10.181.3.180 (10.181.3.180:8080) open
sent 0, rcvd 0

Example failed connection results:

/ nc -zvv 192.168.1.2 8080
nc: 10.181.3.180 (10.181.3.180:8081): Connection refused
sent 0, rcvd 0

c. Exit the container, which automatically deletes the Pod:

/ exit

1.3.3. Troubleshooting the VPN connection

Tunnel does not connect
If the tunnel connection is still Down, there are several things you can verify:

The AWS tunnel will not initiate a VPN connection. The connection attempt must be initiated
from the Customer Gateway.

Ensure that your source traffic is coming from the same IP as the configured customer gateway.
AWS will silently drop all traffic to the gateway whose source IP address does not match.

Ensure that your configuration matches values supported by AWS . This includes IKE versions,
DH groups, IKE lifetime, and more.

Recheck the route table for the VPC. Ensure that propagation is enabled and that there are
entries in the route table that have the virtual private gateway you created earlier as a target.

CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS

11

https://docs.aws.amazon.com/vpc/latest/adminguide/Introduction.html#CGRequirements

Confirm that you do not have any firewall rules that could be causing an interruption.

Check if you are using a policy-based VPN as this can cause complications depending on how it
is configured.

Further troubleshooting steps can be found at the AWS Knowledge Center.

Tunnel does not stay connected
If the tunnel connection has trouble staying Up consistently, know that all AWS tunnel connections must
be initiated from your gateway. AWS tunnels do not initiate tunneling .

Red Hat recommends setting up an SLA Monitor (Cisco ASA) or some device on your side of the tunnel
that constantly sends "interesting" traffic, for example ping, nc, or telnet, at any IP address configured
within the VPC CIDR range. It does not matter whether the connection is successful, just that the traffic
is being directed at the tunnel.

Secondary tunnel in Down state
When a VPN tunnel is created, AWS creates an additional failover tunnel. Depending upon the gateway
device, sometimes the secondary tunnel will be seen as in the Down state.

The AWS Notification is as follows:

You have new non-redundant VPN connections

One or more of your vpn connections are not using both tunnels. This mode of
operation is not highly available and we strongly recommend you configure your
second tunnel. View your non-redundant VPN connections.

1.4. CONFIGURING AWS DIRECT CONNECT

This process describes accepting an AWS Direct Connect virtual interface with Red Hat OpenShift
Service on AWS. For more information about AWS Direct Connect types and configuration, see the
AWS Direct Connect components documentation.

1.4.1. AWS Direct Connect methods

A Direct Connect connection requires a hosted Virtual Interface (VIF) connected to a Direct Connect
Gateway (DXGateway), which is in turn associated to a Virtual Gateway (VGW) or a Transit Gateway in
order to access a remote VPC in the same or another account.

If you do not have an existing DXGateway, the typical process involves creating the hosted VIF, with the
DXGateway and VGW being created in the Red Hat OpenShift Service on AWS AWS Account.

If you have an existing DXGateway connected to one or more existing VGWs, the process involves the
Red Hat OpenShift Service on AWS AWS Account sending an Association Proposal to the DXGateway
owner. The DXGateway owner must ensure that the proposed CIDR will not conflict with any other
VGWs they have associated.

See the following AWS documentation for more details:

Virtual Interfaces

Direct Connect Gateways

Associating a VGW across accounts

IMPORTANT

Red Hat OpenShift Service on AWS 4 Cluster administration

12

https://aws.amazon.com/premiumsupport/knowledge-center/vpn-tunnel-troubleshooting/
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html#CustomerGateway
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html#overview-components
https://docs.aws.amazon.com/directconnect/latest/UserGuide/WorkingWithVirtualInterfaces.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/direct-connect-gateways-intro.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/multi-account-associate-vgw.html

IMPORTANT

When connecting to an existing DXGateway, you are responsible for the costs.

There are two configuration options available:

Method 1 Create the hosted VIF and then the DXGateway and VGW.

Method 2 Request a connection via an existing Direct Connect Gateway that you own.

1.4.2. Creating the hosted Virtual Interface

Prerequisites

Gather Red Hat OpenShift Service on AWS AWS Account ID.

1.4.2.1. Determining the type of Direct Connect connection

View the Direct Connect Virtual Interface details to determine the type of connection.

Procedure

1. Log in to the Red Hat OpenShift Service on AWS AWS Account Dashboard and select the
correct region.

2. Select Direct Connect from the Services menu.

3. There will be one or more Virtual Interfaces waiting to be accepted, select one of them to view
the Summary.

4. View the Virtual Interface type: private or public.

5. Record the Amazon side ASN value.

If the Direct Connect Virtual Interface type is Private, a Virtual Private Gateway is created. If the Direct
Connect Virtual Interface is Public, a Direct Connect Gateway is created.

1.4.2.2. Creating a Private Direct Connect

A Private Direct Connect is created if the Direct Connect Virtual Interface type is Private.

Procedure

1. Log in to the Red Hat OpenShift Service on AWS AWS Account Dashboard and select the
correct region.

2. From the AWS region, select VPC from the Services menu.

3. Select Virtual Private Gateways from VPN Connections.

4. Click Create Virtual Private Gateway.

5. Give the Virtual Private Gateway a suitable name.

CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS

13

https://aws.amazon.com/directconnect/pricing/

6. Select Custom ASN and enter the Amazon side ASN value gathered previously.

7. Create the Virtual Private Gateway.

8. Click the newly created Virtual Private Gateway and choose Attach to VPC from the Actions
tab.

9. Select the Red Hat OpenShift Service on AWS Cluster VPC from the list, and attach the
Virtual Private Gateway to the VPC.

10. From the Services menu, click Direct Connect. Choose one of the Direct Connect Virtual
Interfaces from the list.

11. Acknowledge the I understand that Direct Connect port charges apply once I click Accept
Connection message, then choose Accept Connection.

12. Choose to Accept the Virtual Private Gateway Connection and select the Virtual Private
Gateway that was created in the previous steps.

13. Select Accept to accept the connection.

14. Repeat the previous steps if there is more than one Virtual Interface.

1.4.2.3. Creating a Public Direct Connect

A Public Direct Connect is created if the Direct Connect Virtual Interface type is Public.

Procedure

1. Log in to the Red Hat OpenShift Service on AWS AWS Account Dashboard and select the
correct region.

2. From the Red Hat OpenShift Service on AWS AWS Account region, select Direct Connect from
the Services menu.

3. Select Direct Connect Gateways and Create Direct Connect Gateway.

4. Give the Direct Connect Gateway a suitable name.

5. In the Amazon side ASN, enter the Amazon side ASN value gathered previously.

6. Create the Direct Connect Gateway.

7. Select Direct Connect from the Services menu.

8. Select one of the Direct Connect Virtual Interfaces from the list.

9. Acknowledge the I understand that Direct Connect port charges apply once I click Accept
Connection message, then choose Accept Connection.

10. Choose to Accept the Direct Connect Gateway Connection and select the Direct Connect
Gateway that was created in the previous steps.

11. Click Accept to accept the connection.

12. Repeat the previous steps if there is more than one Virtual Interface.

Red Hat OpenShift Service on AWS 4 Cluster administration

14

1.4.2.4. Verifying the Virtual Interfaces

After the Direct Connect Virtual Interfaces have been accepted, wait a short period and view the status
of the Interfaces.

Procedure

1. Log in to the Red Hat OpenShift Service on AWS AWS Account Dashboard and select the
correct region.

2. From the Red Hat OpenShift Service on AWS AWS Account region, select Direct Connect from
the Services menu.

3. Select one of the Direct Connect Virtual Interfaces from the list.

4. Check the Interface State has become Available

5. Check the Interface BGP Status has become Up.

6. Repeat this verification for any remaining Direct Connect Interfaces.

After the Direct Connect Virtual Interfaces are available, you can log in to the Red Hat OpenShift
Service on AWS AWS Account Dashboard and download the Direct Connect configuration file for
configuration on your side.

1.4.3. Connecting to an existing Direct Connect Gateway

Prerequisites

Confirm the CIDR range of the Red Hat OpenShift Service on AWS VPC will not conflict with
any other VGWs you have associated.

Gather the following information:

The Direct Connect Gateway ID.

The AWS Account ID associated with the virtual interface.

The BGP ASN assigned for the DXGateway. Optional: the Amazon default ASN may also be
used.

Procedure

1. Log in to the Red Hat OpenShift Service on AWS AWS Account Dashboard and select the
correct region.

2. From the Red Hat OpenShift Service on AWS AWS Account region, select VPC from the
Services menu.

3. From VPN Connections, select Virtual Private Gateways.

4. Select Create Virtual Private Gateway.

5. Give the Virtual Private Gateway a suitable name.

6. Click Custom ASN and enter the Amazon side ASN value gathered previously or use the

CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS

15

6. Click Custom ASN and enter the Amazon side ASN value gathered previously or use the
Amazon Provided ASN.

7. Create the Virtual Private Gateway.

8. In the Navigation pane of the Red Hat OpenShift Service on AWS AWS Account Dashboard,
choose Virtual private gateways and select the virtual private gateway. Choose View details.

9. Choose Direct Connect gateway associations and click Associate Direct Connect gateway.

10. Under Association account type, for Account owner, choose Another account.

11. For Direct Connect gateway owner, enter the ID of the AWS account that owns the Direct
Connect gateway.

12. Under Association settings, for Direct Connect gateway ID, enter the ID of the Direct Connect
gateway.

13. Under Association settings, for Virtual interface owner, enter the ID of the AWS account that
owns the virtual interface for the association.

14. Optional: Add prefixes to Allowed prefixes, separating them using commas.

15. Choose Associate Direct Connect gateway.

16. After the Association Proposal has been sent, it will be waiting for your acceptance. The final
steps you must perform are available in the AWS Documentation.

1.4.4. Troubleshooting Direct Connect

Further troubleshooting can be found in the Troubleshooting AWS Direct Connect documentation.

Red Hat OpenShift Service on AWS 4 Cluster administration

16

https://docs.aws.amazon.com/directconnect/latest/UserGuide/multi-account-associate-vgw.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Troubleshooting.html

CHAPTER 2. CLUSTER AUTOSCALING
Applying autoscaling to Red Hat OpenShift Service on AWS clusters involves configuring a cluster
autoscaler and then configuring a machine autoscaler for at least one machine pool in your cluster.

IMPORTANT

You can configure the cluster autoscaler only in clusters where the machine API is
operational.

Only one cluster autoscaler can be created per cluster.

2.1. ABOUT THE CLUSTER AUTOSCALER

The cluster autoscaler adjusts the size of an Red Hat OpenShift Service on AWS cluster to meet its
current deployment needs. It uses declarative, Kubernetes-style arguments to provide infrastructure
management that does not rely on objects of a specific cloud provider. The cluster autoscaler has a
cluster scope, and is not associated with a particular namespace.

The cluster autoscaler increases the size of the cluster when there are pods that fail to schedule on any
of the current worker nodes due to insufficient resources or when another node is necessary to meet
deployment needs. The cluster autoscaler does not increase the cluster resources beyond the limits
that you specify.

The cluster autoscaler computes the total memory and CPU on all nodes the cluster, even though it
does not manage the control plane nodes. These values are not single-machine oriented. They are an
aggregation of all the resources in the entire cluster. For example, if you set the maximum memory
resource limit, the cluster autoscaler includes all the nodes in the cluster when calculating the current
memory usage. That calculation is then used to determine if the cluster autoscaler has the capacity to
add more worker resources.

IMPORTANT

Ensure that the maxNodesTotal value in the ClusterAutoscaler resource definition that
you create is large enough to account for the total possible number of machines in your
cluster. This value must encompass the number of control plane machines and the
possible number of compute machines that you might scale to.

Every 10 seconds, the cluster autoscaler checks which nodes are unnecessary in the cluster and removes
them. The cluster autoscaler considers a node for removal if the following conditions apply:

The node utilization is less than the node utilization level threshold for the cluster. The node
utilization level is the sum of the requested resources divided by the allocated resources for the
node. If you do not specify a value in the ClusterAutoscaler custom resource, the cluster
autoscaler uses a default value of 0.5, which corresponds to 50% utilization.

The cluster autoscaler can move all pods running on the node to the other nodes. The
Kubernetes scheduler is responsible for scheduling pods on the nodes.

The cluster autoscaler does not have scale down disabled annotation.

If the following types of pods are present on a node, the cluster autoscaler will not remove the node:

Pods with restrictive pod disruption budgets (PDBs).

CHAPTER 2. CLUSTER AUTOSCALING

17

Kube-system pods that do not run on the node by default.

Kube-system pods that do not have a PDB or have a PDB that is too restrictive.

Pods that are not backed by a controller object such as a deployment, replica set, or stateful set.

Pods with local storage.

Pods that cannot be moved elsewhere because of a lack of resources, incompatible node
selectors or affinity, matching anti-affinity, and so on.

Unless they also have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "true" annotation,
pods that have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "false" annotation.

For example, you set the maximum CPU limit to 64 cores and configure the cluster autoscaler to only
create machines that have 8 cores each. If your cluster starts with 30 cores, the cluster autoscaler can
add up to 4 more nodes with 32 cores, for a total of 62.

If you configure the cluster autoscaler, additional usage restrictions apply:

Do not modify the nodes that are in autoscaled node groups directly. All nodes within the same
node group have the same capacity and labels and run the same system pods.

Specify requests for your pods.

If you have to prevent pods from being deleted too quickly, configure appropriate PDBs.

Confirm that your cloud provider quota is large enough to support the maximum node pools
that you configure.

Do not run additional node group autoscalers, especially the ones offered by your cloud
provider.

The horizontal pod autoscaler (HPA) and the cluster autoscaler modify cluster resources in different
ways. The HPA changes the deployment’s or replica set’s number of replicas based on the current CPU
load. If the load increases, the HPA creates new replicas, regardless of the amount of resources available
to the cluster. If there are not enough resources, the cluster autoscaler adds resources so that the HPA-
created pods can run. If the load decreases, the HPA stops some replicas. If this action causes some
nodes to be underutilized or completely empty, the cluster autoscaler deletes the unnecessary nodes.

The cluster autoscaler takes pod priorities into account. The Pod Priority and Preemption feature
enables scheduling pods based on priorities if the cluster does not have enough resources, but the
cluster autoscaler ensures that the cluster has resources to run all pods. To honor the intention of both
features, the cluster autoscaler includes a priority cutoff function. You can use this cutoff to schedule
"best-effort" pods, which do not cause the cluster autoscaler to increase resources but instead run only
when spare resources are available.

Pods with priority lower than the cutoff value do not cause the cluster to scale up or prevent the cluster
from scaling down. No new nodes are added to run the pods, and nodes running these pods might be
deleted to free resources.

Cluster autoscaling is supported for the platforms that have machine API available on it.

2.2. ENABLE AUTOSCALING DURING CLUSTER CREATION WITH
OPENSHIFT CLUSTER MANAGER

Red Hat OpenShift Service on AWS 4 Cluster administration

18

You can use OpenShift Cluster Manager to autoscale during cluster creation.

Procedure

1. During cluster creation, check the Enable autoscaling box. The Edit cluster autoscaling
settings button becomes selectable.

a. You can also choose the minimum or maximum amount of nodes to autoscale.

2. Click Edit cluster autoscaling settings.

3. Edit any settings you want and then click Close.

2.3. ENABLE AUTOSCALING AFTER CLUSTER CREATION WITH
OPENSHIFT CLUSTER MANAGER

You can use OpenShift Cluster Manager to autoscale after cluster creation.

Procedure

1. In OpenShift Cluster Manager, click the name of the cluster you want to autoscale. The
Overview page for the cluster has a Autoscaling item that indicates if it is enabled or disabled.

2. Click the Machine Pools tab.

3. Click the Edit cluster autoscaling button. The Edit cluster autoscaling settings window is
shown.

4. Click the Autoscale cluster toggle at the top of the window. All the settings are now editable.

5. Edit any settings you want and then click Save.

6. Click the x at the top right of the screen to close the settings window.

To revert all autoscaling settings to the defaults if they have been changed, click the Revert all to
defaults button.

2.4. CLUSTER AUTOSCALING SETTINGS USING OPENSHIFT CLUSTER
MANAGER

The tables explain all the configurable UI settings when using cluster autoscaling with OpenShift Cluster
Manager.

2.4.1. General settings

Table 2.1. Configurable general settings for cluster autoscaling when using the OpenShift Cluster
Manager

Setting Description Type or Range Default

CHAPTER 2. CLUSTER AUTOSCALING

19

log-verbosity Sets the autoscaler log
level. The default value
is 1. Level 4 is
recommended for
debugging. Level 6
enables almost
everything.

integer 1

skip-nodes-with-
local-storage

If true, the cluster
autoscaler never deletes
nodes with pods with
local storage, e.g.
EmptyDir or HostPath.

boolean true

max-pod-grace-
period

Gives pods graceful
termination time in
seconds before scaling
down.

integer 600

max-node-provision-
time

Maximum time the
cluster autoscaler waits
for nodes to be
provisioned.

string 15m

pod-priority-
threshold

Allows users to schedule
"best-effort" pods,
which are not expected
to trigger cluster
autoscaler actions.
These pods only run
when spare resources
are available.

integer -10

ignore-daemonsets-
utilization

Determines whether the
cluster autoscaler
ignores daemon set
pods when calculating
resource utilization for
scaling down.

boolean false

balance-similar-
node-groups

If true, this setting
automatically identifies
node groups with the
same instance type and
the same set of labels
and tries to keep the
respective sizes of those
node groups balanced.

boolean false

Setting Description Type or Range Default

Red Hat OpenShift Service on AWS 4 Cluster administration

20

balancing-ignored-
labels

This option specifies
labels that the cluster
autoscaler should ignore
when considering node
group similarity. For
example, if you have
nodes with a
"topology.ebs.csi.aws.co
m/zone" label, you can
add the name of this
label to prevent the
cluster autoscaler from
splitting nodes into
different node groups
based on its value. This
option cannot contain
spaces.

array (string) Format should be a
comma-separated list of
labels.

Setting Description Type or Range Default

2.4.2. Resource limits

Table 2.2. Configurable resource limit settings for cluster autoscaling when using the OpenShift
Cluster Manager

Setting Description Type or Range Default

cores-total-min Minimum number of
cores in cluster. The
cluster autoscaler does
not scale the cluster less
than this number.

object 0

cores-total-max Maximum number of
cores in cluster. The
cluster autoscaler does
not scale the cluster
greater than this
number.

object 180 * 64 (11520)

memory-total-min Minimum number of
gigabytes of memory in
cluster. The cluster
autoscaler does not
scale the cluster less
than this number.

object 0

CHAPTER 2. CLUSTER AUTOSCALING

21

memory-total-max Maximum number of
gigabytes of memory in
cluster. The cluster
autoscaler does not
scale the cluster greater
than this number.

object 180 * 64 * 20 (230400)

max-nodes-total Maximum number of
nodes in all node groups.
Includes all nodes, not
just automatically scaled
nodes. The cluster
autoscaler does not
grow the cluster greater
than this number.

integer 180

GPUs Minimum and maximum
number of different
GPUs in cluster. The
cluster autoscaler does
not scale the cluster less
than or greater than
these numbers.

array Format should be a
comma-separated list of
"<gpu_type>:<min>:
<max>".

Setting Description Type or Range Default

2.4.3. Scale down configuration

Table 2.3. Configurable scale down settings for cluster autoscaling when using the OpenShift
Cluster Manager

Setting Description Type or Range Default

scale-down-enabled Should the cluster
autoscaler scale down
the cluster.

boolean true

scale-down-
utilization-threshold

Node utilization level,
defined as the sum of
the requested resources
divided by capacity,
below which a node can
be considered for scale
down.

float 0.5

scale-down-
unneeded-time

How long a node should
be unneeded before it is
eligible for scale down.

string 10m

Red Hat OpenShift Service on AWS 4 Cluster administration

22

scale-down-delay-
after-add

How long after scale up
that scale-down
evaluation resumes.

string 10m

scale-down-delay-
after-delete

How long after node
deletion that scale-
down evaluation
resumes.

string 0s

scale-down-delay-
after-failure

How long after scale
down failure that scale-
down evaluation
resumes.

string 3m

Setting Description Type or Range Default

2.5. ENABLE AUTOSCALING DURING CLUSTER CREATION BY USING
THE INTERACTIVE MODE WITH THE ROSA CLI

You can use the interactive mode of your terminal, if available, to set cluster-wide autoscaling behavior
during cluster creation.

Interactive mode provides more information about available configurable parameters. Interactive mode
also does basic checks and preflight validations, meaning that if a provided value is invalid, the terminal
outputs a prompt for a valid input.

Procedure

During cluster creation, use the --enable-autoscaling and --interactive parameters to enable
cluster autoscaling:

Example:

NOTE

If your cluster name is longer than 15 characters, it will contain an autogenerated domain
prefix as a sub-domain for your provisioned cluster on *.openshiftapps.com.

To customize the subdomain, use the --domain-prefix flag. The domain prefix cannot be
longer than 15 characters, must be unique, and cannot be changed after cluster creation.

When the following prompt appears, enter y to go through all available autoscaling options.

Example interactive prompt:

2.5.1. Enable autoscaling after cluster creation by using the interactive mode with

$ rosa create cluster --cluster-name <cluster_name> --enable-autoscaling --interactive

? Configure cluster-autoscaler (optional): [? for help] (y/N) y <enter>

CHAPTER 2. CLUSTER AUTOSCALING

23

2.5.1. Enable autoscaling after cluster creation by using the interactive mode with
the ROSA CLI

You can use the interactive mode of your terminal, if available, to set cluster-wide autoscaling behavior
after cluster creation.

Procedure

After you have created a cluster, type the following command:

Example:

You can then set all available autoscaling parameters.

2.6. ENABLE AUTOSCALING DURING CLUSTER CREATION WITH THE
ROSA CLI

You can use the ROSA CLI (rosa) to set cluster-wide autoscaling behavior during cluster creation. You
can enable the autoscaler on the entire machine or just a cluster.

Procedure

During cluster creation, type --enable autoscaling after the cluster name to enable machine
autoscaling:

NOTE

If your cluster name is longer than 15 characters, it will contain an autogenerated domain
prefix as a sub-domain for your provisioned cluster on *.openshiftapps.com.

To customize the subdomain, use the --domain-prefix flag. The domain prefix cannot be
longer than 15 characters, must be unique, and cannot be changed after cluster creation.

Example:

Set at least one parameter to enable cluster autoscaling by running the following command:

Example:

2.6.1. Enable autoscaling after cluster creation with the ROSA CLI

You can use the ROSA CLI (rosa) to set cluster-wide autoscaling after cluster creation.

Procedure

After you have created a cluster, create the autoscaler:

Example:

$ rosa create autoscaler --cluster=<mycluster> --interactive

$ rosa create cluster --cluster-name <cluster_name> --enable-autoscaling

$ rosa create cluster --cluster-name <cluster_name> --enable-autoscaling <parameter>

Red Hat OpenShift Service on AWS 4 Cluster administration

24

Example:

a. You can also create the autoscaler with specific parameters using the following command:

Example:

2.6.2. Edit autoscaling after cluster creation with the ROSA CLI

You can edit any specific parameters of the cluster autoscaler after creating the autoscaler.

To edit the cluster autoscaler, run the following command:

Example:

a. To edit a specific parameter, run the following command:

Example:

2.6.3. Delete autoscaling using the ROSA CLI

You can delete the cluster autoscaler if you no longer want to use it.

To delete the cluster autoscaler, run the following command:

Example:

2.7. CLUSTER AUTOSCALING PARAMETERS USING THE ROSA CLI

You can add the following parameters to the cluster creation command to configure autoscaler
parameters when using the ROSA CLI (rosa).

Table 2.4. Configurable autoscaler parameters available with the ROSA CLI (rosa)

Setting Description Type or Range Example/Instruction

--autoscaler-
balance-similar-
node-groups

Identify node groups
with the same instance
type and label set, and
try to balance respective
sizes of those node
groups.

boolean Add it to set to true,
omit the option to set to
false.

$ rosa create autoscaler --cluster=<mycluster>

$ rosa create autoscaler --cluster=<mycluster> <parameter>

$ rosa edit autoscaler --cluster=<mycluster>

$ rosa edit autoscaler --cluster=<mycluster> <parameter>

$ rosa delete autoscaler --cluster=<mycluster>

CHAPTER 2. CLUSTER AUTOSCALING

25

--autoscaler-skip-
nodes-with-local-
storage

If set, the cluster
autoscaler does not
delete nodes with pods
that have local storage,
for example, EmptyDir
or HostPath.

boolean Add it to set to true,
omit the option to set to
false.

--autoscaler-log-
verbosity int

Autoscaler log level.
Replace int in the
command with the
number you want to use.

integer --autoscaler-log-
verbosity 4

--autoscaler-max-
pod-grace-period int

Gives pods graceful
termination time before
scaling down, measured
in seconds. Replace int in
the command with the
number of seconds you
want to use.

integer --autoscaler-max-
pod-grace-period 0

--autoscaler-pod-
priority-threshold int

The priority that a pod
must exceed to cause
the cluster autoscaler to
deploy additional nodes.
Replace int in the
command with the
number you want to use,
can be negative.

integer --autoscaler-pod-
priority-threshold -10

--autoscaler-gpu-
limit stringArray

Minimum and maximum
number of different
GPUs in cluster. Cluster
autoscaler does not
scale the cluster less
than or greater than
these numbers. The
format must be a
comma-separated list of
"<gpu_type>,<min>,
<max>".

array --autoscaler-gpu-
limit
nvidia.com/gpu,0,10
--autoscaler-gpu-
limit
amd.com/gpu,1,5

--autoscaler-ignore-
daemonsets-
utilization

If set, the cluster-
autoscaler ignores
daemon set pods when
calculating resource
utilization for scaling
down.

boolean Add it to set to true,
omit the option to set to
false.

Setting Description Type or Range Example/Instruction

Red Hat OpenShift Service on AWS 4 Cluster administration

26

--autoscaler-max-
node-provision-time
string

Maximum time that the
cluster autoscaler waits
for a node to be
provisioned. Replace
string in the command
with an integer and time
unit (ns,us,µs,ms,s,m,h).

string --autoscaler-max-
node-provision-time
35m

--autoscaler-
balancing-ignored-
labels strings

A comma-separated list
of label keys that the
cluster autoscaler
should ignore when
comparing node groups
for similarity. Replace
strings in the command
with the relevant labels..

string --autoscaler-
balancing-ignored-
labels
topology.ebs.csi.aw
s.com/zone,alpha.ek
sctl.io/instance-id

--autoscaler-max-
nodes-total int

Maximum amount of
nodes in the cluster,
including the autoscaled
nodes. Replace int in the
command with the
number you want to use.

integer --autoscaler-max-
nodes-total 180

--autoscaler-min-
cores int

Minimum number of
cores to deploy in the
cluster. Replace int in the
command with the
number you want to use.

integer --autoscaler-min-
cores 0

--autoscaler-max-
cores int

Maximum number of
cores to deploy in the
cluster. Replace int in the
command with the
number you want to use.

integer --autoscaler-max-
cores 100

--autoscaler-min-
memory int

Minimum amount of
memory, in GiB, in the
cluster. Replace int in the
command with the
number you want to use.

integer --autoscaler-min-
memory 0

--autoscaler-max-
memory int

Maximum amount of
memory, in GiB, in the
cluster. Replace int in the
command with the
number you want to use.

integer --autoscaler-max-
memory 4096

Setting Description Type or Range Example/Instruction

CHAPTER 2. CLUSTER AUTOSCALING

27

--autoscaler-scale-
down-enabled

If set, the cluster
autoscaler should scale
down the cluster.

boolean Add it to set to true,
omit the option to set to
false.

--autoscaler-scale-
down-unneeded-
time string

How long a node should
be unneeded before it is
eligible for scale down.
Replace string in the
command with an
integer and time unit
(ns,us,µs,ms,s,m,h).

string --autoscaler-scale-
down-unneeded-
time 1h

--autoscaler-scale-
down-utilization-
threshold float

Node utilization level,
defined as sum of
requested resources
divided by capacity,
below which a node can
be considered for scale
down. Value must be
between 0 and 1.

float --autoscaler-scale-
down-utilization-
threshold 0.5

--autoscaler-scale-
down-delay-after-
add string

How long after scale up
that scale down
evaluation resumes.
Replace string in the
command with an
integer and time unit
(ns,us,µs,ms,s,m,h).

string --autoscaler-scale-
down-delay-after-
add 1h

--autoscaler-scale-
down-delay-after-
delete string

How long after node
deletion that scale down
evaluation resumes.
Replace string in the
command with an
integer and time unit
(ns,us,µs,ms,s,m,h).

string --autoscaler-scale-
down-delay-after-
delete 1h

--autoscaler-scale-
down-delay-after-
failure string

How long after scale
down failure that scale
down evaluation
resumes. Replace string
in the command with an
integer and time unit
(ns,us,µs,ms,s,m,h).

string --autoscaler-scale-
down-delay-after-
failure 1h

Setting Description Type or Range Example/Instruction

Red Hat OpenShift Service on AWS 4 Cluster administration

28

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

3.1. ABOUT MACHINE POOLS

Red Hat OpenShift Service on AWS uses machine pools as an elastic, dynamic provisioning method on
top of your cloud infrastructure.

The primary resources are machines, compute machine sets, and machine pools.

IMPORTANT

As of Red Hat OpenShift Service on AWS 4.11, the default per-pod PID limit is 4096. If you
want to enable this PID limit, you must upgrade your Red Hat OpenShift Service on AWS
clusters to this version or later. Red Hat OpenShift Service on AWS clusters running on
earlier versions use a default PID limit of 1024.

You can configure the per-pod PID limit on a Red Hat OpenShift Service on AWS cluster
by using the ROSA CLI. For more information, see "Configuring PID limits".

3.1.1. Machines

A machine is a fundamental unit that describes the host for a worker node.

3.1.2. Machine sets

MachineSet resources are groups of compute machines. If you need more machines or must scale them
down, change the number of replicas in the machine pool to which the compute machine sets belong.

Machine sets are not directly modifiable in ROSA.

3.1.3. Machine pools

Machine pools are a higher level construct to compute machine sets.

A machine pool creates compute machine sets that are all clones of the same configuration across
availability zones. Machine pools perform all of the host node provisioning management actions on a
worker node. If you need more machines or must scale them down, change the number of replicas in the
machine pool to meet your compute needs. You can manually configure scaling or set autoscaling.

By default, a cluster has one machine pool. During cluster installation, you can define instance type or
size and add labels to this machine pool.

After a cluster’s installation:

You can remove or add labels to any machine pool.

You can add additional machine pools to an existing cluster.

You can add taints to any machine pool as long as there is one machine pool without any taints.

You can create or delete a machine pool as long as there is one machine pool without any taints
and at least two replicas for a Single-AZ cluster or three replicas for a Multi-AZ cluster.

NOTE

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

29

NOTE

You cannot change the machine pool node type or size. The machine pool node
type or size is specified during their creation only. If you need a different node
type or size, you must re-create a machine pool and specify the required node
type or size values.

You can add a label to each added machine pool.

Multiple machine pools can exist on a single cluster, and each machine pool can contain a unique node
type and node size configuration.

3.1.4. Machine pools in multiple zone clusters

In a cluster created across multiple Availability Zones (AZ), the machine pools can be created across
either all of the three AZs or any single AZ of your choice. The machine pool created by default at the
time of cluster creation will be created with machines in all three AZs and scale in multiples of three.

If you create a new Multi-AZ cluster, the machine pools are replicated to those zones automatically. By
default, if you add a machine pool to an existing Multi-AZ cluster, the new machine pool is automatically
created in all of the zones.

NOTE

You can override this default setting and create a machine pool in a Single-AZ of your
choice.

Similarly, deleting a machine pool will delete it from all zones. Due to this multiplicative effect, using
machine pools in Multi-AZ cluster can consume more of your project’s quota for a specific region when
creating machine pools.

3.1.5. Additional resources

Managing compute nodes

About autoscaling

Configuring PID limits

3.2. MANAGING COMPUTE NODES

This document describes how to manage compute (also known as worker) nodes with Red Hat
OpenShift Service on AWS (ROSA).

The majority of changes for compute nodes are configured on machine pools. A machine pool is a group
of compute nodes in a cluster that have the same configuration, providing ease of management.

You can edit machine pool configuration options such as scaling, adding node labels, and adding taints.

3.2.1. Creating a machine pool

A machine pool is created when you install a Red Hat OpenShift Service on AWS (ROSA) cluster. After
installation, you can create additional machine pools for your cluster by using OpenShift Cluster
Manager or the ROSA CLI (rosa).

Red Hat OpenShift Service on AWS 4 Cluster administration

30

NOTE

For users of ROSA CLI rosa version 1.2.25 and earlier versions, the machine pool created
along with the cluster is identified as Default. For users of ROSA CLI rosa version 1.2.26
and later, the machine pool created along with the cluster is identified as worker.

3.2.1.1. Creating a machine pool using OpenShift Cluster Manager

You can create additional machine pools for your Red Hat OpenShift Service on AWS (ROSA) cluster by
using OpenShift Cluster Manager.

Prerequisites

You created a ROSA cluster.

Procedure

1. Navigate to OpenShift Cluster Manager and select your cluster.

2. Under the Machine pools tab, click Add machine pool.

3. Add a Machine pool name.

4. Select a Compute node instance type from the drop-down menu. The instance type defines
the vCPU and memory allocation for each compute node in the machine pool.

NOTE

You cannot change the instance type for a machine pool after the pool is
created.

5. Optional: Configure autoscaling for the machine pool:

a. Select Enable autoscaling to automatically scale the number of machines in your machine
pool to meet the deployment needs.

b. Set the minimum and maximum node count limits for autoscaling. The cluster autoscaler
does not reduce or increase the machine pool node count beyond the limits that you
specify.

If you deployed your cluster using a single availability zone, set the Minimum and
maximum node count. This defines the minimum and maximum compute node limits in
the availability zone.

If you deployed your cluster using multiple availability zones, set the Minimum nodes
per zone and Maximum nodes per zone. This defines the minimum and maximum
compute node limits per zone.

NOTE

Alternatively, you can set your autoscaling preferences for the machine
pool after the machine pool is created.

6. If you did not enable autoscaling, select a compute node count:

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

31

https://console.redhat.com/openshift

If you deployed your cluster using a single availability zone, select a Compute node count
from the drop-down menu. This defines the number of compute nodes to provision to the
machine pool for the zone.

If you deployed your cluster using multiple availability zones, select a Compute node count
(per zone) from the drop-down menu. This defines the number of compute nodes to
provision to the machine pool per zone.

7. Optional: Configure Root disk size.

8. Optional: Add node labels and taints for your machine pool:

a. Expand the Edit node labels and taints menu.

b. Under Node labels, add Key and Value entries for your node labels.

c. Under Taints, add Key and Value entries for your taints.

NOTE

Creating a machine pool with taints is only possible if the cluster already has
at least one machine pool without a taint.

d. For each taint, select an Effect from the drop-down menu. Available options include
NoSchedule, PreferNoSchedule, and NoExecute.

NOTE

Alternatively, you can add the node labels and taints after you create the
machine pool.

9. Optional: Select additional custom security groups to use for nodes in this machine pool. You
must have already created the security groups and associated them with the VPC that you
selected for this cluster. You cannot add or edit security groups after you create the machine
pool. For more information, see the requirements for security groups in the "Additional
resources" section.

IMPORTANT

You can use up to ten additional security groups for machine pools on ROSA with
HCP clusters.

10. Optional: Use Amazon EC2 Spot Instances if you want to configure your machine pool to deploy
machines as non-guaranteed AWS Spot Instances:

a. Select Use Amazon EC2 Spot Instances.

b. Leave Use On-Demand instance price selected to use the on-demand instance price.
Alternatively, select Set maximum price to define a maximum hourly price for a Spot
Instance.
For more information about Amazon EC2 Spot Instances, see the AWS documentation.

IMPORTANT

Red Hat OpenShift Service on AWS 4 Cluster administration

32

https://aws.amazon.com/ec2/spot/

IMPORTANT

Your Amazon EC2 Spot Instances might be interrupted at any time. Use
Amazon EC2 Spot Instances only for workloads that can tolerate
interruptions.

NOTE

If you select Use Amazon EC2 Spot Instances for a machine pool, you
cannot disable the option after the machine pool is created.

11. Click Add machine pool to create the machine pool.

Verification

Verify that the machine pool is visible on the Machine pools page and the configuration is as
expected.

Additional resources

Additional custom security groups

3.2.1.2. Creating a machine pool using the ROSA CLI

You can create additional machine pools for your Red Hat OpenShift Service on AWS (ROSA) cluster by
using the ROSA CLI (rosa).

Prerequisites

You installed and configured the latest Red Hat OpenShift Service on AWS (ROSA) CLI, rosa,
on your workstation.

You logged in to your Red Hat account using the ROSA CLI (rosa).

You created a ROSA cluster.

Procedure

To add a machine pool that does not use autoscaling, create the machine pool and define the
instance type, compute (also known as worker) node count, and node labels:

$ rosa create machinepool --cluster=<cluster-name> \
 --name=<machine_pool_id> \ 1
 --replicas=<replica_count> \ 2
 --instance-type=<instance_type> \ 3
 --labels=<key>=<value>,<key>=<value> \ 4
 --taints=<key>=<value>:<effect>,<key>=<value>:<effect> \ 5
 --use-spot-instances \ 6
 --spot-max-price=0.5 \ 7
 --disk-size=<disk_size> 8
 --availability-zone=<availability_zone_name> 9
 --additional-security-group-ids <sec_group_id> 10
 --subnet string 11

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

33

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-security-groups_prerequisites

1

2

3

4

5

6

7

8

9

Specifies the name of the machine pool. Replace <machine_pool_id> with the name of
your machine pool.

Specifies the number of compute nodes to provision. If you deployed ROSA using a single
availability zone, this defines the number of compute nodes to provision to the machine
pool for the zone. If you deployed your cluster using multiple availability zones, this defines
the number of compute nodes to provision in total across all zones and the count must be a
multiple of 3. The --replicas argument is required when autoscaling is not configured.

Optional: Sets the instance type for the compute nodes in your machine pool. The
instance type defines the vCPU and memory allocation for each compute node in the pool.
Replace <instance_type> with an instance type. The default is m5.xlarge. You cannot
change the instance type for a machine pool after the pool is created.

Optional: Defines the labels for the machine pool. Replace <key>=<value>,<key>=
<value> with a comma-delimited list of key-value pairs, for example --
labels=key1=value1,key2=value2.

Optional: Defines the taints for the machine pool. Replace <key>=<value>:<effect>,
<key>=<value>:<effect> with a key, value, and effect for each taint, for example --
taints=key1=value1:NoSchedule,key2=value2:NoExecute. Available effects include
NoSchedule, PreferNoSchedule, and NoExecute.

Optional: Configures your machine pool to deploy machines as non-guaranteed AWS Spot
Instances. For information, see Amazon EC2 Spot Instances in the AWS documentation. If
you select Use Amazon EC2 Spot Instances for a machine pool, you cannot disable the
option after the machine pool is created.

Optional: If you choose to use Spot Instances, you can specify this argument to define a
maximum hourly price for a Spot Instance. If this argument is not specified, the on-demand
price is used.

IMPORTANT

Your Amazon EC2 Spot Instances might be interrupted at any time. Use
Amazon EC2 Spot Instances only for workloads that can tolerate
interruptions.

Optional: Specifies the worker node disk size. The value can be in GB, GiB, TB, or TiB.
Replace <disk_size> with a numeric value and unit, for example --disk-size=200GiB.

Optional: For Multi-AZ clusters, you can create a machine pool in a Single-AZ of your
choice. Replace <az> with a Single-AZ name.

NOTE

Multi-AZ clusters retain a Multi-AZ control plane and can have worker
machine pools across a Single-AZ or Multi-AZ. Machine pools distribute
machines (nodes) evenly across availability zones.

Red Hat OpenShift Service on AWS 4 Cluster administration

34

https://aws.amazon.com/ec2/spot/

10

11

WARNING

If you choose a worker machine pool with a Single-AZ, there is no fault
tolerance for that machine pool, regardless of machine replica count.
For fault-tolerant worker machine pools, choosing a Multi-AZ machine
pool distributes machines in multiples of 3 across availability zones.

A Multi-AZ machine pool with three availability zones can have a
machine count in multiples of 3 only, such as 3, 6, 9, and so on.

A Single-AZ machine pool with one availability zone can have a
machine count in multiples of 1, such as 1,2,3,4 and so on.

Optional: For machine pools in clusters that do not have Red Hat managed VPCs, you can
select additional custom security groups to use in your machine pools. You must have
already created the security groups and associated them with the VPC that you selected
for this cluster. You cannot add or edit security groups after you create the machine pool.
For more information, see the requirements for security groups in the "Additional
resources" section.

IMPORTANT

You can use up to ten additional security groups for machine pools on
ROSA with HCP clusters.

Optional: For BYO VPC clusters, you can select a subnet to create a Single-AZ machine
pool. If the subnet is out of your cluster creation subnets, there must be a tag with a key
kubernetes.io/cluster/<infra-id> and value shared. Customers can obtain the Infra ID by
using the following command:

Example output

NOTE

You cannot set both --subnet and --availability-zone at the same time,
only 1 is allowed for a Single-AZ machine pool creation.

The following example creates a machine pool called mymachinepool that uses the m5.xlarge
instance type and has 2 compute node replicas. The example also adds 2 workload-specific
labels:

$ rosa describe cluster -c <cluster name>|grep "Infra ID:"

Infra ID: mycluster-xqvj7

$ rosa create machinepool --cluster=mycluster --name=mymachinepool --replicas=2 --
instance-type=m5.xlarge --labels=app=db,tier=backend

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

35

1

2

3 4

5

6

7

8

Example output

To add a machine pool that uses autoscaling, create the machine pool and define the
autoscaling configuration, instance type and node labels:

Specifies the name of the machine pool. Replace <machine_pool_id> with the name of
your machine pool.

Enables autoscaling in the machine pool to meet the deployment needs.

Defines the minimum and maximum compute node limits. The cluster autoscaler does not
reduce or increase the machine pool node count beyond the limits that you specify. If you
deployed ROSA using a single availability zone, the --min-replicas and --max-replicas
arguments define the autoscaling limits in the machine pool for the zone. If you deployed
your cluster using multiple availability zones, the arguments define the autoscaling limits in
total across all zones and the counts must be multiples of 3.

Optional: Sets the instance type for the compute nodes in your machine pool. The
instance type defines the vCPU and memory allocation for each compute node in the pool.
Replace <instance_type> with an instance type. The default is m5.xlarge. You cannot
change the instance type for a machine pool after the pool is created.

Optional: Defines the labels for the machine pool. Replace <key>=<value>,<key>=
<value> with a comma-delimited list of key-value pairs, for example --
labels=key1=value1,key2=value2.

Optional: Defines the taints for the machine pool. Replace <key>=<value>:<effect>,
<key>=<value>:<effect> with a key, value, and effect for each taint, for example --
taints=key1=value1:NoSchedule,key2=value2:NoExecute. Available effects include
NoSchedule, PreferNoSchedule, and NoExecute.

Optional: Configures your machine pool to deploy machines as non-guaranteed AWS Spot
Instances. For information, see Amazon EC2 Spot Instances in the AWS documentation. If
you select Use Amazon EC2 Spot Instances for a machine pool, you cannot disable the
option after the machine pool is created.

IMPORTANT

I: Machine pool 'mymachinepool' created successfully on cluster 'mycluster'
I: To view all machine pools, run 'rosa list machinepools -c mycluster'

$ rosa create machinepool --cluster=<cluster-name> \
 --name=<machine_pool_id> \ 1
 --enable-autoscaling \ 2
 --min-replicas=<minimum_replica_count> \ 3
 --max-replicas=<maximum_replica_count> \ 4
 --instance-type=<instance_type> \ 5
 --labels=<key>=<value>,<key>=<value> \ 6
 --taints=<key>=<value>:<effect>,<key>=<value>:<effect> \ 7
 --use-spot-instances \ 8
 --spot-max-price=0.5 9
 --availability-zone=<availability_zone_name> 10

Red Hat OpenShift Service on AWS 4 Cluster administration

36

https://aws.amazon.com/ec2/spot/

9

10

IMPORTANT

Your Amazon EC2 Spot Instances might be interrupted at any time. Use
Amazon EC2 Spot Instances only for workloads that can tolerate
interruptions.

Optional: If you choose to use Spot Instances, you can specify this argument to define a
maximum hourly price for a Spot Instance. If this argument is not specified, the on-demand
price is used.

Optional: For Multi-AZ clusters, you can create a machine pool in a Single-AZ of your
choice. Replace <az> with a Single-AZ name.

The following example creates a machine pool called mymachinepool that uses the m5.xlarge
instance type and has autoscaling enabled. The minimum compute node limit is 3 and the
maximum is 6 overall. The example also adds 2 workload-specific labels:

Example output

Verification

You can list all machine pools on your cluster or describe individual machine pools.

1. List the available machine pools on your cluster:

Example output

2. Describe the information of a specific machine pool in your cluster:

Example output

$ rosa create machinepool --cluster=mycluster --name=mymachinepool --enable-autoscaling
--min-replicas=3 --max-replicas=6 --instance-type=m5.xlarge --labels=app=db,tier=backend

I: Machine pool 'mymachinepool' created successfully on cluster 'mycluster'
I: To view all machine pools, run 'rosa list machinepools -c mycluster'

$ rosa list machinepools --cluster=<cluster_name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES SPOT INSTANCES
Default No 3 m5.xlarge us-east-1a, us-east-1b, us-
east-1c N/A
mymachinepool Yes 3-6 m5.xlarge app=db, tier=backend us-east-1a,
us-east-1b, us-east-1c No

$ rosa describe machinepool --cluster=<cluster_name> mymachinepool

ID: mymachinepool
Cluster ID: 27iimopsg1mge0m81l0sqivkne2qu6dr
Autoscaling: Yes
Replicas: 3-6
Instance type: m5.xlarge

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

37

3. Verify that the machine pool is included in the output and the configuration is as expected.

Additional resources

Additional custom security groups

3.2.2. Configuring machine pool disk volume

Machine pool disk volume size can be configured for additional flexibility. The default disk size is 300
GiB. For cluster version 4.13 or earlier, the disk size can be configured to a minimum of 128 GiB to a
maximum of 1 TiB. For cluster version 4.14 and later, the disk size can be configured to a minimum of 128
GiB to a maximum of 16 TiB.

You can configure the machine pool disk size for your cluster by using OpenShift Cluster Manager or the
ROSA CLI (rosa).

NOTE

Existing cluster and machine pool node volumes cannot be resized.

IMPORTANT

The default disk size is 300 GiB. For cluster version 4.13 or earlier, the disk size can be
configured to a minimum of 128 GiB to a maximum of 1 TiB. For cluster version 4.14 and
later, the disk size can be configured to a minimum of 128 GiB to a maximum of 16 TiB.

3.2.2.1. Configuring machine pool disk volume using OpenShift Cluster Manager

Prerequisite for cluster creation

You have the option to select the node disk sizing for the default machine pool during cluster
installation.

Procedure for cluster creation

1. From ROSA cluster wizard, navigate to Cluster settings.

2. Navigate to Machine pool step.

3. Select the desired Root disk size.

4. Select Next to continue creating your cluster.

Prerequisite for machine pool creation

You have the option to select the node disk sizing for the new machine pool after the cluster

Labels: app=db, tier=backend
Taints:
Availability zones: us-east-1a, us-east-1b, us-east-1c
Subnets:
Spot instances: No
Disk size: 300 GiB
Security Group IDs:

Red Hat OpenShift Service on AWS 4 Cluster administration

38

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-security-groups_prerequisites

1

2

You have the option to select the node disk sizing for the new machine pool after the cluster
has been installed.

Procedure for machine pool creation

1. Navigate to OpenShift Cluster Manager and select your cluster.

2. Navigate to Machine pool tab.

3. Click Add machine pool.

4. Select the desired Root disk size.

5. Select Add machine pool to create the machine pool.

3.2.2.2. Configuring machine pool disk volume using the ROSA CLI

Prerequisite for cluster creation

You have the option to select the root disk sizing for the default machine pool during cluster
installation.

Procedure for cluster creation

Run the following command when creating your OpenShift cluster for the desired root disk size:

The value can be in GB, GiB, TB, or TiB. Replace '<disk_size>' with a numeric value and unit, for
example '--worker-disk-size=200GiB'. You cannot separate the digit and the unit. No spaces
are allowed.

Prerequisite for machine pool creation

You have the option to select the root disk sizing for the new machine pool after the cluster has
been installed.

Procedure for machine pool creation

1. Scale up the cluster by executing the following command:

Specifies the ID or name of your existing OpenShift cluster

Specifies the worker node disk size. The value can be in GB, GiB, TB, or TiB. Replace
'<disk_size>' with a numeric value and unit, for example '--disk-size=200GiB'. You cannot
separate the digit and the unit. No spaces are allowed.

2. Confirm new machine pool disk volume size by logging into the AWS console and find the EC2
virtual machine root volume size.

Additional resources

$ rosa create cluster --worker-disk-size=<disk_size>

$ rosa create machinepool --cluster=<cluster_id> 1
 --disk-size=<disk_size> 2

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

39

https://console.redhat.com/openshift

Additional resources

For a detailed list of the arguments that are available for the rosa create machinepool
subcommand, see Managing objects with the ROSA CLI.

3.2.3. Deleting a machine pool

You can delete a machine pool in the event that your workload requirements have changed and your
current machine pools no longer meet your needs.

You can delete machine pools using the OpenShift Cluster Manager or the ROSA CLI (rosa).

3.2.3.1. Deleting a machine pool using OpenShift Cluster Manager

You can delete a machine pool for your Red Hat OpenShift Service on AWS (ROSA) cluster by using
OpenShift Cluster Manager.

Prerequisites

You created a ROSA cluster.

The cluster is in the ready state.

You have an existing machine pool without any taints and with at least two instances for a
single-AZ cluster or three instances for a multi-AZ cluster.

Procedure

1. From OpenShift Cluster Manager, navigate to the Clusters page and select the cluster that
contains the machine pool that you want to delete.

2. On the selected cluster, select the Machine pools tab.

3. Under the Machine pools tab, click the options menu for the machine pool that you want
to delete.

4. Click Delete.

The selected machine pool is deleted.

3.2.3.2. Deleting a machine pool using the ROSA CLI

You can delete a machine pool for your Red Hat OpenShift Service on AWS (ROSA) cluster by using the
ROSA CLI.

NOTE

For users of ROSA CLI rosa version 1.2.25 and earlier versions, the machine pool
(ID='Default') that is created along with the cluster cannot be deleted. For users of
ROSA CLI rosa version 1.2.26 and later, the machine pool (ID='worker') that is created
along with the cluster can be deleted as long as there is one machine pool within the
cluster that contains no taints, and at least two replicas for a Single-AZ cluster or three
replicas for a Multi-AZ cluster.

Red Hat OpenShift Service on AWS 4 Cluster administration

40

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#rosa-managing-objects-cli
https://console.redhat.com/openshift

Prerequisites

You created a ROSA cluster.

The cluster is in the ready state.

You have an existing machine pool without any taints and with at least two instances for a
Single-AZ cluster or three instances for a Multi-AZ cluster.

Procedure

1. From the ROSA CLI, run the following command:

Example output

2. Enter 'y' to delete the machine pool.
The selected machine pool is deleted.

3.2.4. Scaling compute nodes manually

If you have not enabled autoscaling for your machine pool, you can manually scale the number of
compute (also known as worker) nodes in the pool to meet your deployment needs.

You must scale each machine pool separately.

Prerequisites

You installed and configured the latest Red Hat OpenShift Service on AWS (ROSA) CLI, rosa,
on your workstation.

You logged in to your Red Hat account using the ROSA CLI (rosa).

You created a Red Hat OpenShift Service on AWS (ROSA) cluster.

You have an existing machine pool.

Procedure

1. List the machine pools in the cluster:

Example output

$ rosa delete machinepool -c=<cluster_name> <machine_pool_ID>

? Are you sure you want to delete machine pool <machine_pool_ID> on cluster
<cluster_name>? (y/N)

$ rosa list machinepools --cluster=<cluster_name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES DISK SIZE SG IDs
default No 2 m5.xlarge us-east-1a 300GiB sg-

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

41

1

2

2. Increase or decrease the number of compute node replicas in a machine pool:

If you deployed Red Hat OpenShift Service on AWS (ROSA) using a single availability zone,
the replica count defines the number of compute nodes to provision to the machine pool
for the zone. If you deployed your cluster using multiple availability zones, the count
defines the total number of compute nodes in the machine pool across all zones and must
be a multiple of 3.

Replace <machine_pool_id> with the ID of your machine pool, as listed in the output of
the preceding command.

Verification

1. List the available machine pools in your cluster:

Example output

2. In the output of the preceding command, verify that the compute node replica count is as
expected for your machine pool. In the example output, the compute node replica count for the
mp1 machine pool is scaled to 3.

3.2.5. Node labels

A label is a key-value pair applied to a Node object. You can use labels to organize sets of objects and
control the scheduling of pods.

You can add labels during cluster creation or after. Labels can be modified or updated at any time.

Additional resources

For more information about labels, see Kubernetes Labels and Selectors overview .

3.2.5.1. Adding node labels to a machine pool

Add or edit labels for compute (also known as worker) nodes at any time to manage the nodes in a

0e375ff0ec4a6cfa2
mp1 No 2 m5.xlarge us-east-1a 300GiB sg-
0e375ff0ec4a6cfa2

$ rosa edit machinepool --cluster=<cluster_name> \
 --replicas=<replica_count> \ 1
 <machine_pool_id> 2

$ rosa list machinepools --cluster=<cluster_name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES DISK SIZE SG IDs
default No 2 m5.xlarge us-east-1a 300GiB sg-
0e375ff0ec4a6cfa2
mp1 No 3 m5.xlarge us-east-1a 300GiB sg-
0e375ff0ec4a6cfa2

Red Hat OpenShift Service on AWS 4 Cluster administration

42

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

1

2

Add or edit labels for compute (also known as worker) nodes at any time to manage the nodes in a
manner that is relevant to you. For example, you can assign types of workloads to specific nodes.

Labels are assigned as key-value pairs. Each key must be unique to the object it is assigned to.

Prerequisites

You installed and configured the latest Red Hat OpenShift Service on AWS (ROSA) CLI, rosa,
on your workstation.

You logged in to your Red Hat account using the ROSA CLI (rosa).

You created a Red Hat OpenShift Service on AWS (ROSA) cluster.

You have an existing machine pool.

Procedure

1. List the machine pools in the cluster:

Example output

2. Add or update the node labels for a machine pool:

To add or update node labels for a machine pool that does not use autoscaling, run the
following command:

For machine pools that do not use autoscaling, you must provide a replica count when
adding node labels. If you do not specify the --replicas argument, you are prompted
for a replica count before the command completes. If you deployed Red Hat OpenShift
Service on AWS (ROSA) using a single availability zone, the replica count defines the
number of compute nodes to provision to the machine pool for the zone. If you
deployed your cluster using multiple availability zones, the count defines the total
number of compute nodes in the machine pool across all zones and must be a multiple
of 3.

Replace <key>=<value>,<key>=<value> with a comma-delimited list of key-value
pairs, for example --labels=key1=value1,key2=value2. This list overwrites any
modifications made to node labels on an ongoing basis.

The following example adds labels to the db-nodes-mp machine pool:

$ rosa list machinepools --cluster=<cluster_name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES SPOT INSTANCES
Default No 2 m5.xlarge us-east-1a N/A
db-nodes-mp No 2 m5.xlarge us-east-1a No

$ rosa edit machinepool --cluster=<cluster_name> \
 --replicas=<replica_count> \ 1
 --labels=<key>=<value>,<key>=<value> \ 2
 <machine_pool_id>

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

43

1 2

3

Example output

To add or update node labels for a machine pool that uses autoscaling, run the following
command:

For machine pools that use autoscaling, you must provide minimum and maximum
compute node replica limits. If you do not specify the arguments, you are prompted
for the values before the command completes. The cluster autoscaler does not reduce
or increase the machine pool node count beyond the limits that you specify. If you
deployed ROSA using a single availability zone, the --min-replicas and --max-replicas
arguments define the autoscaling limits in the machine pool for the zone. If you
deployed your cluster using multiple availability zones, the arguments define the
autoscaling limits in total across all zones and the counts must be multiples of 3.

Replace <key>=<value>,<key>=<value> with a comma-delimited list of key-value
pairs, for example --labels=key1=value1,key2=value2. This list overwrites any
modifications made to node labels on an ongoing basis.

The following example adds labels to the db-nodes-mp machine pool:

Example output

Verification

1. Describe the details of the machine pool with the new labels:

Example output

$ rosa edit machinepool --cluster=mycluster --replicas=2 --labels=app=db,tier=backend
db-nodes-mp

I: Updated machine pool 'db-nodes-mp' on cluster 'mycluster'

$ rosa edit machinepool --cluster=<cluster_name> \
 --min-replicas=<minimum_replica_count> \ 1
 --max-replicas=<maximum_replica_count> \ 2
 --labels=<key>=<value>,<key>=<value> \ 3
 <machine_pool_id>

$ rosa edit machinepool --cluster=mycluster --min-replicas=2 --max-replicas=3 --
labels=app=db,tier=backend db-nodes-mp

I: Updated machine pool 'db-nodes-mp' on cluster 'mycluster'

$ rosa describe machinepool --cluster=<cluster_name> <machine-pool-name>

ID: db-nodes-mp
Cluster ID: <ID_of_cluster>
Autoscaling: No
Replicas: 2
Instance type: m5.xlarge

Red Hat OpenShift Service on AWS 4 Cluster administration

44

2. Verify that the labels are included for your machine pool in the output.

3.2.6. Adding taints to a machine pool

You can add taints for compute (also known as worker) nodes in a machine pool to control which pods
are scheduled to them. When you apply a taint to a machine pool, the scheduler cannot place a pod on
the nodes in the pool unless the pod specification includes a toleration for the taint. Taints can be added
to a machine pool using the OpenShift Cluster Manager or the Red Hat OpenShift Service on AWS
(ROSA) CLI, rosa.

NOTE

A cluster must have at least one machine pool that does not contain any taints.

3.2.6.1. Adding taints to a machine pool using OpenShift Cluster Manager

You can add taints to a machine pool for your Red Hat OpenShift Service on AWS (ROSA) cluster by
using OpenShift Cluster Manager.

Prerequisites

You created a Red Hat OpenShift Service on AWS (ROSA) cluster.

You have an existing machine pool that does not contain any taints and contains at least two
instances.

Procedure

1. Navigate to OpenShift Cluster Manager and select your cluster.

2. Under the Machine pools tab, click the options menu for the machine pool that you want
to add a taint to.

3. Select Edit taints.

4. Add Key and Value entries for your taint.

5. Select an Effect for your taint from the drop-down menu. Available options include
NoSchedule, PreferNoSchedule, and NoExecute.

6. Optional: Select Add taint if you want to add more taints to the machine pool.

7. Click Save to apply the taints to the machine pool.

Verification

Labels: app=db, tier=backend
Taints:
Availability zones: us-east-1a
Subnets:
Spot instances: No
Disk size: 300 GiB
Security Group IDs:

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

45

https://console.redhat.com/openshift

1. Under the Machine pools tab, select > next to your machine pool to expand the view.

2. Verify that your taints are listed under Taints in the expanded view.

3.2.6.2. Adding taints to a machine pool using the ROSA CLI

You can add taints to a machine pool for your Red Hat OpenShift Service on AWS (ROSA) cluster by
using the ROSA CLI.

NOTE

For users of ROSA CLI rosa version 1.2.25 and prior versions, the number of taints cannot
be changed within the machine pool (ID=Default) created along with the cluster. For
users of ROSA CLI rosa version 1.2.26 and beyond, the number of taints can be changed
within the machine pool (ID=worker) created along with the cluster. There must be at
least one machine pool without any taints and with at least two replicas for a Single-AZ
cluster or three replicas for a Multi-AZ cluster.

Prerequisites

You installed and configured the latest AWS (aws), ROSA (rosa), and OpenShift (oc) CLIs on
your workstation.

You logged in to your Red Hat account by using the rosa CLI.

You created a Red Hat OpenShift Service on AWS (ROSA) cluster.

You have an existing machine pool that does not contain any taints and contains at least two
instances.

Procedure

1. List the machine pools in the cluster by running the following command:

Example output

2. Add or update the taints for a machine pool:

To add or update taints for a machine pool that does not use autoscaling, run the following
command:

$ rosa list machinepools --cluster=<cluster_name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES SPOT INSTANCES DISK SIZE SG IDs
Default No 2 m5.xlarge us-east-1a N/A 300 GiB
sg-0e375ff0ec4a6cfa2
db-nodes-mp No 2 m5.xlarge us-east-1a No 300
GiB sg-0e375ff0ec4a6cfa2

$ rosa edit machinepool --cluster=<cluster_name> \
 --replicas=<replica_count> \ 1
 --taints=<key>=<value>:<effect>,<key>=<value>:<effect> \ 2
 <machine_pool_id>

Red Hat OpenShift Service on AWS 4 Cluster administration

46

1

2

1 2

3

For machine pools that do not use autoscaling, you must provide a replica count when
adding taints. If you do not specify the --replicas argument, you are prompted for a
replica count before the command completes. If you deployed Red Hat OpenShift
Service on AWS (ROSA) using a single availability zone, the replica count defines the
number of compute nodes to provision to the machine pool for the zone. If you
deployed your cluster using multiple availability zones, the count defines the total
number of compute nodes in the machine pool across all zones and must be a multiple
of 3.

Replace <key>=<value>:<effect>,<key>=<value>:<effect> with a key, value, and
effect for each taint, for example --
taints=key1=value1:NoSchedule,key2=value2:NoExecute. Available effects include
NoSchedule, PreferNoSchedule, and NoExecute.This list overwrites any
modifications made to node taints on an ongoing basis.

The following example adds taints to the db-nodes-mp machine pool:

Example output

To add or update taints for a machine pool that uses autoscaling, run the following
command:

For machine pools that use autoscaling, you must provide minimum and maximum
compute node replica limits. If you do not specify the arguments, you are prompted
for the values before the command completes. The cluster autoscaler does not reduce
or increase the machine pool node count beyond the limits that you specify. If you
deployed ROSA using a single availability zone, the --min-replicas and --max-replicas
arguments define the autoscaling limits in the machine pool for the zone. If you
deployed your cluster using multiple availability zones, the arguments define the
autoscaling limits in total across all zones and the counts must be multiples of 3.

Replace <key>=<value>:<effect>,<key>=<value>:<effect> with a key, value, and
effect for each taint, for example --
taints=key1=value1:NoSchedule,key2=value2:NoExecute. Available effects include
NoSchedule, PreferNoSchedule, and NoExecute. This list overwrites any
modifications made to node taints on an ongoing basis.

The following example adds taints to the db-nodes-mp machine pool:

$ rosa edit machinepool --cluster=mycluster --replicas 2 --
taints=key1=value1:NoSchedule,key2=value2:NoExecute db-nodes-mp

I: Updated machine pool 'db-nodes-mp' on cluster 'mycluster'

$ rosa edit machinepool --cluster=<cluster_name> \
 --min-replicas=<minimum_replica_count> \ 1
 --max-replicas=<maximum_replica_count> \ 2
 --taints=<key>=<value>:<effect>,<key>=<value>:<effect> \ 3
 <machine_pool_id>

$ rosa edit machinepool --cluster=mycluster --min-replicas=2 --max-replicas=3 --
taints=key1=value1:NoSchedule,key2=value2:NoExecute db-nodes-mp

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

47

Example output

Verification

1. Describe the details of the machine pool with the new taints:

Example output

2. Verify that the taints are included for your machine pool in the output.

3.2.7. Adding node tuning to a machine pool

You can add tunings for compute, also called worker, nodes in a machine pool to control their
configuration on Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP) clusters.

NOTE

This feature is only supported on Red Hat OpenShift Service on AWS (ROSA) with
hosted control planes (HCP) clusters.

Prerequisites

You installed and configured the latest Red Hat OpenShift Service on AWS (ROSA) CLI, rosa,
on your workstation.

You logged in to your Red Hat account by using the ROSA CLI.

You created a Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP)
cluster.

You have an existing machine pool.

You have an existing tuning configuration.

Procedure

I: Updated machine pool 'db-nodes-mp' on cluster 'mycluster'

$ rosa describe machinepool --cluster=<cluster_name> <machine-pool-name>

ID: db-nodes-mp
Cluster ID: <ID_of_cluster>
Autoscaling: No
Replicas: 2
Instance type: m5.xlarge
Labels:
Taints: key1=value1:NoSchedule, key2=value2:NoExecute
Availability zones: us-east-1a
Subnets:
Spot instances: No
Disk size: 300 GiB
Security Group IDs:

Red Hat OpenShift Service on AWS 4 Cluster administration

48

1. List all of the machine pools in the cluster:

Example output

2. You can add tuning configurations to an existing or new machine pool.

a. Add tunings when creating a machine pool:

Example output

b. Add or update the tunings for a machine pool:

Example output

Verification

1. List the available machine pools in your cluster:

Example output

2. Verify that the tuning config is included for your machine pool in the output.

3.2.8. Additional resources

$ rosa list machinepools --cluster=<cluster_name>

ID AUTOSCALING REPLICAS INSTANCE TYPE [...] AVAILABILITY ZONES
SUBNET VERSION AUTOREPAIR TUNING CONFIGS
workers No 2 m5.xlarge [...] us-east-1a N/A 4.12.14 Yes
db-nodes-mp No 2 m5.xlarge [...] us-east-1a No 4.12.14 Yes

$ rosa create machinepool -c <cluster-name> <machinepoolname> --tuning-configs
<tuning_config_name>

? Tuning configs: sample-tuning
I: Machine pool 'db-nodes-mp' created successfully on hosted cluster 'sample-cluster'
I: To view all machine pools, run 'rosa list machinepools -c sample-cluster'

$ rosa edit machinepool -c <cluster-name> <machinepoolname> --tuning-configs
<tuningconfigname>

I: Updated machine pool 'db-nodes-mp' on cluster 'mycluster'

$ rosa list machinepools --cluster=<cluster_name>

ID AUTOSCALING REPLICAS INSTANCE TYPE [...] AVAILABILITY ZONES
SUBNET VERSION AUTOREPAIR TUNING CONFIGS
workers No 2 m5.xlarge [...] us-east-1a N/A 4.12.14 Yes
db-nodes-mp No 2 m5.xlarge [...] us-east-1a No 4.12.14 Yes
sample-tuning

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

49

About machine pools

About autoscaling

Enabling autoscaling

Disabling autoscaling

ROSA Service Definition

3.3. CONFIGURING MACHINE POOLS IN LOCAL ZONES

This document describes how to configure Local Zones in machine pools with Red Hat OpenShift
Service on AWS (ROSA).

3.3.1. Configuring machine pools in Local Zones

Use the following steps to configure machine pools in Local Zones.

IMPORTANT

AWS Local Zones are supported on Red Hat OpenShift Service on AWS 4.12. See the
Red Hat Knowledgebase article for information on how to enable Local Zones.

Prerequisites

Red Hat OpenShift Service on AWS (ROSA) is generally available in the parent region of choice.
See the AWS generally available locations list to determine the Local Zone available to specific
AWS regions.

The ROSA cluster was initially built in an existing Amazon VPC (BYO-VPC).

The maximum transmission unit (MTU) for the ROSA cluster is set at 1200.

IMPORTANT

Generally, the Maximum Transmission Unit (MTU) between an Amazon EC2
instance in a Local Zone and an Amazon EC2 instance in the Region is 1300. See
How Local Zones work in the AWS documentation. The cluster network MTU
must always be less than the EC2 MTU to account for the overhead. The specific
overhead is determined by your network plugin, for example:

OVN-Kubernetes: 100 bytes

OpenShift SDN: 50 bytes

The network plugin could provide additional features that may also decrease the
MTU. Check the documentation for additional information.

The AWS account has Local Zones enabled.

The AWS account has a Local Zone subnet for the same VPC as the cluster.

The AWS account has a subnet that is associated with a routing table that has a route to a NAT
gateway.

Red Hat OpenShift Service on AWS 4 Cluster administration

50

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-service-definition
https://access.redhat.com/articles/6989889
https://aws.amazon.com/about-aws/global-infrastructure/localzones/locations/?pg=ln&cp=bn#GA
https://docs.aws.amazon.com/local-zones/latest/ug/how-local-zones-work.html
https://docs.aws.amazon.com/local-zones/latest/ug/getting-started.html#getting-started-find-local-zone
https://docs.aws.amazon.com/local-zones/latest/ug/getting-started.html#getting-started-create-local-zone-subnet

1

2

3

4

5

6

7

8

9

The AWS account has the tag `kubernetes.io/cluster/<infra_id>: shared' on the associated
subnet.

Procedure

1. Create a machine pool on the cluster by running the following ROSA CLI (rosa) command.

2. Add the subnet and instance type for the machine pool in the ROSA CLI. After several minutes,
the cluster will provision the nodes.

Enables interactive mode.

Names the machine pool. This is limited to alphanumeric and a maximum length of 30
characters.

Set this option to no.

Set this option to yes.

Selects a subnet ID from the list.

Select yes to enable autoscaling or no to disable autoscaling.

Selects the number of machines for the machine pool. This number can be anywhere from 1
- 180.

Selects an instance type from the list. Only instance types that are supported in the
selected Local Zone will appear.

Optional: Specifies the worker node disk size. The value can be in GB, GiB, TB, or TiB. Set
a numeric value and unit, for example '200GiB'. You cannot separate the digit and the unit.
No spaces are allowed.

3. Provide the subnet ID to provision the machine pool in the Local Zone.

See the AWS Local Zones locations list on AWS for generally available and announced AWS Local Zone
locations.

3.4. ABOUT AUTOSCALING NODES ON A CLUSTER

The autoscaler option can be configured to automatically scale the number of machines in a cluster.

$ rosa create machinepool -c <cluster-name> -i

I: Enabling interactive mode 1
? Machine pool name: xx-lz-xx 2
? Create multi-AZ machine pool: No 3
? Select subnet for a single AZ machine pool (optional): Yes 4
? Subnet ID: subnet-<a> (region-info) 5
? Enable autoscaling (optional): No 6
? Replicas: 2 7
I: Fetching instance types 8
? disk-size (optional): 9

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

51

https://aws.amazon.com/about-aws/global-infrastructure/localzones/locations/

The cluster autoscaler increases the size of the cluster when there are pods that failed to schedule on
any of the current nodes due to insufficient resources or when another node is necessary to meet
deployment needs. The cluster autoscaler does not increase the cluster resources beyond the limits
that you specify.

Additionally, the cluster autoscaler decreases the size of the cluster when some nodes are consistently
not needed for a significant period, such as when it has low resource use and all of its important pods
can fit on other nodes.

When you enable autoscaling, you must also set a minimum and maximum number of worker nodes.

NOTE

Only cluster owners and organization admins can scale or delete a cluster.

3.4.1. Enabling autoscaling nodes on a cluster

You can enable autoscaling on worker nodes to increase or decrease the number of nodes available by
editing the machine pool definition for an existing cluster.

Enabling autoscaling nodes in an existing cluster using Red Hat OpenShift Cluster Manager
Enable autoscaling for worker nodes in the machine pool definition from OpenShift Cluster Manager
console.

Procedure

1. From OpenShift Cluster Manager, navigate to the Clusters page and select the cluster that you
want to enable autoscaling for.

2. On the selected cluster, select the Machine pools tab.

3. Click the Options menu at the end of the machine pool that you want to enable
autoscaling for and select Scale.

4. On the Edit node count dialog, select the Enable autoscaling checkbox.

5. Select Apply to save these changes and enable autoscaling for the cluster.

NOTE

Additionally, you can configure autoscaling on the default machine pool when you create
the cluster using interactive mode.

Enabling autoscaling nodes in an existing cluster using the ROSA CLI
Configure autoscaling to dynamically scale the number of worker nodes up or down based on load.

Successful autoscaling is dependent on having the correct AWS resource quotas in your AWS account.
Verify resource quotas and request quota increases from the AWS console.

Procedure

1. To identify the machine pool IDs in a cluster, enter the following command:

Red Hat OpenShift Service on AWS 4 Cluster administration

52

https://console.redhat.com/openshift
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-creating-cluster
https://aws.amazon.com/console/

Example output

2. Get the ID of the machine pools that you want to configure.

3. To enable autoscaling on a machine pool, enter the following command:

Example

Enable autoscaling on a machine pool with the ID mp1 on a cluster named mycluster, with the
number of replicas set to scale between 2 and 5 worker nodes:

3.4.2. Disabling autoscaling nodes on a cluster

You can disable autoscaling on worker nodes to increase or decrease the number of nodes available by
editing the machine pool definition for an existing cluster.

You can disable autoscaling on a cluster using OpenShift Cluster Manager console or the Red Hat
OpenShift Service on AWS CLI.

NOTE

Additionally, you can configure autoscaling on the default machine pool when you create
the cluster using interactive mode.

Disabling autoscaling nodes in an existing cluster using Red Hat OpenShift Cluster Manager
Disable autoscaling for worker nodes in the machine pool definition from OpenShift Cluster Manager
console.

Procedure

1. From OpenShift Cluster Manager, navigate to the Clusters page and select the cluster with
autoscaling that must be disabled.

2. On the selected cluster, select the Machine pools tab.

3. Click the Options menu at the end of the machine pool with autoscaling and select Scale.

$ rosa list machinepools --cluster=<cluster_name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES DISK SIZE SG IDs
default No 2 m5.xlarge us-east-1a 300GiB sg-
0e375ff0ec4a6cfa2
mp1 No 2 m5.xlarge us-east-1a 300GiB sg-
0e375ff0ec4a6cfa2

$ rosa edit machinepool --cluster=<cluster_name> <machinepool_ID> --enable-autoscaling -
-min-replicas=<number> --max-replicas=<number>

$ rosa edit machinepool --cluster=mycluster mp1 --enable-autoscaling --min-replicas=2 --
max-replicas=5

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

53

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-creating-cluster
https://console.redhat.com/openshift

4. On the "Edit node count" dialog, deselect the Enable autoscaling checkbox.

5. Select Apply to save these changes and disable autoscaling from the cluster.

Disabling autoscaling nodes in an existing cluster using the ROSA CLI
Disable autoscaling for worker nodes in the machine pool definition using the Red Hat OpenShift
Service on AWS (ROSA) CLI, rosa.

Procedure

1. Enter the following command:

Example

Disable autoscaling on the default machine pool on a cluster named mycluster:

3.4.3. Additional resources

Troubleshooting: Autoscaling is not scaling down nodes

About machinepools

Managing compute nodes

Managing objects with the ROSA CLI

3.5. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER
MEMORY AND RISK REQUIREMENTS

As a cluster administrator, you can help your clusters operate efficiently through managing application
memory by:

Determining the memory and risk requirements of a containerized application component and
configuring the container memory parameters to suit those requirements.

Configuring containerized application runtimes (for example, OpenJDK) to adhere optimally to
the configured container memory parameters.

Diagnosing and resolving memory-related error conditions associated with running in a
container.

3.5.1. Understanding managing application memory

It is recommended to fully read the overview of how Red Hat OpenShift Service on AWS manages
Compute Resources before proceeding.

For each kind of resource (memory, CPU, storage), Red Hat OpenShift Service on AWS allows optional
request and limit values to be placed on each container in a pod.

$ rosa edit machinepool --cluster=<cluster_name> <machinepool_ID> --enable-
autoscaling=false --replicas=<number>

$ rosa edit machinepool --cluster=mycluster default --enable-autoscaling=false --replicas=3

Red Hat OpenShift Service on AWS 4 Cluster administration

54

https://access.redhat.com/solutions/6821651
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#rosa-managing-objects-cli

Note the following about memory requests and memory limits:

Memory request

The memory request value, if specified, influences the Red Hat OpenShift Service on AWS
scheduler. The scheduler considers the memory request when scheduling a container to a
node, then fences off the requested memory on the chosen node for the use of the
container.

If a node’s memory is exhausted, Red Hat OpenShift Service on AWS prioritizes evicting its
containers whose memory usage most exceeds their memory request. In serious cases of
memory exhaustion, the node OOM killer may select and kill a process in a container based
on a similar metric.

The cluster administrator can assign quota or assign default values for the memory request
value.

The cluster administrator can override the memory request values that a developer
specifies, to manage cluster overcommit.

Memory limit

The memory limit value, if specified, provides a hard limit on the memory that can be
allocated across all the processes in a container.

If the memory allocated by all of the processes in a container exceeds the memory limit, the
node Out of Memory (OOM) killer will immediately select and kill a process in the container.

If both memory request and limit are specified, the memory limit value must be greater than
or equal to the memory request.

The cluster administrator can assign quota or assign default values for the memory limit
value.

The minimum memory limit is 12 MB. If a container fails to start due to a Cannot allocate
memory pod event, the memory limit is too low. Either increase or remove the memory
limit. Removing the limit allows pods to consume unbounded node resources.

3.5.1.1. Managing application memory strategy

The steps for sizing application memory on Red Hat OpenShift Service on AWS are as follows:

1. Determine expected container memory usage
Determine expected mean and peak container memory usage, empirically if necessary (for
example, by separate load testing). Remember to consider all the processes that may
potentially run in parallel in the container: for example, does the main application spawn any
ancillary scripts?

2. Determine risk appetite
Determine risk appetite for eviction. If the risk appetite is low, the container should request
memory according to the expected peak usage plus a percentage safety margin. If the risk
appetite is higher, it may be more appropriate to request memory according to the expected
mean usage.

3. Set container memory request

Set container memory request based on the above. The more accurately the request represents

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

55

Set container memory request based on the above. The more accurately the request represents
the application memory usage, the better. If the request is too high, cluster and quota usage will
be inefficient. If the request is too low, the chances of application eviction increase.

4. Set container memory limit, if required
Set container memory limit, if required. Setting a limit has the effect of immediately killing a
container process if the combined memory usage of all processes in the container exceeds the
limit, and is therefore a mixed blessing. On the one hand, it may make unanticipated excess
memory usage obvious early ("fail fast"); on the other hand it also terminates processes
abruptly.

Note that some Red Hat OpenShift Service on AWS clusters may require a limit value to be set;
some may override the request based on the limit; and some application images rely on a limit
value being set as this is easier to detect than a request value.

If the memory limit is set, it should not be set to less than the expected peak container memory
usage plus a percentage safety margin.

5. Ensure application is tuned
Ensure application is tuned with respect to configured request and limit values, if appropriate.
This step is particularly relevant to applications which pool memory, such as the JVM. The rest of
this page discusses this.

3.5.2. Understanding OpenJDK settings for Red Hat OpenShift Service on AWS

The default OpenJDK settings do not work well with containerized environments. As a result, some
additional Java memory settings must always be provided whenever running the OpenJDK in a
container.

The JVM memory layout is complex, version dependent, and describing it in detail is beyond the scope
of this documentation. However, as a starting point for running OpenJDK in a container, at least the
following three memory-related tasks are key:

1. Overriding the JVM maximum heap size.

2. Encouraging the JVM to release unused memory to the operating system, if appropriate.

3. Ensuring all JVM processes within a container are appropriately configured.

Optimally tuning JVM workloads for running in a container is beyond the scope of this documentation,
and may involve setting multiple additional JVM options.

3.5.2.1. Understanding how to override the JVM maximum heap size

For many Java workloads, the JVM heap is the largest single consumer of memory. Currently, the
OpenJDK defaults to allowing up to 1/4 (1/-XX:MaxRAMFraction) of the compute node’s memory to be
used for the heap, regardless of whether the OpenJDK is running in a container or not. It is therefore
essential to override this behavior, especially if a container memory limit is also set.

There are at least two ways the above can be achieved:

If the container memory limit is set and the experimental options are supported by the JVM, set
-XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap.

NOTE

Red Hat OpenShift Service on AWS 4 Cluster administration

56

NOTE

The UseCGroupMemoryLimitForHeap option has been removed in JDK 11. Use -
XX:+UseContainerSupport instead.

This sets -XX:MaxRAM to the container memory limit, and the maximum heap size (-
XX:MaxHeapSize / -Xmx) to 1/ -XX:MaxRAMFraction (1/4 by default).

Directly override one of -XX:MaxRAM, -XX:MaxHeapSize or -Xmx.
This option involves hard-coding a value, but has the advantage of allowing a safety margin to
be calculated.

3.5.2.2. Understanding how to encourage the JVM to release unused memory to the
operating system

By default, the OpenJDK does not aggressively return unused memory to the operating system. This
may be appropriate for many containerized Java workloads, but notable exceptions include workloads
where additional active processes co-exist with a JVM within a container, whether those additional
processes are native, additional JVMs, or a combination of the two.

Java-based agents can use the following JVM arguments to encourage the JVM to release unused
memory to the operating system:

These arguments are intended to return heap memory to the operating system whenever allocated
memory exceeds 110% of in-use memory (-XX:MaxHeapFreeRatio), spending up to 20% of CPU time in
the garbage collector (-XX:GCTimeRatio). At no time will the application heap allocation be less than
the initial heap allocation (overridden by -XX:InitialHeapSize / -Xms). Detailed additional information is
available Tuning Java’s footprint in OpenShift (Part 1) , Tuning Java’s footprint in OpenShift (Part 2) ,
and at OpenJDK and Containers.

3.5.2.3. Understanding how to ensure all JVM processes within a container are
appropriately configured

In the case that multiple JVMs run in the same container, it is essential to ensure that they are all
configured appropriately. For many workloads it will be necessary to grant each JVM a percentage
memory budget, leaving a perhaps substantial additional safety margin.

Many Java tools use different environment variables (JAVA_OPTS, GRADLE_OPTS, and so on) to
configure their JVMs and it can be challenging to ensure that the right settings are being passed to the
right JVM.

The JAVA_TOOL_OPTIONS environment variable is always respected by the OpenJDK, and values
specified in JAVA_TOOL_OPTIONS will be overridden by other options specified on the JVM
command line. By default, to ensure that these options are used by default for all JVM workloads run in
the Java-based agent image, the Red Hat OpenShift Service on AWS Jenkins Maven agent image sets:

NOTE

-XX:+UseParallelGC
-XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4
-XX:AdaptiveSizePolicyWeight=90.

JAVA_TOOL_OPTIONS="-XX:+UnlockExperimentalVMOptions
-XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true"

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

57

https://developers.redhat.com/blog/2014/07/15/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-1/
https://developers.redhat.com/blog/2014/07/22/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-2/
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/

NOTE

The UseCGroupMemoryLimitForHeap option has been removed in JDK 11. Use -
XX:+UseContainerSupport instead.

This does not guarantee that additional options are not required, but is intended to be a helpful starting
point.

3.5.3. Finding the memory request and limit from within a pod

An application wishing to dynamically discover its memory request and limit from within a pod should use
the Downward API.

Procedure

1. Configure the pod to add the MEMORY_REQUEST and MEMORY_LIMIT stanzas:

a. Create a YAML file similar to the following:

apiVersion: v1
kind: Pod
metadata:
 name: test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test
 image: fedora:latest
 command:
 - sleep
 - "3600"
 env:
 - name: MEMORY_REQUEST 1
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: requests.memory
 - name: MEMORY_LIMIT 2
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: limits.memory
 resources:
 requests:
 memory: 384Mi
 limits:
 memory: 512Mi
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

Red Hat OpenShift Service on AWS 4 Cluster administration

58

1

2

Add this stanza to discover the application memory request value.

Add this stanza to discover the application memory limit value.

b. Create the pod by running the following command:

Verification

1. Access the pod using a remote shell:

2. Check that the requested values were applied:

Example output

NOTE

The memory limit value can also be read from inside the container by the
/sys/fs/cgroup/memory/memory.limit_in_bytes file.

3.5.4. Understanding OOM kill policy

Red Hat OpenShift Service on AWS can kill a process in a container if the total memory usage of all the
processes in the container exceeds the memory limit, or in serious cases of node memory exhaustion.

When a process is Out of Memory (OOM) killed, this might result in the container exiting immediately. If
the container PID 1 process receives the SIGKILL, the container will exit immediately. Otherwise, the
container behavior is dependent on the behavior of the other processes.

For example, a container process exited with code 137, indicating it received a SIGKILL signal.

If the container does not exit immediately, an OOM kill is detectable as follows:

1. Access the pod using a remote shell:

2. Run the following command to see the current OOM kill count in
/sys/fs/cgroup/memory/memory.oom_control:

Example output

$ oc create -f <file-name>.yaml

$ oc rsh test

$ env | grep MEMORY | sort

MEMORY_LIMIT=536870912
MEMORY_REQUEST=402653184

oc rsh test

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

59

3. Run the following command to provoke an OOM kill:

Example output

4. Run the following command to view the exit status of the sed command:

Example output

The 137 code indicates the container process exited with code 137, indicating it received a
SIGKILL signal.

5. Run the following command to see that the OOM kill counter in
/sys/fs/cgroup/memory/memory.oom_control incremented:

Example output

If one or more processes in a pod are OOM killed, when the pod subsequently exits, whether
immediately or not, it will have phase Failed and reason OOMKilled. An OOM-killed pod might
be restarted depending on the value of restartPolicy. If not restarted, controllers such as the
replication controller will notice the pod’s failed status and create a new pod to replace the old
one.

Use the follwing command to get the pod status:

Example output

If the pod has not restarted, run the following command to view the pod:

Example output

oom_kill 0

$ sed -e '' </dev/zero

Killed

$ echo $?

137

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control

oom_kill 1

$ oc get pod test

NAME READY STATUS RESTARTS AGE
test 0/1 OOMKilled 0 1m

$ oc get pod test -o yaml

Red Hat OpenShift Service on AWS 4 Cluster administration

60

If restarted, run the following command to view the pod:

Example output

3.5.5. Understanding pod eviction

Red Hat OpenShift Service on AWS may evict a pod from its node when the node’s memory is
exhausted. Depending on the extent of memory exhaustion, the eviction may or may not be graceful.
Graceful eviction implies the main process (PID 1) of each container receiving a SIGTERM signal, then
some time later a SIGKILL signal if the process has not exited already. Non-graceful eviction implies the
main process of each container immediately receiving a SIGKILL signal.

An evicted pod has phase Failed and reason Evicted. It will not be restarted, regardless of the value of
restartPolicy. However, controllers such as the replication controller will notice the pod’s failed status
and create a new pod to replace the old one.

Example output

...
status:
 containerStatuses:
 - name: test
 ready: false
 restartCount: 0
 state:
 terminated:
 exitCode: 137
 reason: OOMKilled
 phase: Failed

$ oc get pod test -o yaml

...
status:
 containerStatuses:
 - name: test
 ready: true
 restartCount: 1
 lastState:
 terminated:
 exitCode: 137
 reason: OOMKilled
 state:
 running:
 phase: Running

$ oc get pod test

NAME READY STATUS RESTARTS AGE
test 0/1 Evicted 0 1m

$ oc get pod test -o yaml

CHAPTER 3. MANAGE NODES USING MACHINE POOLS

61

Example output

...
status:
 message: 'Pod The node was low on resource: [MemoryPressure].'
 phase: Failed
 reason: Evicted

Red Hat OpenShift Service on AWS 4 Cluster administration

62

CHAPTER 4. CONFIGURING PID LIMITS
A process identifier (PID) is a unique identifier assigned by the Linux kernel to each process or thread
currently running on a system. The number of processes that can run simultaneously on a system is
limited to 4,194,304 by the Linux kernel. This number might also be affected by limited access to other
system resources such as memory, CPU, and disk space.

In Red Hat OpenShift Service on AWS 4.11 and later, by default, a pod can have a maximum of 4,096
PIDs. If your workload requires more than that, you can increase the allowed maximum number of PIDs
by configuring a KubeletConfig object.

IMPORTANT

Configuring the maximum number of PIDs is not supported on Red Hat OpenShift
Service on AWS (ROSA) with hosted control planes (HCP).

4.1. UNDERSTANDING PROCESS ID LIMITS

In Red Hat OpenShift Service on AWS, consider these two supported limits for process ID (PID) usage
before you schedule work on your cluster:

Maximum number of PIDs per pod.
The default value is 4,096 in Red Hat OpenShift Service on AWS 4.11 and later. This value is
controlled by the podPidsLimit parameter set on the node.

Maximum number of PIDs per node.
The default value depends on node resources. In Red Hat OpenShift Service on AWS, this value
is controlled by the --system-reserved parameter, which reserves PIDs on each node based on
the total resources of the node.

When a pod exceeds the allowed maximum number of PIDs per pod, the pod might stop functioning
correctly and might be evicted from the node. See the Kubernetes documentation for eviction signals
and thresholds for more information.

When a node exceeds the allowed maximum number of PIDs per node, the node can become unstable
because new processes cannot have PIDs assigned. If existing processes cannot complete without
creating additional processes, the entire node can become unusable and require reboot. This situation
can result in data loss, depending on the processes and applications being run. Customer administrators
and Red Hat Site Reliability Engineering are notified when this threshold is reached, and a Worker node
is experiencing PIDPressure warning will appear in the cluster logs.

4.2. RISKS OF SETTING HIGHER PROCESS ID LIMITS FOR RED HAT
OPENSHIFT SERVICE ON AWS PODS

The podPidsLimit parameter for a pod controls the maximum number of processes and threads that
can run simultaneously in that pod.

You can increase the value for podPidsLimit from the default of 4,096 to a maximum of 16,384.
Changing this value might incur downtime for applications, because changing the podPidsLimit
requires rebooting the affected node.

If you are running a large number of pods per node, and you have a high podPidsLimit value on your
nodes, you risk exceeding the PID maximum for the node.

To find the maximum number of pods that you can run simultaneously on a single node without

CHAPTER 4. CONFIGURING PID LIMITS

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/index#nodes-nodes-resources-configuring
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#system-reserved
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/#eviction-signals-and-thresholds

To find the maximum number of pods that you can run simultaneously on a single node without
exceeding the PID maximum for the node, divide 3,650,000 by your podPidsLimit value. For example,
if your podPidsLimit value is 16,384, and you expect the pods to use close to that number of process
IDs, you can safely run 222 pods on a single node.

NOTE

Memory, CPU, and available storage can also limit the maximum number of pods that can
run simultaneously, even when the podPidsLimit value is set appropriately. For more
information, see "Planning your environment" and "Limits and scalability".

Additional resources

Instance types

Planning your environment

Limits and scalability

4.3. SETTING A HIGHER PID LIMIT ON AN EXISTING RED HAT
OPENSHIFT SERVICE ON AWS CLUSTER

You can set a higher podPidsLimit on an existing Red Hat OpenShift Service on AWS cluster by
creating or editing a KubeletConfig object that changes the --pod-pids-limit parameter.

IMPORTANT

Changing the podPidsLimit on an existing cluster will trigger non-control plane nodes in
the cluster to reboot one at a time. Make this change outside of peak usage hours for
your cluster and avoid upgrading or hibernating your cluster until all nodes have
rebooted.

Prerequisites

You have a ROSA Classic cluster.

IMPORTANT

Configuring the maximum number of PIDs is not supported on Red Hat
OpenShift Service on AWS (ROSA) with hosted control planes (HCP).

You have installed the OpenShift CLI (oc).

You have logged in to your Red Hat account by using the ROSA CLI.

Procedure

1. Create or edit the KubeletConfig object to change the PID limit.

If this is the first time you are changing the default PID limit, create the KubeletConfig
object and set the --pod-pids-limit value by running the following command:

For example, the following command sets a maximum of 16,384 PIDs per pod for cluster

$ rosa create kubeletconfig -c <cluster_name> --pod-pids-limit=<value>

Red Hat OpenShift Service on AWS 4 Cluster administration

64

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-instance-types_rosa-service-definition
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-planning-environment
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-limits-scalability

For example, the following command sets a maximum of 16,384 PIDs per pod for cluster
my-cluster:

If you previously created a KubeletConfig object, edit the existing KubeletConfig object
and set the --pod-pids-limit value by running the following command:

A cluster-wide rolling reboot of worker nodes is triggered.

2. Verify that all of the worker nodes rebooted by running the following command:

Example output

Verification

When each node in the cluster has rebooted, you can verify that the new setting is in place.

Check the Pod Pids limit in the KubeletConfig object:

The new PIDs limit appears in the output, as shown in the following example:

Example output

$ rosa create kubeletconfig -c my-cluster --pod-pids-limit=16384

$ rosa edit kubeletconfig -c <cluster_name> --pod-pids-limit=<value>

$ oc get machineconfigpool

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
master rendered-master-06c9c4… True False False 3 3 3
0 4h42m
worker rendered-worker-f4b64… True False False 4 4 4
0 4h42m

$ rosa describe kubeletconfig --cluster=<cluster_name>

Pod Pids Limit: 16384

CHAPTER 4. CONFIGURING PID LIMITS

65

	Table of Contents
	CHAPTER 1. CONFIGURING PRIVATE CONNECTIONS
	1.1. CONFIGURING PRIVATE CONNECTIONS
	1.2. CONFIGURING AWS VPC PEERING
	1.2.1. VPC peering terms
	1.2.2. Initiating the VPC peer request
	1.2.3. Accepting the VPC peer request
	1.2.4. Configuring the routing tables
	1.2.5. Verifying and troubleshooting VPC peering

	1.3. CONFIGURING AWS VPN
	1.3.1. Creating a VPN connection
	1.3.1.1. Configuring the VPN connection
	1.3.1.2. Establishing the VPN Connection
	1.3.1.3. Enabling VPN route propagation

	1.3.2. Verifying the VPN connection
	1.3.3. Troubleshooting the VPN connection
	Tunnel does not connect
	Tunnel does not stay connected
	Secondary tunnel in Down state

	1.4. CONFIGURING AWS DIRECT CONNECT
	1.4.1. AWS Direct Connect methods
	1.4.2. Creating the hosted Virtual Interface
	1.4.2.1. Determining the type of Direct Connect connection
	1.4.2.2. Creating a Private Direct Connect
	1.4.2.3. Creating a Public Direct Connect
	1.4.2.4. Verifying the Virtual Interfaces

	1.4.3. Connecting to an existing Direct Connect Gateway
	1.4.4. Troubleshooting Direct Connect

	CHAPTER 2. CLUSTER AUTOSCALING
	2.1. ABOUT THE CLUSTER AUTOSCALER
	2.2. ENABLE AUTOSCALING DURING CLUSTER CREATION WITH OPENSHIFT CLUSTER MANAGER
	2.3. ENABLE AUTOSCALING AFTER CLUSTER CREATION WITH OPENSHIFT CLUSTER MANAGER
	2.4. CLUSTER AUTOSCALING SETTINGS USING OPENSHIFT CLUSTER MANAGER
	2.4.1. General settings
	2.4.2. Resource limits
	2.4.3. Scale down configuration

	2.5. ENABLE AUTOSCALING DURING CLUSTER CREATION BY USING THE INTERACTIVE MODE WITH THE ROSA CLI
	2.5.1. Enable autoscaling after cluster creation by using the interactive mode with the ROSA CLI

	2.6. ENABLE AUTOSCALING DURING CLUSTER CREATION WITH THE ROSA CLI
	2.6.1. Enable autoscaling after cluster creation with the ROSA CLI
	2.6.2. Edit autoscaling after cluster creation with the ROSA CLI
	2.6.3. Delete autoscaling using the ROSA CLI

	2.7. CLUSTER AUTOSCALING PARAMETERS USING THE ROSA CLI

	CHAPTER 3. MANAGE NODES USING MACHINE POOLS
	3.1. ABOUT MACHINE POOLS
	3.1.1. Machines
	3.1.2. Machine sets
	3.1.3. Machine pools
	3.1.4. Machine pools in multiple zone clusters
	3.1.5. Additional resources

	3.2. MANAGING COMPUTE NODES
	3.2.1. Creating a machine pool
	3.2.1.1. Creating a machine pool using OpenShift Cluster Manager
	3.2.1.2. Creating a machine pool using the ROSA CLI

	3.2.2. Configuring machine pool disk volume
	3.2.2.1. Configuring machine pool disk volume using OpenShift Cluster Manager
	3.2.2.2. Configuring machine pool disk volume using the ROSA CLI

	3.2.3. Deleting a machine pool
	3.2.3.1. Deleting a machine pool using OpenShift Cluster Manager
	3.2.3.2. Deleting a machine pool using the ROSA CLI

	3.2.4. Scaling compute nodes manually
	3.2.5. Node labels
	3.2.5.1. Adding node labels to a machine pool

	3.2.6. Adding taints to a machine pool
	3.2.6.1. Adding taints to a machine pool using OpenShift Cluster Manager
	3.2.6.2. Adding taints to a machine pool using the ROSA CLI

	3.2.7. Adding node tuning to a machine pool
	3.2.8. Additional resources

	3.3. CONFIGURING MACHINE POOLS IN LOCAL ZONES
	3.3.1. Configuring machine pools in Local Zones

	3.4. ABOUT AUTOSCALING NODES ON A CLUSTER
	3.4.1. Enabling autoscaling nodes on a cluster
	Enabling autoscaling nodes in an existing cluster using Red Hat OpenShift Cluster Manager
	Enabling autoscaling nodes in an existing cluster using the ROSA CLI

	3.4.2. Disabling autoscaling nodes on a cluster
	Disabling autoscaling nodes in an existing cluster using Red Hat OpenShift Cluster Manager
	Disabling autoscaling nodes in an existing cluster using the ROSA CLI

	3.4.3. Additional resources

	3.5. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS
	3.5.1. Understanding managing application memory
	3.5.1.1. Managing application memory strategy

	3.5.2. Understanding OpenJDK settings for Red Hat OpenShift Service on AWS
	3.5.2.1. Understanding how to override the JVM maximum heap size
	3.5.2.2. Understanding how to encourage the JVM to release unused memory to the operating system
	3.5.2.3. Understanding how to ensure all JVM processes within a container are appropriately configured

	3.5.3. Finding the memory request and limit from within a pod
	3.5.4. Understanding OOM kill policy
	3.5.5. Understanding pod eviction

	CHAPTER 4. CONFIGURING PID LIMITS
	4.1. UNDERSTANDING PROCESS ID LIMITS
	4.2. RISKS OF SETTING HIGHER PROCESS ID LIMITS FOR RED HAT OPENSHIFT SERVICE ON AWS PODS
	4.3. SETTING A HIGHER PID LIMIT ON AN EXISTING RED HAT OPENSHIFT SERVICE ON AWS CLUSTER

