
Red Hat OpenShift Service on AWS 4

Networking

Configuring Red Hat OpenShift Service on AWS networking

Last Updated: 2024-05-01

Red Hat OpenShift Service on AWS 4 Networking

Configuring Red Hat OpenShift Service on AWS networking

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about networking for Red Hat OpenShift Service on AWS
(ROSA) clusters.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS
1.1. USING DNS FORWARDING

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS
2.1. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR
2.2. THE INGRESS CONFIGURATION ASSET
2.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

2.3.1. Ingress Controller TLS security profiles
2.3.1.1. Understanding TLS security profiles
2.3.1.2. Configuring the TLS security profile for the Ingress Controller
2.3.1.3. Configuring mutual TLS authentication

2.4. VIEW THE DEFAULT INGRESS CONTROLLER
2.5. VIEW INGRESS OPERATOR STATUS
2.6. VIEW INGRESS CONTROLLER LOGS
2.7. VIEW INGRESS CONTROLLER STATUS
2.8. CONFIGURING THE INGRESS CONTROLLER

2.8.1. Setting a custom default certificate
2.8.2. Removing a custom default certificate
2.8.3. Autoscaling an Ingress Controller
2.8.4. Scaling an Ingress Controller
2.8.5. Configuring Ingress access logging
2.8.6. Setting Ingress Controller thread count
2.8.7. Configuring an Ingress Controller to use an internal load balancer
2.8.8. Setting the Ingress Controller health check interval
2.8.9. Configuring the default Ingress Controller for your cluster to be internal
2.8.10. Configuring the route admission policy
2.8.11. Using wildcard routes
2.8.12. HTTP header configuration

2.8.12.1. Order of precedence
2.8.12.2. Special case headers

2.8.13. Setting or deleting HTTP request and response headers in an Ingress Controller
2.8.14. Using X-Forwarded headers

Example use cases
2.8.15. Enabling HTTP/2 Ingress connectivity
2.8.16. Configuring the PROXY protocol for an Ingress Controller
2.8.17. Specifying an alternative cluster domain using the appsDomain option
2.8.18. Converting HTTP header case
2.8.19. Using router compression
2.8.20. Exposing router metrics
2.8.21. Customizing HAProxy error code response pages
2.8.22. Setting the Ingress Controller maximum connections

2.9. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR CONFIGURATIONS

CHAPTER 3. AWS LOAD BALANCER OPERATOR
3.1. INSTALLING AN AWS LOAD BALANCER OPERATOR
3.2. UNINSTALLING AN AWS LOAD BALANCER OPERATOR

CHAPTER 4. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
4.1. ENABLING MULTICAST FOR A PROJECT

4.1.1. About multicast
4.1.2. Enabling multicast between pods

5
5

10
10
10
10
21
21
22
24
26
26
26
26
27
27
28
29
33
34
37
37
39
39
40
41
41

42
43
45
46
47
47
48
50
51
52
53
55
57
57

59
59
64

65
65
65
65

Table of Contents

1

. .

. .

. .

. .

CHAPTER 5. NETWORK VERIFICATION FOR ROSA CLUSTERS
5.1. UNDERSTANDING NETWORK VERIFICATION FOR ROSA CLUSTERS
5.2. SCOPE OF THE NETWORK VERIFICATION CHECKS
5.3. AUTOMATIC NETWORK VERIFICATION BYPASSING
5.4. RUNNING THE NETWORK VERIFICATION MANUALLY

Running the network verification manually using OpenShift Cluster Manager
Running the network verification manually using the CLI

CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY
6.1. PREREQUISITES FOR CONFIGURING A CLUSTER-WIDE PROXY

General requirements
Network requirements

6.2. RESPONSIBILITIES FOR ADDITIONAL TRUST BUNDLES
6.3. CONFIGURING A PROXY DURING INSTALLATION

6.3.1. Configuring a proxy during installation using OpenShift Cluster Manager
6.3.2. Configuring a proxy during installation using the CLI

6.4. CONFIGURING A PROXY AFTER INSTALLATION
6.4.1. Configuring a proxy after installation using OpenShift Cluster Manager
6.4.2. Configuring a proxy after installation using the CLI

6.5. REMOVING A CLUSTER-WIDE PROXY
6.5.1. Removing the cluster-wide proxy using CLI
6.5.2. Removing certificate authorities on a Red Hat OpenShift Service on AWS cluster

CHAPTER 7. CIDR RANGE DEFINITIONS
7.1. MACHINE CIDR
7.2. SERVICE CIDR
7.3. POD CIDR
7.4. HOST PREFIX

CHAPTER 8. NETWORK POLICY
8.1. ABOUT NETWORK POLICY

8.1.1. About network policy
8.1.1.1. Using the allow-from-router network policy
8.1.1.2. Using the allow-from-hostnetwork network policy

8.1.2. Optimizations for network policy with OpenShift SDN
8.1.3. Optimizations for network policy with OVN-Kubernetes network plugin
8.1.4. Next steps

8.2. CREATING A NETWORK POLICY
8.2.1. Example NetworkPolicy object
8.2.2. Creating a network policy using the CLI
8.2.3. Creating a default deny all network policy
8.2.4. Creating a network policy to allow traffic from external clients
8.2.5. Creating a network policy allowing traffic to an application from all namespaces
8.2.6. Creating a network policy allowing traffic to an application from a namespace
8.2.7. Creating a network policy using OpenShift Cluster Manager

8.3. VIEWING A NETWORK POLICY
8.3.1. Example NetworkPolicy object
8.3.2. Viewing network policies using the CLI
8.3.3. Viewing network policies using OpenShift Cluster Manager

8.4. DELETING A NETWORK POLICY
8.4.1. Deleting a network policy using the CLI
8.4.2. Deleting a network policy using OpenShift Cluster Manager

8.5. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
8.5.1. Configuring multitenant isolation by using network policy

68
68
68
68
69
69
69

72
72
72
72
74
74
74
74
75
75
76
78
78
80

82
82
82
82
82

84
84
84
86
86
87
87
89
89
89
90
92
93
94
96
99

100
100
101
102
103
103
103
104
104

Red Hat OpenShift Service on AWS 4 Networking

2

. .

. .

CHAPTER 9. OVN-KUBERNETES NETWORK PLUGIN
9.1. CONFIGURING AN EGRESS IP ADDRESS

9.1.1. Egress IP address architectural design and implementation
9.1.1.1. Amazon Web Services (AWS) IP address capacity limits
9.1.1.2. Assignment of egress IPs to pods
9.1.1.3. Assignment of egress IPs to nodes
9.1.1.4. Architectural diagram of an egress IP address configuration

9.1.2. EgressIP object
9.1.3. Labeling a node to host egress IP addresses
9.1.4. Next steps
9.1.5. Additional resources

CHAPTER 10. CONFIGURING ROUTES
10.1. ROUTE CONFIGURATION

10.1.1. Creating an HTTP-based route
10.1.2. Configuring route timeouts
10.1.3. HTTP Strict Transport Security

10.1.3.1. Enabling HTTP Strict Transport Security per-route
10.1.3.2. Disabling HTTP Strict Transport Security per-route

10.1.4. Using cookies to keep route statefulness
10.1.4.1. Annotating a route with a cookie

10.1.5. Path-based routes
10.1.6. HTTP header configuration

10.1.6.1. Order of precedence
10.1.6.2. Special case headers

10.1.7. Setting or deleting HTTP request and response headers in a route
10.1.8. Route-specific annotations
10.1.9. Creating a route using the default certificate through an Ingress object
10.1.10. Creating a route using the destination CA certificate in the Ingress annotation

10.2. SECURED ROUTES
10.2.1. Creating a re-encrypt route with a custom certificate
10.2.2. Creating an edge route with a custom certificate
10.2.3. Creating a passthrough route

108
108
108
108
109
109
109

111
113
113
113

114
114
114
115
116
116
117
118
118
119

120
121
122
123
125
132
133
134
135
136
137

Table of Contents

3

Red Hat OpenShift Service on AWS 4 Networking

4

CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT
SERVICE ON AWS

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in Red Hat OpenShift Service on AWS.

1.1. USING DNS FORWARDING

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file
in the following ways:

Specify name servers for every zone. If the forwarded zone is the Ingress domain managed by
Red Hat OpenShift Service on AWS, then the upstream name server must be authorized for the
domain.

IMPORTANT

You must specify at least one zone. Otherwise, your cluster can lose functionality.

Provide a list of upstream DNS servers.

Change the default forwarding policy.

NOTE

A DNS forwarding configuration for the default domain can have both the default servers
specified in the /etc/resolv.conf file and the upstream DNS servers.

Procedure

1. Modify the DNS Operator object named default:

After you issue the previous command, the Operator creates and updates the config map
named dns-default with additional server configuration blocks based on Server.

IMPORTANT

When specifying values for the zones parameter, ensure that you only forward to
specific zones, such as your intranet. You must specify at least one zone.
Otherwise, your cluster can lose functionality.

If none of the servers have a zone that matches the query, then name resolution falls back to
the upstream DNS servers.

Configuring DNS forwarding

$ oc edit dns.operator/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default

CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

5

1

2

3

4

5

6

7

8

9

10

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

A maximum of 15 upstreams is allowed per forwardPlugin.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Determines the order in which upstream servers are selected for querying. You can specify
one of these values: Random, RoundRobin, or Sequential. The default value is
Sequential.

Optional. You can use it to provide upstream resolvers.

You can specify two types of upstreams - SystemResolvConf and Network.
SystemResolvConf configures the upstream to use /etc/resolv.conf and Network
defines a Networkresolver. You can specify one or both.

If the specified type is Network, you must provide an IP address. The address field must
be a valid IPv4 or IPv6 address.

If the specified type is Network, you can optionally provide a port. The port field must have
a value between 1 and 65535. If you do not specify a port for the upstream, by default port
853 is tried.

2. Optional: When working in a highly regulated environment, you might need the ability to secure
DNS traffic when forwarding requests to upstream resolvers so that you can ensure additional
DNS traffic and data privacy.

IMPORTANT

spec:
 servers:
 - name: example-server 1
 zones: 2
 - example.com
 forwardPlugin:
 policy: Random 3
 upstreams: 4
 - 1.1.1.1
 - 2.2.2.2:5353
 upstreamResolvers: 5
 policy: Random 6
 upstreams: 7
 - type: SystemResolvConf 8
 - type: Network
 address: 1.2.3.4 9
 port: 53 10

Red Hat OpenShift Service on AWS 4 Networking

6

1

2

3

IMPORTANT

When specifying values for the zones parameter, ensure that you only forward to
specific zones, such as your intranet. You must specify at least one zone.
Otherwise, your cluster can lose functionality.

Cluster administrators can configure transport layer security (TLS) for forwarded DNS queries.

Configuring DNS forwarding with TLS

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field. The cluster
domain, cluster.local, is an invalid subdomain for zones.

When configuring TLS for forwarded DNS queries, set the transport field to have the value
TLS. By default, CoreDNS caches forwarded connections for 10 seconds. CoreDNS will
hold a TCP connection open for those 10 seconds if no request is issued. With large
clusters, ensure that your DNS server is aware that it might get many new connections to
hold open because you can initiate a connection per node. Set up your DNS hierarchy
accordingly to avoid performance issues.

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 servers:
 - name: example-server 1
 zones: 2
 - example.com
 forwardPlugin:
 transportConfig:
 transport: TLS 3
 tls:
 caBundle:
 name: mycacert
 serverName: dnstls.example.com 4
 policy: Random 5
 upstreams: 6
 - 1.1.1.1
 - 2.2.2.2:5353
 upstreamResolvers: 7
 transportConfig:
 transport: TLS
 tls:
 caBundle:
 name: mycacert
 serverName: dnstls.example.com
 upstreams:
 - type: Network 8
 address: 1.2.3.4 9
 port: 53 10

CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

7

4

5

6

7

8

9

10

When configuring TLS for forwarded DNS queries, this is a mandatory server name used as
part of the server name indication (SNI) to validate the upstream TLS server certificate.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

Required. You can use it to provide upstream resolvers. A maximum of 15 upstreams
entries are allowed per forwardPlugin entry.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Network type indicates that this upstream resolver should handle forwarded requests
separately from the upstream resolvers listed in /etc/resolv.conf. Only the Network type is
allowed when using TLS and you must provide an IP address.

The address field must be a valid IPv4 or IPv6 address.

You can optionally provide a port. The port must have a value between 1 and 65535. If you
do not specify a port for the upstream, by default port 853 is tried.

NOTE

If servers is undefined or invalid, the config map only contains the default server.

Verification

1. View the config map:

Sample DNS ConfigMap based on previous sample DNS

$ oc get configmap/dns-default -n openshift-dns -o yaml

apiVersion: v1
data:
 Corefile: |
 example.com:5353 {
 forward . 1.1.1.1 2.2.2.2:5353
 }
 bar.com:5353 example.com:5353 {
 forward . 3.3.3.3 4.4.4.4:5454 1
 }
 .:5353 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 forward . /etc/resolv.conf 1.2.3.4:53 {
 policy Random

Red Hat OpenShift Service on AWS 4 Networking

8

1 Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

For more information on DNS forwarding, see the CoreDNS forward documentation.

 }
 cache 30
 reload
 }
kind: ConfigMap
metadata:
 labels:
 dns.operator.openshift.io/owning-dns: default
 name: dns-default
 namespace: openshift-dns

CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

9

https://coredns.io/plugins/forward/

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT
SERVICE ON AWS

2.1. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR

When you create your Red Hat OpenShift Service on AWS cluster, pods and services running on the
cluster are each allocated their own IP addresses. The IP addresses are accessible to other pods and
services running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController API and is the component responsible for enabling external access to Red Hat
OpenShift Service on AWS cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. Red Hat Site Reliability
Engineers (SRE) manage the Ingress Operator for Red Hat OpenShift Service on AWS clusters. While
you cannot alter the settings for the Ingress Operator, you may view the default Ingress Controller
configurations, status, and logs as well as the Ingress Operator status.

2.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

The OpenShift API Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

2.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.openshiftdemos.com

Red Hat OpenShift Service on AWS 4 Networking

10

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

domain domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

For the LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the desired number of Ingress Controller replicas. If not set, the
default value is 2.

Parameter Description

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

11

endpointPublishingStr
ategy

endpointPublishingStrategy is used to publish the Ingress Controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

You can configure the following endpointPublishingStrategy fields:

loadBalancer.scope

loadBalancer.allowedSourceRanges

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

Amazon Web Services (AWS): LoadBalancerService (with External
scope)

NOTE

HostNetwork has a hostNetwork field with the
following default values for the optional binding ports:
httpPort: 80, httpsPort: 443, and statsPort: 1936.
With the binding ports, you can deploy multiple
Ingress Controllers on the same node for the
HostNetwork strategy.

Example

NOTE

On Red Hat OpenStack Platform (RHOSP), the
LoadBalancerService endpoint publishing strategy
is only supported if a cloud provider is configured to
create health monitors. For RHOSP 16.2, this strategy
is only possible if you use the Amphora Octavia
provider.

For more information, see the "Setting cloud provider
options" section of the RHOSP installation
documentation.

Parameter Description

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: internal
 namespace: openshift-ingress-operator
spec:
 domain: example.com
 endpointPublishingStrategy:
 type: HostNetwork
 hostNetwork:
 httpPort: 80
 httpsPort: 443
 statsPort: 1936

Red Hat OpenShift Service on AWS 4 Networking

12

defaultCertificate The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with Red Hat OpenShift Service on AWS built-in OAuth server.

namespaceSelector namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

Parameter Description

nodePlacement:
 nodeSelector:
 matchLabels:
 kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
 operator: Exists

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

13

tlsSecurityProfile tlsSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of an Old or
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields,
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values:
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle.

The AllowedSubjectPatterns is an optional value that specifies a list of
regular expressions, which are matched against the distinguished name on a
valid client certificate to filter requests. The regular expressions must use
PCRE syntax. At least one pattern must match a client certificate’s
distinguished name; otherwise, the Ingress Controller rejects the certificate and
denies the connection. If not specified, the Ingress Controller does not reject
certificates based on the distinguished name.

Parameter Description

Red Hat OpenShift Service on AWS 4 Networking

14

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

Parameter Description

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

15

IngressControllerLoggi
ng

logging defines parameters for what is logged where. If this field is empty,
operational logs are enabled but access logs are disabled.

access describes how client requests are logged. If this field is
empty, access logging is disabled.

destination describes a destination for log messages.

type is the type of destination for logs:

Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

syslog describes parameters for the Syslog logging
destination type:

address is the IP address of the syslog endpoint that
receives log messages.

port is the UDP port number of the syslog endpoint that
receives log messages.

maxLength is the maximum length of the syslog
message. It must be between 480 and 4096 bytes. If this
field is empty, the maximum length is set to the default
value of 1024 bytes.

facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, lpr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3. local4, local5, local6, or local7.

httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy’s default
HTTP log format, see the HAProxy documentation.

Parameter Description

Red Hat OpenShift Service on AWS 4 Networking

16

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
Controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

actions specifies options for performing certain actions on headers. Headers
cannot be set or deleted for TLS passthrough connections. The actions field
has additional subfields spec.httpHeader.actions.response and
spec.httpHeader.actions.request:

The response subfield specifies a list of HTTP response headers to
set or delete.

The request subfield specifies a list of HTTP request headers to set
or delete.

Parameter Description

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

17

httpCompression httpCompression defines the policy for HTTP traffic compression.

mimeTypes defines a list of MIME types to which compression
should be applied. For example, text/css; charset=utf-8, text/html,
text/*, image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern, type/subtype;
[;attribute=value]. The types are: application, image, message,
multipart, text, video, or a custom type prefaced by X-; e.g. To see the
full notation for MIME types and subtypes, see RFC1341

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController
image.

httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in
access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

name specifies the name of the cookie.

maxLength specifies tha maximum length of the cookie.

matchType specifies if the field name of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.
The matchType field uses the Exact and Prefix parameters.

For example:

Parameter Description

 httpCaptureCookies:
 - matchType: Exact
 maxLength: 128
 name: MYCOOKIE

Red Hat OpenShift Service on AWS 4 Networking

18

https://datatracker.ietf.org/doc/html/rfc1341#page-7

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and the maxlength field must
specify the maximum length of the header. For example:

tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection.
The default timeout is 1s.

clientTimeout specifies how long a connection is held open while
waiting for a client response. The default timeout is 30s.

headerBufferBytes specifies how much memory is reserved, in
bytes, for Ingress Controller connection sessions. This value must be
at least 16384 if HTTP/2 is enabled for the Ingress Controller. If not
set, the default value is 32768 bytes. Setting this field not
recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

healthCheckInterval specifies how long the router waits between
health checks. The default is 5s.

serverFinTimeout specifies how long a connection is held open

Parameter Description

 httpCaptureHeaders:
 request:
 - maxLength: 256
 name: Connection
 - maxLength: 128
 name: User-Agent
 response:
 - maxLength: 256
 name: Content-Type
 - maxLength: 256
 name: Content-Length

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

19

serverFinTimeout specifies how long a connection is held open
while waiting for the server response to the client that is closing the
connection. The default timeout is 1s.

serverTimeout specifies how long a connection is held open while
waiting for a server response. The default timeout is 30s.

threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

tlsInspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
The default inspect delay is 5s.

tunnelTimeout specifies how long a tunnel connection, including
websockets, remains open while the tunnel is idle. The default timeout
is 1h.

maxConnections specifies the maximum number of simultaneous
connections that can be established per HAProxy process. Increasing
this value allows each ingress controller pod to handle more
connections at the cost of additional system resources. Permitted
values are 0, -1, any value within the range 2000 and 2000000, or the
field can be left empty.

If this field is left empty or has the value 0, the Ingress Controller
will use the default value of 50000. This value is subject to
change in future releases.

If the field has the value of -1, then HAProxy will dynamically
compute a maximum value based on the available ulimits in the
running container. This process results in a large computed value
that will incur significant memory usage compared to the current
default value of 50000.

If the field has a value that is greater than the current operating
system limit, the HAProxy process will not start.

If you choose a discrete value and the router pod is migrated to a
new node, it is possible the new node does not have an identical
ulimit configured. In such cases, the pod fails to start.

If you have nodes with different ulimits configured, and you
choose a discrete value, it is recommended to use the value of -1
for this field so that the maximum number of connections is
calculated at runtime.

Parameter Description

Red Hat OpenShift Service on AWS 4 Networking

20

logEmptyRequests logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and
Ignore. The default value is Log.

The LoggingPolicy type accepts either one of two values:

Log: Setting this value to Log indicates that an event should be
logged.

Ignore: Setting this value to Ignore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsP
olicy

HTTPEmptyRequestsPolicy describes how HTTP connections are handled
if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value is Respond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

Ignore: Setting this option to Ignore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to Ignore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

Parameter Description

NOTE

All parameters are optional.

2.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

2.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various Red Hat OpenShift Service on AWS components. The Red Hat OpenShift Service on AWS
TLS security profiles are based on Mozilla recommended configurations .

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

21

https://wiki.mozilla.org/Security/Server_Side_TLS

You can specify one of the following TLS security profiles for each component:

Table 2.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
It is the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING

Use caution when using a Custom profile,
because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

2.3.1.2. Configuring the TLS security profile for the Ingress Controller

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom

Red Hat OpenShift Service on AWS 4 Networking

22

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the API server.

Sample IngressController CR that configures the Old TLS security profile

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE

The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

2. Add the spec.tlsSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 ...

$ oc edit IngressController default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

23

1

2

3

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

Verify that the profile is set in the IngressController CR:

Example output

2.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.
This configuration includes setting a clientCA value, which is a reference to a config map. The config

 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 ...

$ oc describe IngressController default -n openshift-ingress-operator

Name: default
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController
 ...
Spec:
 ...
 Tls Security Profile:
 Custom:
 Ciphers:
 ECDHE-ECDSA-CHACHA20-POLY1305
 ECDHE-RSA-CHACHA20-POLY1305
 ECDHE-RSA-AES128-GCM-SHA256
 ECDHE-ECDSA-AES128-GCM-SHA256
 Min TLS Version: VersionTLS11
 Type: Custom
 ...

Red Hat OpenShift Service on AWS 4 Networking

24

1

map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can also configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution
Point specified in each provided certificate. The Ingress Controller uses this config map during
mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a PEM-encoded CA certificate bundle.

If your CA bundle references a CRL distribution point, you must have also included the end-
entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP
URI under CRL Distribution Points, as described in RFC 5280. For example:

Procedure

1. In the openshift-config namespace, create a config map from your CA bundle:

The config map data key must be ca-bundle.pem, and the data value must be a CA
certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

 Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1
 Subject: SOME SIGNED CERT X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl.example.com/example.crl

$ oc create configmap \
 router-ca-certs-default \
 --from-file=ca-bundle.pem=client-ca.crt \ 1
 -n openshift-config

$ oc edit IngressController default -n openshift-ingress-operator

 apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: default
 namespace: openshift-ingress-operator
 spec:
 clientTLS:
 clientCertificatePolicy: Required
 clientCA:

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

25

2.4. VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of Red Hat OpenShift Service on AWS and is enabled out of the
box.

Every new Red Hat OpenShift Service on AWS installation has an ingresscontroller named default. It
can be supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

View the default Ingress Controller:

2.5. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

View your Ingress Operator status:

2.6. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

View your Ingress Controller logs:

2.7. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

View the status of an Ingress Controller:

 name: router-ca-certs-default
 allowedSubjectPatterns:
 - "^/CN=example.com/ST=NC/C=US/O=Security/OU=OpenShift$"

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

$ oc describe clusteroperators/ingress

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c
<container_name>

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

Red Hat OpenShift Service on AWS 4 Networking

26

2.8. CONFIGURING THE INGRESS CONTROLLER

2.8.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configured in a
custom PKI.

Your certificate meets the following requirements:

The certificate is valid for the ingress domain.

The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

You must have an IngressController CR. You may use the default one:

Example output

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

$ oc --namespace openshift-ingress-operator get ingresscontrollers

NAME AGE
default 10m

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

27

2. Update the IngressController CR to reference the new certificate secret:

3. Verify the update was effective:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

TIP

You can alternatively apply the following YAML to set a custom default certificate:

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

2.8.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You previously configured a custom default certificate for the Ingress Controller.

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
 --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

$ echo Q |\
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\
 openssl x509 -noout -subject -issuer -enddate

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 defaultCertificate:
 name: custom-certs-default

Red Hat OpenShift Service on AWS 4 Networking

28

Procedure

To remove the custom certificate and restore the certificate that ships with Red Hat OpenShift
Service on AWS, enter the following command:

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

To confirm that the original cluster certificate is restored, enter the following command:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

2.8.3. Autoscaling an Ingress Controller

Automatically scale an Ingress Controller to dynamically meet routing performance or availability
requirements such as the requirement to increase throughput. The following procedure provides an
example for scaling up the default IngressController.

Prerequisites

1. You have the OpenShift CLI (oc) installed.

2. You have access to an Red Hat OpenShift Service on AWS cluster as a user with the cluster-
admin role.

3. You have the Custom Metrics Autoscaler Operator installed.

4. You are in the openshift-ingress-operator project namespace.

Procedure

1. Create a service account to authenticate with Thanos by running the following command:

Example output

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
 --type json -p $'- op: remove\n path: /spec/defaultCertificate'

$ echo Q | \
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null | \
 openssl x509 -noout -subject -issuer -enddate

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

$ oc create serviceaccount thanos && oc describe serviceaccount thanos

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

29

2. Define a TriggerAuthentication object within the openshift-ingress-operator namespace
using the service account’s token.

a. Define the variable secret that contains the secret by running the following command:

b. Create the TriggerAuthentication object and pass the value of the secret variable to the
TOKEN parameter:

3. Create and apply a role for reading metrics from Thanos:

a. Create a new role, thanos-metrics-reader.yaml, that reads metrics from pods and nodes:

thanos-metrics-reader.yaml

Name: thanos
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
Image pull secrets: thanos-dockercfg-b4l9s
Mountable secrets: thanos-dockercfg-b4l9s
Tokens: thanos-token-c422q
Events: <none>

$ secret=$(oc get secret | grep thanos-token | head -n 1 | awk '{ print $1 }')

$ oc process TOKEN="$secret" -f - <<EOF | oc apply -f -
apiVersion: template.openshift.io/v1
kind: Template
parameters:
- name: TOKEN
objects:
- apiVersion: keda.sh/v1alpha1
 kind: TriggerAuthentication
 metadata:
 name: keda-trigger-auth-prometheus
 spec:
 secretTargetRef:
 - parameter: bearerToken
 name: \${TOKEN}
 key: token
 - parameter: ca
 name: \${TOKEN}
 key: ca.crt
EOF

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: thanos-metrics-reader
rules:
- apiGroups:
 - ""
 resources:
 - pods
 - nodes

Red Hat OpenShift Service on AWS 4 Networking

30

b. Apply the new role by running the following command:

4. Add the new role to the service account by entering the following commands:

NOTE

The argument add-cluster-role-to-user is only required if you use cross-
namespace queries. The following step uses a query from the kube-metrics
namespace which requires this argument.

5. Create a new ScaledObject YAML file, ingress-autoscaler.yaml, that targets the default
Ingress Controller deployment:

Example ScaledObject definition

 verbs:
 - get
- apiGroups:
 - metrics.k8s.io
 resources:
 - pods
 - nodes
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - ""
 resources:
 - namespaces
 verbs:
 - get

$ oc apply -f thanos-metrics-reader.yaml

$ oc adm policy add-role-to-user thanos-metrics-reader -z thanos --role-
namespace=openshift-ingress-operator

$ oc adm policy -n openshift-ingress-operator add-cluster-role-to-user cluster-monitoring-view
-z thanos

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: ingress-scaler
spec:
 scaleTargetRef: 1
 apiVersion: operator.openshift.io/v1
 kind: IngressController
 name: default
 envSourceContainerName: ingress-operator
 minReplicaCount: 1
 maxReplicaCount: 20 2

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

31

1

2

3

4

5

The custom resource that you are targeting. In this case, the Ingress Controller.

Optional: The maximum number of replicas. If you omit this field, the default maximum is
set to 100 replicas.

The Thanos service endpoint in the openshift-monitoring namespace.

The Ingress Operator namespace.

This expression evaluates to however many worker nodes are present in the deployed
cluster.

IMPORTANT

If you are using cross-namespace queries, you must target port 9091 and not port
9092 in the serverAddress field. You also must have elevated privileges to read
metrics from this port.

6. Apply the custom resource definition by running the following command:

Verification

Verify that the default Ingress Controller is scaled out to match the value returned by the kube-
state-metrics query by running the following commands:

Use the grep command to search the Ingress Controller YAML file for replicas:

Example output

Get the pods in the openshift-ingress project:

 cooldownPeriod: 1
 pollingInterval: 1
 triggers:
 - type: prometheus
 metricType: AverageValue
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091 3
 namespace: openshift-ingress-operator 4
 metricName: 'kube-node-role'
 threshold: '1'
 query: 'sum(kube_node_role{role="worker",service="kube-state-metrics"})' 5
 authModes: "bearer"
 authenticationRef:
 name: keda-trigger-auth-prometheus

$ oc apply -f ingress-autoscaler.yaml

$ oc get ingresscontroller/default -o yaml | grep replicas:

replicas: 3

Red Hat OpenShift Service on AWS 4 Networking

32

Example output

2.8.4. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. oc commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

Procedure

1. View the current number of available replicas for the default IngressController:

Example output

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

Example output

3. Verify that the default IngressController scaled to the number of replicas that you specified:

Example output

TIP

$ oc get pods -n openshift-ingress

NAME READY STATUS RESTARTS AGE
router-default-7b5df44ff-l9pmm 2/2 Running 0 17h
router-default-7b5df44ff-s5sl5 2/2 Running 0 3d22h
router-default-7b5df44ff-wwsth 2/2 Running 0 66s

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

2

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

ingresscontroller.operator.openshift.io/default patched

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

3

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

33

1

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

If you need a different amount of replicas, change the replicas value.

2.8.5. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of Red Hat OpenShift
Service on AWS, you can forward logs to a custom syslog endpoint. You can also specify the format for
access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 3 1

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Container

Red Hat OpenShift Service on AWS 4 Networking

34

When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

Example output

Configure Ingress access logging to a Syslog endpoint.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.endpoint and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

NOTE

The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

$ oc -n openshift-ingress logs deployment.apps/router-default -c logs

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

35

Disable Ingress access logging.

To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

Allow the Ingress Controller to modify the HAProxy log length when using a sidecar.

Use spec.logging.access.destination.syslog.maxLength if you are using
spec.logging.access.destination.type: Syslog.

Use spec.logging.access.destination.container.maxLength if you are using
spec.logging.access.destination.type: Container.

 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514
 httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access: null

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 maxLength: 4096
 port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:

Red Hat OpenShift Service on AWS 4 Networking

36

2.8.6. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

The following assumes that you already created an Ingress Controller.

Procedure

Update the Ingress Controller to increase the number of threads:

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

2.8.7. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Figure 2.1. Diagram of LoadBalancer

 access:
 destination:
 type: Container
 container:
 maxLength: 8192

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

37

Figure 2.1. Diagram of LoadBalancer

The preceding graphic shows the following concepts pertaining to Red Hat OpenShift Service on AWS
Ingress LoadBalancerService endpoint publishing strategy:

You can load balance externally, using the cloud provider load balancer, or internally, using the
OpenShift Ingress Controller Load Balancer.

You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <name>-ingress-
controller.yaml, such as in the following example:

Red Hat OpenShift Service on AWS 4 Networking

38

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

1

2

3

1

Replace <name> with a name for the IngressController object.

Specify the domain for the application published by the controller.

Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:

Replace <name> with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

2.8.8. Setting the Ingress Controller health check interval

A cluster administrator can set the health check interval to define how long the router waits between
two consecutive health checks. This value is applied globally as a default for all routes. The default value
is 5 seconds.

Prerequisites

The following assumes that you already created an Ingress Controller.

Procedure

Update the Ingress Controller to change the interval between back end health checks:

NOTE

To override the healthCheckInterval for a single route, use the route annotation
router.openshift.io/haproxy.health.check.interval

2.8.9. Configuring the default Ingress Controller for your cluster to be internal

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal 3

$ oc create -f <name>-ingress-controller.yaml 1

$ oc --all-namespaces=true get ingresscontrollers

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"healthCheckInterval": "8s"}}}'

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

39

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

2.8.10. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF

Red Hat OpenShift Service on AWS 4 Networking

40

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

TIP

You can alternatively apply the following YAML to configure the route admission policy:

2.8.11. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure

1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

2.8.12. HTTP header configuration

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

$ oc edit IngressController

spec:
 routeAdmission:
 wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

41

Red Hat OpenShift Service on AWS provides different methods for working with HTTP headers. When
setting or deleting headers, you can use specific fields in the Ingress Controller or an individual route to
modify request and response headers. You can also set certain headers by using route annotations. The
various ways of configuring headers can present challenges when working together.

NOTE

You can only set or delete headers within an IngressController or Route CR, you cannot
append them. If an HTTP header is set with a value, that value must be complete and not
require appending in the future. In situations where it makes sense to append a header,
such as the X-Forwarded-For header, use the
spec.httpHeaders.forwardedHeaderPolicy field, instead of spec.httpHeaders.actions.

2.8.12.1. Order of precedence

When the same HTTP header is modified both in the Ingress Controller and in a route, HAProxy
prioritizes the actions in certain ways depending on whether it is a request or response header.

For HTTP response headers, actions specified in the Ingress Controller are executed after the
actions specified in a route. This means that the actions specified in the Ingress Controller take
precedence.

For HTTP request headers, actions specified in a route are executed after the actions specified
in the Ingress Controller. This means that the actions specified in the route take precedence.

For example, a cluster administrator sets the X-Frame-Options response header with the value DENY in
the Ingress Controller using the following configuration:

Example IngressController spec

A route owner sets the same response header that the cluster administrator set in the Ingress
Controller, but with the value SAMEORIGIN using the following configuration:

Example Route spec

apiVersion: operator.openshift.io/v1
kind: IngressController
...
spec:
 httpHeaders:
 actions:
 response:
 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: DENY

apiVersion: route.openshift.io/v1
kind: Route
...
spec:
 httpHeaders:
 actions:
 response:

Red Hat OpenShift Service on AWS 4 Networking

42

When both the IngressController spec and Route spec are configuring the X-Frame-Options header,
then the value set for this header at the global level in the Ingress Controller will take precedence, even
if a specific route allows frames.

This prioritzation occurs because the haproxy.config file uses the following logic, where the Ingress
Controller is considered the front end and individual routes are considered the back end. The header
value DENY applied to the front end configurations overrides the same header with the value
SAMEORIGIN that is set in the back end:

Additionally, any actions defined in either the Ingress Controller or a route override values set using
route annotations.

2.8.12.2. Special case headers

The following headers are either prevented entirely from being set or deleted, or allowed under specific
circumstances:

Table 2.2. Special case header configuration options

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: SAMEORIGIN

frontend public
 http-response set-header X-Frame-Options 'DENY'

frontend fe_sni
 http-response set-header X-Frame-Options 'DENY'

frontend fe_no_sni
 http-response set-header X-Frame-Options 'DENY'

backend be_secure:openshift-monitoring:alertmanager-main
 http-response set-header X-Frame-Options 'SAMEORIGIN'

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

43

proxy No No The proxy HTTP
request header
can be used to
exploit vulnerable
CGI applications
by injecting the
header value into
the
HTTP_PROXY
environment
variable. The
proxy HTTP
request header is
also non-standard
and prone to error
during
configuration.

No

host No Yes When the host
HTTP request
header is set using
the
IngressControll
er CR, HAProxy
can fail when
looking up the
correct route.

No

strict-transport-
security

No No The strict-
transport-
security HTTP
response header is
already handled
using route
annotations and
does not need a
separate
implementation.

Yes: the
haproxy.router.
openshift.io/hst
s_header route
annotation

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

Red Hat OpenShift Service on AWS 4 Networking

44

cookie and set-
cookie

No No The cookies that
HAProxy sets are
used for session
tracking to map
client connections
to particular back-
end servers.
Allowing these
headers to be set
could interfere
with HAProxy’s
session affinity
and restrict
HAProxy’s
ownership of a
cookie.

Yes:

the
haproxy
.router.
openshi
ft.io/dis
able_co
okie
route
annotatio
n

the
haproxy
.router.
openshi
ft.io/coo
kie_nam
e route
annotatio
n

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

2.8.13. Setting or deleting HTTP request and response headers in an Ingress
Controller

You can set or delete certain HTTP request and response headers for compliance purposes or other
reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for
specific routes.

For example, you might want to migrate an application running on your cluster to use mutual TLS, which
requires that your application checks for an X-Forwarded-Client-Cert request header, but the Red Hat
OpenShift Service on AWS default Ingress Controller provides an X-SSL-Client-Der request header.

The following procedure modifies the Ingress Controller to set the X-Forwarded-Client-Cert request
header, and delete the X-SSL-Client-Der request header.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to an Red Hat OpenShift Service on AWS cluster as a user with the cluster-
admin role.

Procedure

1. Edit the Ingress Controller resource:

2. Replace the X-SSL-Client-Der HTTP request header with the X-Forwarded-Client-Cert HTTP

$ oc -n openshift-ingress-operator edit ingresscontroller/default

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

45

1

2

3

4

5

2. Replace the X-SSL-Client-Der HTTP request header with the X-Forwarded-Client-Cert HTTP
request header:

The list of actions you want to perform on the HTTP headers.

The type of header you want to change. In this case, a request header.

The name of the header you want to change. For a list of available headers you can set or
delete, see HTTP header configuration .

The type of action being taken on the header. This field can have the value Set or Delete.

When setting HTTP headers, you must provide a value. The value can be a string from a list
of available directives for that header, for example DENY, or it can be a dynamic value that
will be interpreted using HAProxy’s dynamic value syntax. In this case, a dynamic value is
added.

NOTE

For setting dynamic header values for HTTP responses, allowed sample fetchers
are res.hdr and ssl_c_der. For setting dynamic header values for HTTP
requests, allowed sample fetchers are req.hdr and ssl_c_der. Both request and
response dynamic values can use the lower and base64 converters.

3. Save the file to apply the changes.

2.8.14. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 actions: 1
 request: 2
 - name: X-Forwarded-Client-Cert 3
 action:
 type: Set 4
 set:
 value: "%{+Q}[ssl_c_der,base64]" 5
 - name: X-SSL-Client-Der
 action:
 type: Delete

Red Hat OpenShift Service on AWS 4 Networking

46

1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

Example use cases
As a cluster administrator, you can:

Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

2.8.15. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners
to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary
streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.

$ oc edit IngressController

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 forwardedHeaderPolicy: Append

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

47

To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a
custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is
necessary to avoid problems from connection coalescing, where the client re-uses a connection for
different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and
not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level
Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-
end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not
with insecure or edge-terminated routes.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client may
connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a
problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the
WebSocket protocol, because the Ingress Controller cannot forward WebSocket to
HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you
have an application that is intended to accept WebSocket connections, it must not allow
negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket
protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

To enable HTTP/2 on an Ingress Controller, enter the oc annotate command:

Replace <ingresscontroller_name> with the name of the Ingress Controller to annotate.

Enable HTTP/2 on the entire cluster.

To enable HTTP/2 for the entire cluster, enter the oc annotate command:

TIP

You can alternatively apply the following YAML to add the annotation:

2.8.16. Configuring the PROXY protocol for an Ingress Controller

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
 annotations:
 ingress.operator.openshift.io/default-enable-http2: "true"

Red Hat OpenShift Service on AWS 4 Networking

48

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the
HostNetwork or NodePortService endpoint publishing strategy types. The PROXY protocol enables
the load balancer to preserve the original client addresses for connections that the Ingress Controller
receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the
default configuration, the connections that the Ingress Controller receives only contain the source
address that is associated with the load balancer.

This feature is not supported in cloud deployments. This restriction is because when Red Hat OpenShift
Service on AWS runs in a cloud platform, and an IngressController specifies that a service load balancer
should be used, the Ingress Operator configures the load balancer service and enables the PROXY
protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both Red Hat OpenShift Service on AWS and the external load
balancer to either use the PROXY protocol or to use TCP.

WARNING

The PROXY protocol is unsupported for the default Ingress Controller with
installer-provisioned clusters on non-cloud platforms that use a Keepalived Ingress
VIP.

Prerequisites

You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource:

2. Set the PROXY configuration:

If your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

If your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY

$ oc -n openshift-ingress-operator edit ingresscontroller/default

 spec:
 endpointPublishingStrategy:
 hostNetwork:
 protocol: PROXY
 type: HostNetwork

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

49

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

1

2

2.8.17. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for Red Hat
OpenShift Service on AWS to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites

You deployed an Red Hat OpenShift Service on AWS cluster.

You installed the oc command line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:

b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

Specifies the default domain. You cannot modify the default domain after installation.

Optional: Domain for Red Hat OpenShift Service on AWS infrastructure to use for
application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

 spec:
 endpointPublishingStrategy:
 nodePort:
 protocol: PROXY
 type: NodePortService

$ oc edit ingresses.config/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.example.com 1
 appsDomain: <test.example.com> 2

Red Hat OpenShift Service on AWS 4 Networking

50

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route:

Example output:

2.8.18. Converting HTTP header case

HAProxy lowercases HTTP header names by default, for example, changing Host: xyz.com to host:
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments API field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

Because Red Hat OpenShift Service on AWS includes HAProxy 2.6, be sure to add the
necessary configuration by using spec.httpHeaders.headerNameCaseAdjustments
before upgrading.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

Specify an HTTP header to be capitalized by entering the oc patch command.

1. Enter the oc patch command to change the HTTP host header to Host:

2. Annotate the route of the application:

The Ingress Controller then adjusts the host request header as specified.

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
hello-openshift hello_openshift-<my_project>.test.example.com
hello-openshift 8080-tcp None

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"]}}}'

$ oc annotate routes/my-application haproxy.router.openshift.io/h1-adjust-case=true

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

51

1

Specify adjustments using the HeaderNameCaseAdjustments field by configuring the Ingress
Controller YAML file.

1. The following example Ingress Controller YAML adjusts the host header to Host for HTTP/1
requests to appropriately annotated routes:

Example Ingress Controller YAML

2. The following example route enables HTTP response header name case adjustments using
the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

Set haproxy.router.openshift.io/h1-adjust-case to true.

2.8.19. Using router compression

You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME
types. You can use the mimeTypes variable to define the formats of MIME types to which compression
is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced
by "X-". To see the full notation for MIME types and subtypes, see RFC1341.

NOTE

Memory allocated for compression can affect the max connections. Additionally,
compression of large buffers can cause latency, like heavy regex or long lists of regex.

Not all MIME types benefit from compression, but HAProxy still uses resources to try to
compress if instructed to. Generally, text formats, such as html, css, and js, formats
benefit from compression, but formats that are already compressed, such as image, audio,
and video, benefit little in exchange for the time and resources spent on compression.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 headerNameCaseAdjustments:
 - Host

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/h1-adjust-case: true 1
 name: my-application
 namespace: my-application
spec:
 to:
 kind: Service
 name: my-application

Red Hat OpenShift Service on AWS 4 Networking

52

https://datatracker.ietf.org/doc/html/rfc1341#page-7

Procedure

1. Configure the httpCompression field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the httpCompression policy field to mimeTypes and specify a list of
MIME types that should have compression applied:

2.8.20. Exposing router metrics

You can expose the HAProxy router metrics by default in Prometheus format on the default stats port,
1936. The external metrics collection and aggregation systems such as Prometheus can access the
HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma
separated values (CSV) format.

Prerequisites

You configured your firewall to access the default stats port, 1936.

Procedure

1. Get the router pod name by running the following command:

Example output

2. Get the router’s username and password, which the router pod stores in the
/var/lib/haproxy/conf/metrics-auth/statsUsername and /var/lib/haproxy/conf/metrics-
auth/statsPassword files:

a. Get the username by running the following command:

$ oc edit -n openshift-ingress-operator ingresscontrollers/default

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpCompression:
 mimeTypes:
 - "text/html"
 - "text/css; charset=utf-8"
 - "application/json"
 ...

$ oc get pods -n openshift-ingress

NAME READY STATUS RESTARTS AGE
router-default-76bfffb66c-46qwp 1/1 Running 0 11h

$ oc rsh <router_pod_name> cat metrics-auth/statsUsername

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

53

b. Get the password by running the following command:

3. Get the router IP and metrics certificates by running the following command:

4. Get the raw statistics in Prometheus format by running the following command:

5. Access the metrics securely by running the following command:

6. Access the default stats port, 1936, by running the following command:

Example 2.1. Example output

$ oc rsh <router_pod_name> cat metrics-auth/statsPassword

$ oc describe pod <router_pod>

$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

$ curl -u user:password https://<router_IP>:<stats_port>/metrics -k

$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

...
HELP haproxy_backend_connections_total Total number of connections.
TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0
...
HELP haproxy_exporter_server_threshold Number of servers tracked and the current
threshold value.
TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500
...
HELP haproxy_frontend_bytes_in_total Current total of incoming bytes.
TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070
...
HELP haproxy_server_bytes_in_total Current total of incoming bytes.
TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service="
"} 0
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""}
0
haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0

Red Hat OpenShift Service on AWS 4 Networking

54

7. Launch the stats window by entering the following URL in a browser:

8. Optional: Get the stats in CSV format by entering the following URL in a browser:

2.8.21. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or
both error pages. The HAProxy router serves a 503 error page when the application pod is not running
or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default Red Hat OpenShift Service on AWS HAProxy router http
503 error code response page. You can use the default content as a template for creating your own
custom page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on Red Hat
OpenShift Service on AWS 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

NOTE

If you use the Red Hat OpenShift Service on AWS default 503 error code page as a
template for your customizations, the headers in the file require an editor that can use
CRLF line endings.

Procedure

1. Create a config map named my-custom-error-code-pages in the openshift-config
namespace:

IMPORTANT

haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjqx",route="hello-
route",server="10.130.0.90:8080",service="hello-svc-1"} 0
...

http://<user>:<password>@<router_IP>:<stats_port>

http://<user>:<password>@<router_ip>:1936/metrics;csv

$ oc -n openshift-config create configmap my-custom-error-code-pages \
--from-file=error-page-503.http \
--from-file=error-page-404.http

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

55

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http

1

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by
name:

The Ingress Operator copies the my-custom-error-code-pages config map from the
openshift-config namespace to the openshift-ingress namespace. The Operator names the
config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the
openshift-ingress namespace.

3. Display the copy:

Example output

NAME DATA AGE
default-errorpages 2 25s 1

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router
volume where the config map key is the filename that has the custom HTTP error code
response:

For 503 custom HTTP custom error code response:

For 404 custom HTTP custom error code response:

Verification

Verify your custom error code HTTP response:

1. Create a test project and application:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

$ oc get cm default-errorpages -n openshift-ingress

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

 $ oc new-project test-ingress

$ oc new-app django-psql-example

Red Hat OpenShift Service on AWS 4 Networking

56

2. For 503 custom http error code response:

a. Stop all the pods for the application.

b. Run the following curl command or visit the route hostname in the browser:

3. For 404 custom http error code response:

a. Visit a non-existent route or an incorrect route.

b. Run the following curl command or visit the route hostname in the browser:

4. Check if the errorfile attribute is properly in the haproxy.config file:

2.8.22. Setting the Ingress Controller maximum connections

A cluster administrator can set the maximum number of simultaneous connections for OpenShift router
deployments. You can patch an existing Ingress Controller to increase the maximum number of
connections.

Prerequisites

The following assumes that you already created an Ingress Controller

Procedure

Update the Ingress Controller to change the maximum number of connections for HAProxy:

WARNING

If you set the spec.tuningOptions.maxConnections value greater than
the current operating system limit, the HAProxy process will not start. See
the table in the "Ingress Controller configuration parameters" section for
more information about this parameter.

2.9. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR
CONFIGURATIONS

$ curl -vk <route_hostname>

$ curl -vk <route_hostname>

$ oc -n openshift-ingress rsh <router> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"maxConnections": 7500}}}'

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

57

The following table details the components of the Ingress Operator and if Red Hat Site Reliability
Engineers (SRE) maintains this component on Red Hat OpenShift Service on AWS clusters.

Table 2.3. Ingress Operator Responsibility Chart

Ingress component Managed by Default configuration?

Scaling Ingress Controller SRE Yes

Ingress Operator thread count SRE Yes

Ingress Controller access logging SRE Yes

Ingress Controller sharding SRE Yes

Ingress Controller route admission policy SRE Yes

Ingress Controller wildcard routes SRE Yes

Ingress Controller X-Forwarded headers SRE Yes

Ingress Controller route compression SRE Yes

Red Hat OpenShift Service on AWS 4 Networking

58

CHAPTER 3. AWS LOAD BALANCER OPERATOR
The AWS Load Balancer Operator (ALBO) is an Operator supported by Red Hat that users can
optionally install on SRE-managed Red Hat OpenShift Service on AWS (ROSA) clusters. The ALBO
manages the lifecycle of the AWS-managed AWS Load Balancer Controller (ALBC) that provisions
AWS Elastic Load Balancing v2 (ELBv2) services for applications running in ROSA clusters.

3.1. INSTALLING AN AWS LOAD BALANCER OPERATOR

You can install an AWS Load Balancer Operator (ALBO) if you meet certain requirements.

Prerequisites

You have an existing Red Hat OpenShift Service on AWS (ROSA) cluster with bring-your-own-
VPC (BYO-VPC) configuration across multiple availability zones (AZ) installed in STS mode.

You have access to the cluster as a user with the dedicated-admin role.

You have access to modify the VPC and subnets of the created ROSA cluster.

You have installed the ROSA CLI (rosa).

You have installed the Amazon Web Services (AWS) CLI.

You have installed the OpenShift CLI (oc).

You are using OpenShift Container Platform (OCP) 4.13 or later.

IMPORTANT

When installing an ALBO for use with a ROSA cluster in an AWS Local Zone (LZ), you
must enable the AWS LZ for the account, and AWS Elastic Load Balancing v2 (ELBv2)
services must be available in the AWS LZ.

Procedure

1. Identify the cluster infrastructure ID and the cluster OpenID Connect (OIDC) DNS by running
the following commands:

a. Identify the ROSA cluster INFRA ID:

or

b. Identify the ROSA cluster OIDC DNS:

Save the output from the commands. You will use this information in future steps within this
procedure.

$ rosa describe cluster --cluster=<cluster_name> | grep -i 'Infra ID'

$ oc get infrastructure cluster -o json | jq -r '.status.infrastructureName'

$ rosa describe cluster --cluster=<cluster_name> | grep -i 'OIDC'

CHAPTER 3. AWS LOAD BALANCER OPERATOR

59

1

2. Create the AWS IAM policy required for the ALBO:

a. Log in to the ROSA cluster as a user with the dedicated-admin role and create a new
project using the following command:

b. Assign the following trust policy to the newly-created AWS IAM role:

Replace '{AWS_AccountNo}' with your AWS account number and
'{Cluster_OIDC_Endpoint}' with the OIDC DNS identified earlier in this procedure.

IMPORTANT

Do not include the https portion of the OIDC DNS URL when replacing
{Cluster_OIDC_Endpoint} with the OIDC DNS you identified earlier. Only
the alphanumeric information that follows the / within the URL is needed.

For more information on assigning trust policies to AWS IAM roles, see How to use trust
policies with IAM roles.

c. Create and verify the role by using the generated trust policy:

For more information on creating AWS IAM roles, see Creating IAM roles.

$ oc new-project aws-load-balancer-operator

$ IDP='{Cluster_OIDC_Endpoint}'
$ IDP_ARN="arn:aws:iam::{AWS_AccountNo}:oidc-provider/${IDP}" 1
$ cat <<EOF > albo-operator-trusted-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "${IDP_ARN}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "${IDP}:sub": "system:serviceaccount:aws-load-balancer-operator:aws-load-
balancer-operator-controller-manager"
 }
 }
 }
]
}
EOF

$ aws iam create-role --role-name albo-operator --assume-role-policy-document
file://albo-operator-trusted-policy.json
$ OPERATOR_ROLE_ARN=$(aws iam get-role --role-name albo-operator --output json |
jq -r '.Role.Arn')
$ echo $OPERATOR_ROLE_ARN

Red Hat OpenShift Service on AWS 4 Networking

60

https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

d. Attach the operator’s permission policy to the role:

For more information on adding AWS IAM permissions to AWS IAM roles, see Adding and
removing IAM identity permissions.

e. Generate the operator’s AWS credentials:

For more information about formatting credentials files, see Using manual mode with
Amazon Web Services Security Token Service.

f. Create the operator’s credentials secret with the generated AWS credentials:

3. Create the AWS IAM policy required for the AWS Load Balancer Controller (ALBC):

a. Generate a trust policy file for your identity provider. The following example uses OpenID
Connect:

$ curl -o albo-operator-permission-policy.json
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/release-
1.1/hack/operator-permission-policy.json
$ aws iam put-role-policy --role-name albo-operator --policy-name perms-policy-albo-
operator --policy-document file://albo-operator-permission-policy.json

$ cat <<EOF> albo-operator-aws-credentials.cfg
[default]
sts_regional_endpoints = regional
role_arn = ${OPERATOR_ROLE_ARN}
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF

$ oc -n aws-load-balancer-operator create secret generic aws-load-balancer-operator --
from-file=credentials=albo-operator-aws-credentials.cfg

$ IDP='{Cluster_OIDC_Endpoint}'
$ IDP_ARN="arn:aws:iam::{AWS_AccountNo}:oidc-provider/${IDP}"
$ cat <<EOF > albo-controller-trusted-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "${IDP_ARN}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "${IDP}:sub": "system:serviceaccount:aws-load-balancer-operator:aws-load-
balancer-controller-cluster"
 }
 }
 }
]
}
EOF

CHAPTER 3. AWS LOAD BALANCER OPERATOR

61

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/authentication_and_authorization/managing-cloud-provider-credentials#cco-mode-sts

b. Create and verify the role by using the generated trust policy:

c. Attach the controller’s permission policy to the role:

d. Generate the controller’s AWS credentials:

e. Create the controller’s credentials secret by using the generated AWS credentials:

4. Add the tags necessary for subnet discovery:

a. Add the following {Key: Value} tag to the VPC hosting the ROSA cluster and to all its
subnets. Replace {Cluster Infra ID} with the Infra ID specified previously:

b. Add the following ELBv2 {Key: Value} tags to the private subnets and, optionally, to the
public subnets:

Private subnets: kubernetes.io/role/internal-elb:1

Public subnets: kubernetes.io/role/elb:1

NOTE

Internet-facing and internal load balancers will be created within the AZ
to which these subnets belong.

For more information on adding tags to AWS resources, including VPCs and subnets,
see Tag your Amazon EC2 resources .

IMPORTANT

$ aws iam create-role --role-name albo-controller --assume-role-policy-document
file://albo-controller-trusted-policy.json
$ CONTROLLER_ROLE_ARN=$(aws iam get-role --role-name albo-controller --output
json | jq -r '.Role.Arn')
$ echo $CONTROLLER_ROLE_ARN

$ curl -o albo-controller-permission-policy.json
https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-
controller/v2.4.7/docs/install/iam_policy.json
$ aws iam put-role-policy --role-name albo-controller --policy-name perms-policy-albo-
controller --policy-document file://albo-controller-permission-policy.json

$ cat <<EOF > albo-controller-aws-credentials.cfg
[default]
sts_regional_endpoints = regional
role_arn = ${CONTROLLER_ROLE_ARN}
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF

$ oc -n aws-load-balancer-operator create secret generic aws-load-balancer-controller-
cluster --from-file=credentials=albo-controller-aws-credentials.cfg

* kubernetes.io/cluster/${Cluster Infra ID}:owned

Red Hat OpenShift Service on AWS 4 Networking

62

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html

IMPORTANT

ELBv2 resources (such as ALBs and NLBs) created by ALBO do not
inherit custom tags set for ROSA clusters. You must set tags separately
for these resources.

5. Create ALBO:

6. Create an AWS ALBC:

IMPORTANT

Because AWS ALBCs do not support creating ALBs associated with both AZs
and AWS LZs, ROSA clusters can have ALBs associated exclusively with either
AWS LZs or AZs but not both simultaneously.

For more information regarding AWS ALBC configurations, see the following topics:

Creating multiple ingresses

Adding TLS termination

Verification

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 upgradeStrategy: Default

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 channel: stable-v1.0
 installPlanApproval: Automatic
 name: aws-load-balancer-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: aws-load-balancer-operator.v1.0.0

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster
spec:
 subnetTagging: Manual
 credentials:
 name: aws-load-balancer-controller-cluster

CHAPTER 3. AWS LOAD BALANCER OPERATOR

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/networking/aws-load-balancer-operator-1#nw-multiple-ingress-through-single-alb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/networking/aws-load-balancer-operator-1#nw-adding-tls-termination_adding-tls-termination

Confirm successful installation by running the following commands:

1. Gather information about pods within the project:

2. View the logs within the project:

For detailed instructions on verifying that the ELBv2 was created for the application
running in the ROSA cluster, see Creating an instance of AWS Load Balancer Controller .

3.2. UNINSTALLING AN AWS LOAD BALANCER OPERATOR

To uninstall an AWS Load Balancer Operator (ALBO) and perform an overall cleanup of the associated
resources, perform the following procedure.

Procedure

1. Clean up the sample application by deleting the Load Balancers created and managed by the
ALBO. For more information about deleting Load Balancers, see Delete an Application Load
Balancer.

2. Clean up the AWS VPC tags by removing the VPC tags that were added to the subnets for
discovering subnets and for creating Application Load Balancers (ALBs). For more information,
see Tag basics.

3. Clean up ALBO components by deleting both the ALBO and the Application Load Balancer
Controller (ALBC). For more information, see Deleting Operators from a cluster .

$ oc get pods -n aws-load-balancer-operator

$ oc logs -n aws-load-balancer-operator deployment/aws-load-balancer-operator-
controller-manager -c manager

Red Hat OpenShift Service on AWS 4 Networking

64

https://docs.openshift.com/container-platform/4.13/networking/aws_load_balancer_operator/create-instance-aws-load-balancer-controller.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-delete.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-basics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/operators/administrator-tasks#olm-deleting-operators-from-a-cluster

CHAPTER 4. OPENSHIFT SDN DEFAULT CNI NETWORK
PROVIDER

4.1. ENABLING MULTICAST FOR A PROJECT

NOTE

OpenShift SDN CNI is deprecated as of Red Hat OpenShift Service on AWS 4.14. As of
Red Hat OpenShift Service on AWS 4.15, the network plugin is not an option for new
installations. In a subsequent future release, the OpenShift SDN network plugin is planned
to be removed and no longer supported. Red Hat will provide bug fixes and support for
this feature until it is removed, but this feature will no longer receive enhancements. As
an alternative to OpenShift SDN CNI, you can use OVN Kubernetes CNI instead.

4.1.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service
discovery and not a high-bandwidth solution.

By default, network policies affect all connections in a namespace. However,
multicast is unaffected by network policies. If multicast is enabled in the same
namespace as your network policies, it is always allowed, even if there is a deny-
all network policy. Cluster administrators should consider the implications to the
exemption of multicast from network policies before enabling it.

Multicast traffic between Red Hat OpenShift Service on AWS pods is disabled by default. If you are
using the OpenShift SDN network plugin, you can enable multicast on a per-project basis.

When using the OpenShift SDN network plugin in networkpolicy isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project, regardless of
NetworkPolicy objects. Pods might be able to communicate over multicast even when they
cannot communicate over unicast.

Multicast packets sent by a pod in one project will never be delivered to pods in any other
project, even if there are NetworkPolicy objects that allow communication between the
projects.

When using the OpenShift SDN network plugin in multitenant isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project.

Multicast packets sent by a pod in one project will be delivered to pods in other projects only if
each project is joined together and multicast is enabled in each joined project.

4.1.2. Enabling multicast between pods

You can enable multicast between pods for your project.

CHAPTER 4. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

65

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin or the dedicated-admin
role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

3. Create a pod to act as a multicast sender:

$ oc annotate netnamespace <namespace> \
 netnamespace.network.openshift.io/multicast-enabled=true

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi9
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify

Red Hat OpenShift Service on AWS 4 Networking

66

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi9
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

CHAPTER 4. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

67

CHAPTER 5. NETWORK VERIFICATION FOR ROSA CLUSTERS
Network verification checks run automatically when you deploy a Red Hat OpenShift Service on AWS
(ROSA) cluster into an existing Virtual Private Cloud (VPC) or create an additional machine pool with a
subnet that is new to your cluster. The checks validate your network configuration and highlight errors,
enabling you to resolve configuration issues prior to deployment.

You can also run the network verification checks manually to validate the configuration for an existing
cluster.

5.1. UNDERSTANDING NETWORK VERIFICATION FOR ROSA
CLUSTERS

When you deploy a Red Hat OpenShift Service on AWS (ROSA) cluster into an existing Virtual Private
Cloud (VPC) or create an additional machine pool with a subnet that is new to your cluster, network
verification runs automatically. This helps you identify and resolve configuration issues prior to
deployment.

When you prepare to install your cluster by using Red Hat OpenShift Cluster Manager, the automatic
checks run after you input a subnet into a subnet ID field on the Virtual Private Cloud (VPC) subnet
settings page. If you create your cluster by using the ROSA CLI (rosa) with the interactive mode, the
checks run after you provide the required VPC network information. If you use the CLI without the
interactive mode, the checks begin immediately prior to the cluster creation.

When you add a machine pool with a subnet that is new to your cluster, the automatic network
verification checks the subnet to ensure that network connectivity is available before the machine pool
is provisioned.

After automatic network verification completes, a record is sent to the service log. The record provides
the results of the verification check, including any network configuration errors. You can resolve the
identified issues before a deployment and the deployment has a greater chance of success.

You can also run the network verification manually for an existing cluster. This enables you to verify the
network configuration for your cluster after making configuration changes. For steps to run the network
verification checks manually, see Running the network verification manually .

5.2. SCOPE OF THE NETWORK VERIFICATION CHECKS

The network verification includes checks for each of the following requirements:

The parent Virtual Private Cloud (VPC) exists.

All specified subnets belong to the VPC.

The VPC has enableDnsSupport enabled.

The VPC has enableDnsHostnames enabled.

Egress is available to the required domain and port combinations that are specified in the AWS
firewall prerequisites section.

5.3. AUTOMATIC NETWORK VERIFICATION BYPASSING

You can bypass the automatic network verification if you want to deploy a Red Hat OpenShift Service

Red Hat OpenShift Service on AWS 4 Networking

68

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#osd-aws-privatelink-firewall-prerequisites_rosa-sts-aws-prereqs

You can bypass the automatic network verification if you want to deploy a Red Hat OpenShift Service
on AWS (ROSA) cluster with known network configuration issues into an existing Virtual Private Cloud
(VPC).

If you bypass the network verification when you create a cluster, the cluster has a limited support status.
After installation, you can resolve the issues and then manually run the network verification. The limited
support status is removed after the verification succeeds.

Bypassing automatic network verification by using OpenShift Cluster Manager

When you install a cluster into an existing VPC by using Red Hat OpenShift Cluster Manager, you can
bypass the automatic verification by selecting Bypass network verification on the Virtual Private
Cloud (VPC) subnet settings page.

5.4. RUNNING THE NETWORK VERIFICATION MANUALLY

After installing a Red Hat OpenShift Service on AWS (ROSA) cluster, you can run the network
verification checks manually by using Red Hat OpenShift Cluster Manager or the ROSA CLI (rosa).

Running the network verification manually using OpenShift Cluster Manager
You can manually run the network verification checks for an existing Red Hat OpenShift Service on AWS
(ROSA) cluster by using Red Hat OpenShift Cluster Manager.

Prerequisites

You have an existing ROSA cluster.

You are the cluster owner or you have the cluster editor role.

Procedure

1. Navigate to OpenShift Cluster Manager and select your cluster.

2. Select Verify networking from the Actions drop-down menu.

Running the network verification manually using the CLI
You can manually run the network verification checks for an existing Red Hat OpenShift Service on AWS
(ROSA) cluster by using the ROSA CLI (rosa).

When you run the network verification, you can specify a set of VPC subnet IDs or a cluster name.

Prerequisites

You have installed and configured the latest ROSA CLI (rosa) on your installation host.

You have an existing ROSA cluster.

You are the cluster owner or you have the cluster editor role.

Procedure

Verify the network configuration by using one of the following methods:

Verify the network configuration by specifying the cluster name. The subnet IDs are
automatically detected:

CHAPTER 5. NETWORK VERIFICATION FOR ROSA CLUSTERS

69

https://console.redhat.com/openshift

1

1

2

3

4

Replace <cluster_name> with the name of your cluster.

Example output

Ensure that verification to all subnets has been completed:

The watch flag causes the command to complete after all the subnets under test
are in a failed or passed state.

The status-only flag does not trigger a run of network verification but returns the
current state, for example, subnet-123 (verification still in-progress). By default,
without this option, a call to this command always triggers a verification of the
specified subnets.

Use a specific AWS region that overrides the AWS_REGION environment variable.

Enter a list of subnet IDs separated by commas to verify. If any of the subnets do
not exist, the error message Network verification for subnet 'subnet-
<subnet_number> not found displays and no subnets are checked.

Example output

TIP

To output the full list of verification tests, you can include the --debug argument when
you run the rosa verify network command.

Verify the network configuration by specifying the VPC subnets IDs. Replace
<region_name> with your AWS region and <AWS_account_ID> with your AWS account ID:

$ rosa verify network --cluster <cluster_name> 1

I: Verifying the following subnet IDs are configured correctly: [subnet-
03146b9b52b6024cb subnet-03146b9b52b2034cc]
I: subnet-03146b9b52b6024cb: pending
I: subnet-03146b9b52b2034cc: passed
I: Run the following command to wait for verification to all subnets to complete:
rosa verify network --watch --status-only --region us-east-1 --subnet-ids subnet-
03146b9b52b6024cb,subnet-03146b9b52b2034cc

$ rosa verify network --watch \ 1
 --status-only \ 2
 --region <region_name> \ 3
 --subnet-ids subnet-03146b9b52b6024cb,subnet-03146b9b52b2034cc
4

I: Checking the status of the following subnet IDs: [subnet-03146b9b52b6024cb
subnet-03146b9b52b2034cc]
I: subnet-03146b9b52b6024cb: passed
I: subnet-03146b9b52b2034cc: passed

Red Hat OpenShift Service on AWS 4 Networking

70

Example output

Ensure that verification to all subnets has been completed:

Example output

$ rosa verify network --subnet-ids 03146b9b52b6024cb,subnet-03146b9b52b2034cc --
region <region_name> --role-arn arn:aws:iam::<AWS_account_ID>:role/my-Installer-
Role

I: Verifying the following subnet IDs are configured correctly: [subnet-
03146b9b52b6024cb subnet-03146b9b52b2034cc]
I: subnet-03146b9b52b6024cb: pending
I: subnet-03146b9b52b2034cc: passed
I: Run the following command to wait for verification to all subnets to complete:
rosa verify network --watch --status-only --region us-east-1 --subnet-ids subnet-
03146b9b52b6024cb,subnet-03146b9b52b2034cc

$ rosa verify network --watch --status-only --region us-east-1 --subnet-ids subnet-
03146b9b52b6024cb,subnet-03146b9b52b2034cc

I: Checking the status of the following subnet IDs: [subnet-03146b9b52b6024cb
subnet-03146b9b52b2034cc]
I: subnet-03146b9b52b6024cb: passed
I: subnet-03146b9b52b2034cc: passed

CHAPTER 5. NETWORK VERIFICATION FOR ROSA CLUSTERS

71

CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY
If you are using an existing Virtual Private Cloud (VPC), you can configure a cluster-wide proxy during a
Red Hat OpenShift Service on AWS (ROSA) cluster installation or after the cluster is installed. When
you enable a proxy, the core cluster components are denied direct access to the internet, but the proxy
does not affect user workloads.

NOTE

Only cluster system egress traffic is proxied, including calls to the cloud provider API.

If you use a cluster-wide proxy, you are responsible for maintaining the availability of the proxy to the
cluster. If the proxy becomes unavailable, then it might impact the health and supportability of the
cluster.

6.1. PREREQUISITES FOR CONFIGURING A CLUSTER-WIDE PROXY

To configure a cluster-wide proxy, you must meet the following requirements. These requirements are
valid when you configure a proxy during installation or postinstallation.

General requirements

You are the cluster owner.

Your account has sufficient privileges.

You have an existing Virtual Private Cloud (VPC) for your cluster.

The proxy can access the VPC for the cluster and the private subnets of the VPC. The proxy is
also accessible from the VPC for the cluster and from the private subnets of the VPC.

You have added the following endpoints to your VPC endpoint:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com
These endpoints are required to complete requests from the nodes to the AWS EC2 API.
Because the proxy works at the container level and not at the node level, you must route
these requests to the AWS EC2 API through the AWS private network. Adding the public IP
address of the EC2 API to your allowlist in your proxy server is not enough.

NOTE

When using a cluster-wide proxy, you must configure the s3.
<aws_region>.amazonaws.com endpoint as type Gateway. Also, you can
configure the ec2.<aws_region>.amazonaws.com and
elasticloadbalancing.<aws_region>.amazonaws.com endpoints only as
type Interface.

Network requirements

If your proxy re-encrypts egress traffic, you must create exclusions to the domain and port
combinations. The following table offers guidance into these exceptions.

Your proxy must exclude re-encrypting the following OpenShift URLs:

Red Hat OpenShift Service on AWS 4 Networking

72

Your proxy must exclude re-encrypting the following OpenShift URLs:

Address Pro
toc
ol/
Por
t

Function

observatorium-
mst.api.openshift.com

htt
ps/
443

Required. Used for Managed OpenShift-
specific telemetry.

sso.redhat.com htt
ps/
443

The https://cloud.redhat.com/openshift
site uses authentication from
sso.redhat.com to download the cluster
pull secret and use Red Hat SaaS solutions
to facilitate monitoring of your
subscriptions, cluster inventory, and
chargeback reporting.

Your proxy must exclude re-encrypting the following site reliability engineering (SRE) and
management URLs:

Address Pro
toc
ol/
Por
t

Function

*.osdsecuritylogs.splunkcloud.com

OR

inputs1.osdsecuritylogs.splunkclou
d.cominputs2.osdsecuritylogs.splu
nkcloud.cominputs4.osdsecuritylog
s.splunkcloud.cominputs5.osdsecu
ritylogs.splunkcloud.cominputs6.os
dsecuritylogs.splunkcloud.cominpu
ts7.osdsecuritylogs.splunkcloud.co
minputs8.osdsecuritylogs.splunkcl
oud.cominputs9.osdsecuritylogs.sp
lunkcloud.cominputs10.osdsecurity
logs.splunkcloud.cominputs11.osds
ecuritylogs.splunkcloud.cominputs
12.osdsecuritylogs.splunkcloud.co
minputs13.osdsecuritylogs.splunkcl
oud.cominputs14.osdsecuritylogs.s
plunkcloud.cominputs15.osdsecurit
ylogs.splunkcloud.com

tcp
/99
97

Used by the splunk-forwarder-operator as
a log forwarding endpoint to be used by
Red Hat SRE for log-based alerting.

http-inputs-
osdsecuritylogs.splunkcloud.com

htt
ps/
443

Used by the splunk-forwarder-operator as
a log forwarding endpoint to be used by
Red Hat SRE for log-based alerting.

CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY

73

https://cloud.redhat.com/openshift

Additional Resources

For the installation prerequisites for ROSA clusters that use the AWS Security Token Service
(STS), see AWS prerequisites for ROSA with STS.

For the installation prerequisites for ROSA clusters that do not use STS, see AWS prerequisites
for ROSA.

6.2. RESPONSIBILITIES FOR ADDITIONAL TRUST BUNDLES

If you supply an additional trust bundle, you are responsible for the following requirements:

Ensuring that the contents of the additional trust bundle are valid

Ensuring that the certificates, including intermediary certificates, contained in the additional
trust bundle have not expired

Tracking the expiry and performing any necessary renewals for certificates contained in the
additional trust bundle

Updating the cluster configuration with the updated additional trust bundle

6.3. CONFIGURING A PROXY DURING INSTALLATION

You can configure an HTTP or HTTPS proxy when you install a Red Hat OpenShift Service on AWS
(ROSA) cluster into an existing Virtual Private Cloud (VPC). You can configure the proxy during
installation by using Red Hat OpenShift Cluster Manager or the ROSA CLI (rosa).

6.3.1. Configuring a proxy during installation using OpenShift Cluster Manager

If you are installing a Red Hat OpenShift Service on AWS (ROSA) cluster into an existing Virtual Private
Cloud (VPC), you can use Red Hat OpenShift Cluster Manager to enable a cluster-wide HTTP or HTTPS
proxy during installation.

Prior to the installation, you must verify that the proxy is accessible from the VPC that the cluster is
being installed into. The proxy must also be accessible from the private subnets of the VPC.

For detailed steps to configure a cluster-wide proxy during installation by using OpenShift Cluster
Manager, see Creating a cluster with customizations by using OpenShift Cluster Manager .

6.3.2. Configuring a proxy during installation using the CLI

If you are installing a Red Hat OpenShift Service on AWS (ROSA) cluster into an existing Virtual Private
Cloud (VPC), you can use the ROSA CLI (rosa) to enable a cluster-wide HTTP or HTTPS proxy during
installation.

The following procedure provides details about the ROSA CLI (rosa) arguments that are used to
configure a cluster-wide proxy during installation. For general installation steps using the ROSA CLI, see
Creating a cluster with customizations using the CLI .

Prerequisites

You have verified that the proxy is accessible from the VPC that the cluster is being installed
into. The proxy must also be accessible from the private subnets of the VPC.

Procedure

Red Hat OpenShift Service on AWS 4 Networking

74

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-sts-aws-prerequisites
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#prerequisites

1 4 6

2

3 5 7

8

Procedure

Specify a proxy configuration when you create your cluster:

The additional-trust-bundle-file, http-proxy, and https-proxy arguments are all
optional.

The additional-trust-bundle-file argument is a file path pointing to a bundle of PEM-
encoded X.509 certificates, which are all concatenated together. The
additionalTrustBundle parameter is required unless the identity certificate of the proxy is
signed by an authority from the RHCOS trust bundle. If you use an MITM transparent proxy
network that does not require additional proxy configuration but requires additional CAs,
you must provide the MITM CA certificate.

The http-proxy and https-proxy arguments must point to a valid URL.

A comma-separated list of destination domain names, IP addresses, or network CIDRs to
exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

Additional Resources

Creating a cluster with customizations by using OpenShift Cluster Manager

Creating a cluster with customizations using the CLI

6.4. CONFIGURING A PROXY AFTER INSTALLATION

You can configure an HTTP or HTTPS proxy after you install a Red Hat OpenShift Service on AWS
(ROSA) cluster into an existing Virtual Private Cloud (VPC). You can configure the proxy after
installation by using Red Hat OpenShift Cluster Manager or the ROSA CLI (rosa).

6.4.1. Configuring a proxy after installation using OpenShift Cluster Manager

You can use Red Hat OpenShift Cluster Manager to add a cluster-wide proxy configuration to an
existing Red Hat OpenShift Service on AWS cluster in a Virtual Private Cloud (VPC).

You can also use OpenShift Cluster Manager to update an existing cluster-wide proxy configuration. For
example, you might need to update the network address for the proxy or replace the additional trust
bundle if any of the certificate authorities for the proxy expire.

IMPORTANT

$ rosa create cluster \
 <other_arguments_here> \
 --additional-trust-bundle-file <path_to_ca_bundle_file> \ 1 2 3
 --http-proxy http://<username>:<password>@<ip>:<port> \ 4 5
 --https-proxy https://<username>:<password>@<ip>:<port> \ 6 7
 --no-proxy example.com 8

CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY

75

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-cluster-customizations-ocm_rosa-sts-creating-a-cluster-with-customizations
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-cluster-customizations-cli_rosa-sts-creating-a-cluster-with-customizations

IMPORTANT

The cluster applies the proxy configuration to the control plane and compute nodes.
While applying the configuration, each cluster node is temporarily placed in an
unschedulable state and drained of its workloads. Each node is restarted as part of the
process.

Prerequisites

You have an Red Hat OpenShift Service on AWS cluster .

Your cluster is deployed in a VPC.

Procedure

1. Navigate to OpenShift Cluster Manager and select your cluster.

2. Under the Virtual Private Cloud (VPC) section on the Networking page, click Edit cluster-
wide proxy.

3. On the Edit cluster-wide proxy page, provide your proxy configuration details:

a. Enter a value in at least one of the following fields:

Specify a valid HTTP proxy URL.

Specify a valid HTTPS proxy URL.

In the Additional trust bundle field, provide a PEM encoded X.509 certificate bundle. If
you are replacing an existing trust bundle file, select Replace file to view the field. The
bundle is added to the trusted certificate store for the cluster nodes. An additional trust
bundle file is required unless the identity certificate for the proxy is signed by an
authority from the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle.
If you use an MITM transparent proxy network that does not require additional proxy
configuration but requires additional certificate authorities (CAs), you must provide the
MITM CA certificate.

b. Click Confirm.

Verification

Under the Virtual Private Cloud (VPC) section on the Networking page, verify that the proxy
configuration for your cluster is as expected.

6.4.2. Configuring a proxy after installation using the CLI

You can use the Red Hat OpenShift Service on AWS (ROSA) CLI (rosa) to add a cluster-wide proxy
configuration to an existing ROSA cluster in a Virtual Private Cloud (VPC).

You can also use rosa to update an existing cluster-wide proxy configuration. For example, you might
need to update the network address for the proxy or replace the additional trust bundle if any of the
certificate authorities for the proxy expire.

IMPORTANT

Red Hat OpenShift Service on AWS 4 Networking

76

https://console.redhat.com/openshift

1 4 6

2

3 5 7

8

IMPORTANT

The cluster applies the proxy configuration to the control plane and compute nodes.
While applying the configuration, each cluster node is temporarily placed in an
unschedulable state and drained of its workloads. Each node is restarted as part of the
process.

Prerequisites

You have installed and configured the latest ROSA (rosa) and OpenShift (oc) CLIs on your
installation host.

You have a ROSA cluster that is deployed in a VPC.

Procedure

Edit the cluster configuration to add or update the cluster-wide proxy details:

The additional-trust-bundle-file, http-proxy, and https-proxy arguments are all
optional.

The additional-trust-bundle-file argument is a file path pointing to a bundle of PEM-
encoded X.509 certificates, which are all concatenated together. The
additionalTrustBundle parameter is required unless the identity certificate of the proxy is
signed by an authority from the RHCOS trust bundle. If you use an MITM transparent proxy
network that does not require additional proxy configuration but requires additional CAs,
you must provide the MITM CA certificate.

NOTE

You should not attempt to change the proxy or additional trust bundle
configuration on the cluster directly. These changes must be applied by
using the ROSA CLI (rosa) or Red Hat OpenShift Cluster Manager. Any
changes that are made directly to the cluster will be reverted automatically.

The http-proxy and https-proxy arguments must point to a valid URL.

A comma-separated list of destination domain names, IP addresses, or network CIDRs to
exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

$ rosa edit cluster \
 --cluster $CLUSTER_NAME \
 --additional-trust-bundle-file <path_to_ca_bundle_file> \ 1 2 3
 --http-proxy http://<username>:<password>@<ip>:<port> \ 4 5
 --https-proxy https://<username>:<password>@<ip>:<port> \ 6 7
 --no-proxy example.com 8

CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY

77

Verification

1. List the status of the machine config pools and verify that they are updated:

Example output

2. Display the proxy configuration for your cluster and verify that the details are as expected:

Example output

6.5. REMOVING A CLUSTER-WIDE PROXY

You can remove your cluster-wide proxy by using the ROSA CLI. After removing the cluster, you should
also remove any trust bundles that are added to the cluster.

6.5.1. Removing the cluster-wide proxy using CLI

You must use the Red Hat OpenShift Service on AWS (ROSA) CLI, rosa, to remove the proxy’s address
from your cluster.

Prerequisites

You must have cluster administrator privileges.

You have installed the ROSA CLI (rosa).

Procedure

Use the rosa edit command to modify the proxy. You must pass empty strings to the --http-
proxy and --https-proxy arguments to clear the proxy from the cluster:

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-d9a03f612a432095dcde6dcf44597d90 True False False
3 3 3 0 31h
worker rendered-worker-f6827a4efe21e155c25c21b43c46f65e True False False
6 6 6 0 31h

$ oc get proxy cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Proxy
spec:
 httpProxy: http://proxy.host.domain:<port>
 httpsProxy: https://proxy.host.domain:<port>
 <...more...>
status:
 httpProxy: http://proxy.host.domain:<port>
 httpsProxy: https://proxy.host.domain:<port>
 <...more...>

Red Hat OpenShift Service on AWS 4 Networking

78

NOTE

While your proxy might only use one of the proxy arguments, the empty fields are
ignored, so passing empty strings to both the --http-proxy and --https-proxy
arguments do not cause any issues.

Example Output

Verification

You can verify that the proxy has been removed from the cluster by using the rosa describe
command:

Before removal, the proxy IP displays in a proxy section:

After removing the proxy, the proxy section is removed:

$ rosa edit cluster -c <cluster_name> --http-proxy "" --https-proxy ""

I: Updated cluster <cluster_name>

$ rosa describe cluster -c <cluster_name>

Name: <cluster_name>
ID: <cluster_internal_id>
External ID: <cluster_external_id>
OpenShift Version: 4.0
Channel Group: stable
DNS: <dns>
AWS Account: <aws_account_id>
API URL: <api_url>
Console URL: <console_url>
Region: us-east-1
Multi-AZ: false
Nodes:
 - Control plane: 3
 - Infra: 2
 - Compute: 2
Network:
 - Type: OVNKubernetes
 - Service CIDR: <service_cidr>
 - Machine CIDR: <machine_cidr>
 - Pod CIDR: <pod_cidr>
 - Host Prefix: <host_prefix>
Proxy:
 - HTTPProxy: <proxy_url>
Additional trust bundle: REDACTED

Name: <cluster_name>
ID: <cluster_internal_id>
External ID: <cluster_external_id>
OpenShift Version: 4.0
Channel Group: stable

CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY

79

6.5.2. Removing certificate authorities on a Red Hat OpenShift Service on AWS
cluster

You can remove certificate authorities (CA) from your cluster with the Red Hat OpenShift Service on
AWS (ROSA) CLI, rosa.

Prerequisites

You must have cluster administrator privileges.

You have installed the ROSA CLI (rosa).

Your cluster has certificate authorities added.

Procedure

Use the rosa edit command to modify the CA trust bundle. You must pass empty strings to the
--additional-trust-bundle-file argument to clear the trust bundle from the cluster:

Example Output

Verification

You can verify that the trust bundle has been removed from the cluster by using the rosa
describe command:

Before removal, the Additional trust bundle section appears, redacting its value for security
purposes:

DNS: <dns>
AWS Account: <aws_account_id>
API URL: <api_url>
Console URL: <console_url>
Region: us-east-1
Multi-AZ: false
Nodes:
 - Control plane: 3
 - Infra: 2
 - Compute: 2
Network:
 - Type: OVNKubernetes
 - Service CIDR: <service_cidr>
 - Machine CIDR: <machine_cidr>
 - Pod CIDR: <pod_cidr>
 - Host Prefix: <host_prefix>
Additional trust bundle: REDACTED

$ rosa edit cluster -c <cluster_name> --additional-trust-bundle-file ""

I: Updated cluster <cluster_name>

$ rosa describe cluster -c <cluster_name>

Red Hat OpenShift Service on AWS 4 Networking

80

After removing the proxy, the Additional trust bundle section is removed:

Name: <cluster_name>
ID: <cluster_internal_id>
External ID: <cluster_external_id>
OpenShift Version: 4.0
Channel Group: stable
DNS: <dns>
AWS Account: <aws_account_id>
API URL: <api_url>
Console URL: <console_url>
Region: us-east-1
Multi-AZ: false
Nodes:
 - Control plane: 3
 - Infra: 2
 - Compute: 2
Network:
 - Type: OVNKubernetes
 - Service CIDR: <service_cidr>
 - Machine CIDR: <machine_cidr>
 - Pod CIDR: <pod_cidr>
 - Host Prefix: <host_prefix>
Proxy:
 - HTTPProxy: <proxy_url>
Additional trust bundle: REDACTED

Name: <cluster_name>
ID: <cluster_internal_id>
External ID: <cluster_external_id>
OpenShift Version: 4.0
Channel Group: stable
DNS: <dns>
AWS Account: <aws_account_id>
API URL: <api_url>
Console URL: <console_url>
Region: us-east-1
Multi-AZ: false
Nodes:
 - Control plane: 3
 - Infra: 2
 - Compute: 2
Network:
 - Type: OVNKubernetes
 - Service CIDR: <service_cidr>
 - Machine CIDR: <machine_cidr>
 - Pod CIDR: <pod_cidr>
 - Host Prefix: <host_prefix>
Proxy:
 - HTTPProxy: <proxy_url>

CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY

81

CHAPTER 7. CIDR RANGE DEFINITIONS
You must specify non-overlapping ranges for the following CIDR ranges.

NOTE

Machine CIDR ranges cannot be changed after creating your cluster.

When specifying subnet CIDR ranges, ensure that the subnet CIDR range is within the defined Machine
CIDR. You must verify that the subnet CIDR ranges allow for enough IP addresses for all intended
workloads, including at least eight IP addresses for possible AWS Load Balancers.

IMPORTANT

OVN-Kubernetes, the default network provider in Red Hat OpenShift Service on AWS
4.11 and later, uses the 100.64.0.0/16 IP address range internally. If your cluster uses
OVN-Kubernetes, do not include the 100.64.0.0/16 IP address range in any other CIDR
definitions in your cluster.

7.1. MACHINE CIDR

In the Machine CIDR field, you must specify the IP address range for machines or cluster nodes. This
range must encompass all CIDR address ranges for your virtual private cloud (VPC) subnets. Subnets
must be contiguous. A minimum IP address range of 128 addresses, using the subnet prefix /25, is
supported for single availability zone deployments. A minimum address range of 256 addresses, using
the subnet prefix /24, is supported for deployments that use multiple availability zones.

The default is 10.0.0.0/16. This range must not conflict with any connected networks.

NOTE

When using ROSA with HCP, the static IP address 172.20.0.1 is reserved for the internal
Kubernetes API address. The machine, pod, and service CIDRs ranges must not conflict
with this IP address.

7.2. SERVICE CIDR

In the Service CIDR field, you must specify the IP address range for services. It is recommended, but not
required, that the address block is the same between clusters. This will not create IP address conflicts.
The range must be large enough to accommodate your workload. The address block must not overlap
with any external service accessed from within the cluster. The default is 172.30.0.0/16.

7.3. POD CIDR

In the pod CIDR field, you must specify the IP address range for pods.

It is recommended, but not required, that the address block is the same between clusters. This will not
create IP address conflicts. The range must be large enough to accommodate your workload. The
address block must not overlap with any external service accessed from within the cluster. The default is
10.128.0.0/14.

7.4. HOST PREFIX

Red Hat OpenShift Service on AWS 4 Networking

82

In the Host Prefix field, you must specify the subnet prefix length assigned to pods scheduled to
individual machines. The host prefix determines the pod IP address pool for each machine.

For example, if the host prefix is set to /23, each machine is assigned a /23 subnet from the pod CIDR
address range. The default is /23, allowing 512 cluster nodes, and 512 pods per node (both of which are
beyond our maximum supported).

CHAPTER 7. CIDR RANGE DEFINITIONS

83

CHAPTER 8. NETWORK POLICY

8.1. ABOUT NETWORK POLICY

As a cluster administrator, you can define network policies that restrict traffic to pods in your cluster.

8.1.1. About network policy

In a cluster using a network plugin that supports Kubernetes network policy, network isolation is
controlled entirely by NetworkPolicy objects. In Red Hat OpenShift Service on AWS 4, OpenShift SDN
supports using network policy in its default network isolation mode.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by network policy rules. However, pods
connecting to the host-networked pods might be affected by the network policy
rules.

Network policies cannot block traffic from localhost or from their resident nodes.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, ICMP, and SCTP protocols. Other protocols are not
affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:

Only allow connections from the Red Hat OpenShift Service on AWS Ingress Controller:

To make a project allow only connections from the Red Hat OpenShift Service on AWS Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector: {}
 ingress: []

Red Hat OpenShift Service on AWS 4 Networking

84

To make a project allow only connections from the Red Hat OpenShift Service on AWS Ingress
Controller, add the following NetworkPolicy object.

Only accept connections from pods within a project:
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a
NetworkPolicy object similar to the following:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP
 port: 80
 - protocol: TCP
 port: 443

CHAPTER 8. NETWORK POLICY

85

1

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

8.1.1.1. Using the allow-from-router network policy

Use the following NetworkPolicy to allow external traffic regardless of the router configuration:

policy-group.network.openshift.io/ingress:"" label supports both OpenShift-SDN and OVN-
Kubernetes.

8.1.1.2. Using the allow-from-hostnetwork network policy

Add the following allow-from-hostnetwork NetworkPolicy object to direct traffic from the host
network pods:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-router
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: "" 1
 podSelector: {}
 policyTypes:
 - Ingress

apiVersion: networking.k8s.io/v1

Red Hat OpenShift Service on AWS 4 Networking

86

8.1.2. Optimizations for network policy with OpenShift SDN

Use a network policy to isolate pods that are differentiated from one another by labels within a
namespace.

It is inefficient to apply NetworkPolicy objects to large numbers of individual pods in a single
namespace. Pod labels do not exist at the IP address level, so a network policy generates a separate
Open vSwitch (OVS) flow rule for every possible link between every pod selected with a podSelector.

For example, if the spec podSelector and the ingress podSelector within a NetworkPolicy object each
match 200 pods, then 40,000 (200*200) OVS flow rules are generated. This might slow down a node.

When designing your network policy, refer to the following guidelines:

Reduce the number of OVS flow rules by using namespaces to contain groups of pods that need
to be isolated.
NetworkPolicy objects that select a whole namespace, by using the namespaceSelector or an
empty podSelector, generate only a single OVS flow rule that matches the VXLAN virtual
network ID (VNID) of the namespace.

Keep the pods that do not need to be isolated in their original namespace, and move the pods
that require isolation into one or more different namespaces.

Create additional targeted cross-namespace network policies to allow the specific traffic that
you do want to allow from the isolated pods.

8.1.3. Optimizations for network policy with OVN-Kubernetes network plugin

When designing your network policy, refer to the following guidelines:

For network policies with the same spec.podSelector spec, it is more efficient to use one
network policy with multiple ingress or egress rules, than multiple network policies with subsets
of ingress or egress rules.

Every ingress or egress rule based on the podSelector or namespaceSelector spec
generates the number of OVS flows proportional to number of pods selected by network
policy + number of pods selected by ingress or egress rule. Therefore, it is preferable to use
the podSelector or namespaceSelector spec that can select as many pods as you need in one
rule, instead of creating individual rules for every pod.
For example, the following policy contains two rules:

kind: NetworkPolicy
metadata:
 name: allow-from-hostnetwork
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/host-network: ""
 podSelector: {}
 policyTypes:
 - Ingress

apiVersion: networking.k8s.io/v1

CHAPTER 8. NETWORK POLICY

87

The following policy expresses those same two rules as one:

The same guideline applies to the spec.podSelector spec. If you have the same ingress or
egress rules for different network policies, it might be more efficient to create one network
policy with a common spec.podSelector spec. For example, the following two policies have
different rules:

kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend
 - from:
 - podSelector:
 matchLabels:
 role: backend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector:
 matchExpressions:
 - {key: role, operator: In, values: [frontend, backend]}

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy1
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy2
spec:
 podSelector:
 matchLabels:

Red Hat OpenShift Service on AWS 4 Networking

88

The following network policy expresses those same two rules as one:

You can apply this optimization when only multiple selectors are expressed as one. In cases
where selectors are based on different labels, it may not be possible to apply this optimization. In
those cases, consider applying some new labels for network policy optimization specifically.

8.1.4. Next steps

Creating a network policy

8.2. CREATING A NETWORK POLICY

As a user with the admin role, you can create a network policy for a namespace.

8.2.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

 role: client
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy3
spec:
 podSelector:
 matchExpressions:
 - {key: role, operator: In, values: [db, client]}
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app

CHAPTER 8. NETWORK POLICY

89

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

8.2.2. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic

 ports: 4
 - protocol: TCP
 port: 27017

$ touch <policy_name>.yaml

Red Hat OpenShift Service on AWS 4 Networking

90

This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic
allowed by the configuration of other Network Policies.

Allow ingress from all pods in the same namespace

Allow ingress traffic to one pod from a particular namespace

This policy allows traffic to pods labelled pod-a from pods running in namespace-y.

2. To create the network policy object, enter the following command:

where:

<policy_name>

Specifies the network policy file name.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-traffic-pod
spec:
 podSelector:
 matchLabels:
 pod: pod-a
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: namespace-y

$ oc apply -f <policy_name>.yaml -n <namespace>

CHAPTER 8. NETWORK POLICY

91

1

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

8.2.3. Creating a default deny all network policy

This is a fundamental policy, blocking all cross-pod networking other than network traffic allowed by the
configuration of other deployed network policies. This procedure enforces a default deny-by-default
policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:

namespace: default deploys this policy to the default namespace.

networkpolicy.networking.k8s.io/deny-by-default created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
 namespace: default 1
spec:
 podSelector: {} 2
 ingress: [] 3

Red Hat OpenShift Service on AWS 4 Networking

92

2

3

podSelector: is empty, this means it matches all the pods. Therefore, the policy applies to
all pods in the default namespace.

There are no ingress rules specified. This causes incoming traffic to be dropped to all
pods.

2. Apply the policy by entering the following command:

Example output

8.2.4. Creating a network policy to allow traffic from external clients

With the deny-by-default policy in place you can proceed to configure a policy that allows traffic from
external clients to a pod with the label app=web.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows external service from the public Internet directly
or by using a Load Balancer to access the pod. Traffic is only allowed to a pod with the label app=web.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from the public Internet directly or by using a load balancer to
access the pod. Save the YAML in the web-allow-external.yaml file:

$ oc apply -f deny-by-default.yaml

networkpolicy.networking.k8s.io/deny-by-default created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-external
 namespace: default
spec:
 policyTypes:
 - Ingress

CHAPTER 8. NETWORK POLICY

93

2. Apply the policy by entering the following command:

Example output

This policy allows traffic from all resources, including external traffic as illustrated in the
following diagram:

8.2.5. Creating a network policy allowing traffic to an application from all
namespaces

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows traffic from all pods in all namespaces to a
particular application.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

 podSelector:
 matchLabels:
 app: web
 ingress:
 - {}

$ oc apply -f web-allow-external.yaml

networkpolicy.networking.k8s.io/web-allow-external created

Red Hat OpenShift Service on AWS 4 Networking

94

1

2

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in all namespaces to a particular application.
Save the YAML in the web-allow-all-namespaces.yaml file:

Applies the policy only to app:web pods in default namespace.

Selects all pods in all namespaces.

NOTE

By default, if you omit specifying a namespaceSelector it does not select any
namespaces, which means the policy allows traffic only from the namespace the
network policy is deployed to.

2. Apply the policy by entering the following command:

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to deploy an alpine image in the secondary namespace and to
start a shell:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-namespaces
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector: {} 2

$ oc apply -f web-allow-all-namespaces.yaml

networkpolicy.networking.k8s.io/web-allow-all-namespaces created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc run test-$RANDOM --namespace=secondary --rm -i -t --image=alpine -- sh

CHAPTER 8. NETWORK POLICY

95

3. Run the following command in the shell and observe that the request is allowed:

Expected output

8.2.6. Creating a network policy allowing traffic to an application from a namespace

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows traffic to a pod with the label app=web from a
particular namespace. You might want to do this to:

Restrict traffic to a production database only to namespaces where production workloads are
deployed.

Enable monitoring tools deployed to a particular namespace to scrape metrics from the current
namespace.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Red Hat OpenShift Service on AWS 4 Networking

96

1

2

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in a particular namespaces with a label
purpose=production. Save the YAML in the web-allow-prod.yaml file:

Applies the policy only to app:web pods in the default namespace.

Restricts traffic to only pods in namespaces that have the label purpose=production.

2. Apply the policy by entering the following command:

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to create the prod namespace:

3. Run the following command to label the prod namespace:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-prod
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 purpose: production 2

$ oc apply -f web-allow-prod.yaml

networkpolicy.networking.k8s.io/web-allow-prod created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc create namespace prod

$ oc label namespace/prod purpose=production

CHAPTER 8. NETWORK POLICY

97

4. Run the following command to create the dev namespace:

5. Run the following command to label the dev namespace:

6. Run the following command to deploy an alpine image in the dev namespace and to start a
shell:

7. Run the following command in the shell and observe that the request is blocked:

Expected output

8. Run the following command to deploy an alpine image in the prod namespace and start a shell:

9. Run the following command in the shell and observe that the request is allowed:

Expected output

$ oc create namespace dev

$ oc label namespace/dev purpose=testing

$ oc run test-$RANDOM --namespace=dev --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

wget: download timed out

$ oc run test-$RANDOM --namespace=prod --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

Red Hat OpenShift Service on AWS 4 Networking

98

8.2.7. Creating a network policy using OpenShift Cluster Manager

To define granular rules describing the ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

Prerequisites

You logged in to OpenShift Cluster Manager.

You created an Red Hat OpenShift Service on AWS cluster.

You configured an identity provider for your cluster.

You added your user account to the configured identity provider.

You created a project within your Red Hat OpenShift Service on AWS cluster.

Procedure

1. From OpenShift Cluster Manager, click on the cluster you want to access.

2. Click Open console to navigate to the OpenShift web console.

3. Click on your identity provider and provide your credentials to log in to the cluster.

4. From the administrator perspective, under Networking, click NetworkPolicies.

5. Click Create NetworkPolicy.

6. Provide a name for the policy in the Policy name field.

7. Optional: You can provide the label and selector for a specific pod if this policy applies only to
one or more specific pods. If you do not select a specific pod, then this policy will be applicable
to all pods on the cluster.

8. Optional: You can block all ingress and egress traffic by using the Deny all ingress traffic or
Deny all egress traffic checkboxes.

9. You can also add any combination of ingress and egress rules, allowing you to specify the port,
namespace, or IP blocks you want to approve.

10. Add ingress rules to your policy:

a. Select Add ingress rule to configure a new rule. This action creates a new Ingress rule row
with an Add allowed source drop-down menu that enables you to specify how you want to
limit inbound traffic. The drop-down menu offers three options to limit your ingress traffic:

Allow pods from the same namespace limits traffic to pods within the same
namespace. You can specify the pods in a namespace, but leaving this option blank
allows all of the traffic from pods in the namespace.

Allow pods from inside the cluster limits traffic to pods within the same cluster as the

<p>Thank you for using nginx.</p>
</body>
</html>

CHAPTER 8. NETWORK POLICY

99

https://console.redhat.com/openshift
https://console.redhat.com/openshift

policy. You can specify namespaces and pods from which you want to allow inbound
traffic. Leaving this option blank allows inbound traffic from all namespaces and pods
within this cluster.

Allow peers by IP block limits traffic from a specified Classless Inter-Domain Routing
(CIDR) IP block. You can block certain IPs with the exceptions option. Leaving the CIDR
field blank allows all inbound traffic from all external sources.

b. You can restrict all of your inbound traffic to a port. If you do not add any ports then all ports
are accessible to traffic.

11. Add egress rules to your network policy:

a. Select Add egress rule to configure a new rule. This action creates a new Egress rule row
with an Add allowed destination"* drop-down menu that enables you to specify how you
want to limit outbound traffic. The drop-down menu offers three options to limit your
egress traffic:

Allow pods from the same namespace limits outbound traffic to pods within the same
namespace. You can specify the pods in a namespace, but leaving this option blank
allows all of the traffic from pods in the namespace.

Allow pods from inside the cluster limits traffic to pods within the same cluster as the
policy. You can specify namespaces and pods from which you want to allow outbound
traffic. Leaving this option blank allows outbound traffic from all namespaces and pods
within this cluster.

Allow peers by IP block limits traffic from a specified CIDR IP block. You can block
certain IPs with the exceptions option. Leaving the CIDR field blank allows all outbound
traffic from all external sources.

b. You can restrict all of your outbound traffic to a port. If you do not add any ports then all
ports are accessible to traffic.

8.3. VIEWING A NETWORK POLICY

As a user with the admin role, you can view a network policy for a namespace.

8.3.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app

Red Hat OpenShift Service on AWS 4 Networking

100

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

8.3.2. Viewing network policies using the CLI

You can examine the network policies in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can view any network policy
in the cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

List network policies in a namespace:

To view network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific network policy, enter the following command:

where:

<policy_name>

Specifies the name of the network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

 ports: 4
 - protocol: TCP
 port: 27017

$ oc get networkpolicy

$ oc describe networkpolicy <policy_name> -n <namespace>

CHAPTER 8. NETWORK POLICY

101

Output for oc describe command

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

8.3.3. Viewing network policies using OpenShift Cluster Manager

You can view the configuration details of your network policy in Red Hat OpenShift Cluster Manager.

Prerequisites

You logged in to OpenShift Cluster Manager.

You created an Red Hat OpenShift Service on AWS cluster.

You configured an identity provider for your cluster.

You added your user account to the configured identity provider.

You created a network policy.

Procedure

1. From the Administrator perspective in the OpenShift Cluster Manager web console, under
Networking, click NetworkPolicies.

2. Select the desired network policy to view.

3. In the Network Policy details page, you can view all of the associated ingress and egress rules.

4. Select YAML on the network policy details to view the policy configuration in YAML format.

NOTE

You can only view the details of these policies. You cannot edit these policies.

$ oc describe networkpolicy allow-same-namespace

Name: allow-same-namespace
Namespace: ns1
Created on: 2021-05-24 22:28:56 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 PodSelector: <none>
 Not affecting egress traffic
 Policy Types: Ingress

Red Hat OpenShift Service on AWS 4 Networking

102

https://console.redhat.com/openshift

8.4. DELETING A NETWORK POLICY

As a user with the admin role, you can delete a network policy from a namespace.

8.4.1. Deleting a network policy using the CLI

You can delete a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can delete any network
policy in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

To delete a network policy object, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

8.4.2. Deleting a network policy using OpenShift Cluster Manager

You can delete a network policy in a namespace.

$ oc delete networkpolicy <policy_name> -n <namespace>

networkpolicy.networking.k8s.io/default-deny deleted

CHAPTER 8. NETWORK POLICY

103

Prerequisites

You logged in to OpenShift Cluster Manager.

You created an Red Hat OpenShift Service on AWS cluster.

You configured an identity provider for your cluster.

You added your user account to the configured identity provider.

Procedure

1. From the Administrator perspective in the OpenShift Cluster Manager web console, under
Networking, click NetworkPolicies.

2. Use one of the following methods for deleting your network policy:

Delete the policy from the Network Policies table:

a. From the Network Policies table, select the stack menu on the row of the network
policy you want to delete and then, click Delete NetworkPolicy.

Delete the policy using the Actions drop-down menu from the individual network policy
details:

a. Click on Actions drop-down menu for your network policy.

b. Select Delete NetworkPolicy from the menu.

8.5. CONFIGURING MULTITENANT ISOLATION WITH NETWORK
POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

NOTE

If you are using the OpenShift SDN network plugin, configuring network policies as
described in this section provides network isolation similar to multitenant mode but with
network policy mode set.

8.5.1. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin or the OpenShift SDN network plugin with mode: NetworkPolicy
set. This mode is the default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

Red Hat OpenShift Service on AWS 4 Networking

104

https://console.redhat.com/openshift

Procedure

1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OpenShift SDN. You can use the
network.openshift.io/policy-group: ingress namespace selector label, but
this is a legacy label.

b. A policy named allow-from-openshift-monitoring:

c. A policy named allow-same-namespace:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:

CHAPTER 8. NETWORK POLICY

105

d. A policy named allow-from-kube-apiserver-operator:

For more details, see New kube-apiserver-operator webhook controller validating health
of webhook.

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

Example output

 podSelector:
 ingress:
 - from:
 - podSelector: {}
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-kube-apiserver-operator
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: openshift-kube-apiserver-operator
 podSelector:
 matchLabels:
 app: kube-apiserver-operator
 policyTypes:
 - Ingress
EOF

$ oc describe networkpolicy

Name: allow-from-openshift-ingress
Namespace: example1
Created on: 2020-06-09 00:28:17 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: ingress
 Not affecting egress traffic
 Policy Types: Ingress

Name: allow-from-openshift-monitoring
Namespace: example1
Created on: 2020-06-09 00:29:57 -0400 EDT
Labels: <none>

Red Hat OpenShift Service on AWS 4 Networking

106

https://access.redhat.com/solutions/6964520

Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: monitoring
 Not affecting egress traffic
 Policy Types: Ingress

CHAPTER 8. NETWORK POLICY

107

CHAPTER 9. OVN-KUBERNETES NETWORK PLUGIN

9.1. CONFIGURING AN EGRESS IP ADDRESS

As a cluster administrator, you can configure the OVN-Kubernetes Container Network Interface (CNI)
network plugin to assign one or more egress IP addresses to a namespace, or to specific pods in a
namespace.

9.1.1. Egress IP address architectural design and implementation

The Red Hat OpenShift Service on AWS egress IP address functionality allows you to ensure that the
traffic from one or more pods in one or more namespaces has a consistent source IP address for
services outside the cluster network.

For example, you might have a pod that periodically queries a database that is hosted on a server
outside of your cluster. To enforce access requirements for the server, a packet filtering device is
configured to allow traffic only from specific IP addresses. To ensure that you can reliably allow access
to the server from only that specific pod, you can configure a specific egress IP address for the pod that
makes the requests to the server.

An egress IP address assigned to a namespace is different from an egress router, which is used to send
traffic to specific destinations.

In ROSA with HCP clusters, application pods and ingress router pods run on the same node. If you
configure an egress IP address for an application project in this scenario, the IP address is not used when
you send a request to a route from the application project.

IMPORTANT

The assignment of egress IP addresses to control plane nodes with the EgressIP feature
is not supported.

The following examples illustrate the annotation from nodes on several public cloud providers. The
annotations are indented for readability.

Example cloud.network.openshift.io/egress-ipconfig annotation on AWS

The following sections describe the IP address capacity for supported public cloud environments for use
in your capacity calculation.

9.1.1.1. Amazon Web Services (AWS) IP address capacity limits

On AWS, constraints on IP address assignments depend on the instance type configured. For more
information, see IP addresses per network interface per instance type

cloud.network.openshift.io/egress-ipconfig: [
 {
 "interface":"eni-078d267045138e436",
 "ifaddr":{"ipv4":"10.0.128.0/18"},
 "capacity":{"ipv4":14,"ipv6":15}
 }
]

Red Hat OpenShift Service on AWS 4 Networking

108

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI

9.1.1.2. Assignment of egress IPs to pods

To assign one or more egress IPs to a namespace or specific pods in a namespace, the following
conditions must be satisfied:

At least one node in your cluster must have the k8s.ovn.org/egress-assignable: "" label.

An EgressIP object exists that defines one or more egress IP addresses to use as the source IP
address for traffic leaving the cluster from pods in a namespace.

IMPORTANT

If you create EgressIP objects prior to labeling any nodes in your cluster for egress IP
assignment, Red Hat OpenShift Service on AWS might assign every egress IP address to
the first node with the k8s.ovn.org/egress-assignable: "" label.

To ensure that egress IP addresses are widely distributed across nodes in the cluster,
always apply the label to the nodes you intent to host the egress IP addresses before
creating any EgressIP objects.

9.1.1.3. Assignment of egress IPs to nodes

When creating an EgressIP object, the following conditions apply to nodes that are labeled with the
k8s.ovn.org/egress-assignable: "" label:

An egress IP address is never assigned to more than one node at a time.

An egress IP address is equally balanced between available nodes that can host the egress IP
address.

If the spec.EgressIPs array in an EgressIP object specifies more than one IP address, the
following conditions apply:

No node will ever host more than one of the specified IP addresses.

Traffic is balanced roughly equally between the specified IP addresses for a given
namespace.

If a node becomes unavailable, any egress IP addresses assigned to it are automatically
reassigned, subject to the previously described conditions.

When a pod matches the selector for multiple EgressIP objects, there is no guarantee which of the
egress IP addresses that are specified in the EgressIP objects is assigned as the egress IP address for
the pod.

Additionally, if an EgressIP object specifies multiple egress IP addresses, there is no guarantee which of
the egress IP addresses might be used. For example, if a pod matches a selector for an EgressIP object
with two egress IP addresses, 10.10.20.1 and 10.10.20.2, either might be used for each TCP connection
or UDP conversation.

9.1.1.4. Architectural diagram of an egress IP address configuration

The following diagram depicts an egress IP address configuration. The diagram describes four pods in
two different namespaces running on three nodes in a cluster. The nodes are assigned IP addresses
from the 192.168.126.0/18 CIDR block on the host network.

CHAPTER 9. OVN-KUBERNETES NETWORK PLUGIN

109

Node 1

meta:
name: node1
labels:
k8s.ovn.org/egress-assignable: ""

Both Node 1 and Node 3 are labeled with k8s.ovn.org/egress-assignable: "" and thus available for the
assignment of egress IP addresses.

The dashed lines in the diagram depict the traffic flow from pod1, pod2, and pod3 traveling through the
pod network to egress the cluster from Node 1 and Node 3. When an external service receives traffic
from any of the pods selected by the example EgressIP object, the source IP address is either
192.168.126.10 or 192.168.126.102. The traffic is balanced roughly equally between these two nodes.

The following resources from the diagram are illustrated in detail:

Namespace objects

The namespaces are defined in the following manifest:

Namespace objects

EgressIP object

The following EgressIP object describes a configuration that selects all pods in any namespace with
the env label set to prod. The egress IP addresses for the selected pods are 192.168.126.10 and
192.168.126.102.

EgressIP object

apiVersion: v1
kind: Namespace
metadata:
 name: namespace1
 labels:
 env: prod

apiVersion: v1
kind: Namespace
metadata:
 name: namespace2
 labels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egressips-prod
spec:
 egressIPs:
 - 192.168.126.10

Red Hat OpenShift Service on AWS 4 Networking

110

1

2

3

4

1

For the configuration in the previous example, Red Hat OpenShift Service on AWS assigns both
egress IP addresses to the available nodes. The status field reflects whether and where the egress IP
addresses are assigned.

9.1.2. EgressIP object

The following YAML describes the API for the EgressIP object. The scope of the object is cluster-wide;
it is not created in a namespace.

The name for the EgressIPs object.

An array of one or more IP addresses.

One or more selectors for the namespaces to associate the egress IP addresses with.

Optional: One or more selectors for pods in the specified namespaces to associate egress IP
addresses with. Applying these selectors allows for the selection of a subset of pods within a
namespace.

The following YAML describes the stanza for the namespace selector:

Namespace selector stanza

One or more matching rules for namespaces. If more than one match rule is provided, all matching
namespaces are selected.

 - 192.168.126.102
 namespaceSelector:
 matchLabels:
 env: prod
status:
 items:
 - node: node1
 egressIP: 192.168.126.10
 - node: node3
 egressIP: 192.168.126.102

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: <name> 1
spec:
 egressIPs: 2
 - <ip_address>
 namespaceSelector: 3
 ...
 podSelector: 4
 ...

namespaceSelector: 1
 matchLabels:
 <label_name>: <label_value>

CHAPTER 9. OVN-KUBERNETES NETWORK PLUGIN

111

1

The following YAML describes the optional stanza for the pod selector:

Pod selector stanza

Optional: One or more matching rules for pods in the namespaces that match the specified
namespaceSelector rules. If specified, only pods that match are selected. Others pods in the
namespace are not selected.

In the following example, the EgressIP object associates the 192.168.126.11 and 192.168.126.102
egress IP addresses with pods that have the app label set to web and are in the namespaces that have
the env label set to prod:

Example EgressIP object

In the following example, the EgressIP object associates the 192.168.127.30 and 192.168.127.40
egress IP addresses with any pods that do not have the environment label set to development:

Example EgressIP object

podSelector: 1
 matchLabels:
 <label_name>: <label_value>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group1
spec:
 egressIPs:
 - 192.168.126.11
 - 192.168.126.102
 podSelector:
 matchLabels:
 app: web
 namespaceSelector:
 matchLabels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group2
spec:
 egressIPs:
 - 192.168.127.30
 - 192.168.127.40
 namespaceSelector:
 matchExpressions:
 - key: environment
 operator: NotIn
 values:
 - development

Red Hat OpenShift Service on AWS 4 Networking

112

9.1.3. Labeling a node to host egress IP addresses

You can apply the k8s.ovn.org/egress-assignable="" label to a node in your cluster so that Red Hat
OpenShift Service on AWS can assign one or more egress IP addresses to the node.

Prerequisites

Install the ROSA CLI (rosa).

Log in to the cluster as a cluster administrator.

Procedure

To label a node so that it can host one or more egress IP addresses, enter the following
command:

IMPORTANT

This command replaces any exciting node labels on your machinepool. You
should include any of the desired labels to the --labels field to ensure that your
existing node labels persist.

9.1.4. Next steps

Assigning egress IPs

9.1.5. Additional resources

LabelSelector meta/v1

LabelSelectorRequirement meta/v1

$ rosa edit machinepool <machinepool_name> --cluster=<cluster_name> --labels
"k8s.ovn.org/egress-assignable="

CHAPTER 9. OVN-KUBERNETES NETWORK PLUGIN

113

https://docs.openshift.com/container-platform/4.14/networking/ovn_kubernetes_network_provider/assigning-egress-ips-ovn.html#assigning-egress-ips-ovn
https://docs.openshift.com/container-platform/4.14/rest_api/objects/index.html#labelselector-meta-v1
https://docs.openshift.com/container-platform/4.14/rest_api/objects/index.html#labelselectorrequirement-meta-v1

1

CHAPTER 10. CONFIGURING ROUTES

10.1. ROUTE CONFIGURATION

10.1.1. Creating an HTTP-based route

A route allows you to host your application at a public URL. It can either be secure or unsecured,
depending on the network security configuration of your application. An HTTP-based route is an
unsecured route that uses the basic HTTP routing protocol and exposes a service on an unsecured
application port.

The following procedure describes how to create a simple HTTP-based route to a web application, using
the hello-openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as an administrator.

You have a web application that exposes a port and a TCP endpoint listening for traffic on the
port.

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create an unsecured route to the hello-openshift application by running the following
command:

Verification

To verify that the route resource that you created, run the following command:

In this example, the route is named hello-openshift.

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

$ oc expose svc hello-openshift

$ oc get routes -o yaml <name of resource> 1

Red Hat OpenShift Service on AWS 4 Networking

114

1

2

1

Sample YAML definition of the created unsecured route:

<Ingress_Domain> is the default ingress domain name. The ingresses.config/cluster object is
created during the installation and cannot be changed. If you want to specify a different domain,
you can specify an alternative cluster domain using the appsDomain option.

targetPort is the target port on pods that is selected by the service that this route points to.

NOTE

To display your default ingress domain, run the following command:

10.1.2. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: hello-openshift
spec:
 host: hello-openshift-hello-openshift.<Ingress_Domain> 1
 port:
 targetPort: 8080 2
 to:
 kind: Service
 name: hello-openshift

$ oc get ingresses.config/cluster -o jsonpath={.spec.domain}

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

CHAPTER 10. CONFIGURING ROUTES

115

1

10.1.3. HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which signals to the browser
client that only HTTPS traffic is allowed on the route host. HSTS also optimizes web traffic by signaling
HTTPS transport is required, without using HTTP redirects. HSTS is useful for speeding up interactions
with websites.

When HSTS policy is enforced, HSTS adds a Strict Transport Security header to HTTP and HTTPS
responses from the site. You can use the insecureEdgeTerminationPolicy value in a route to redirect
HTTP to HTTPS. When HSTS is enforced, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect.

Cluster administrators can configure HSTS to do the following:

Enable HSTS per-route

Disable HSTS per-route

Enforce HSTS per-domain, for a set of domains, or use namespace labels in combination with
domains

IMPORTANT

HSTS works only with secure routes, either edge-terminated or re-encrypt. The
configuration is ineffective on HTTP or passthrough routes.

10.1.3.1. Enabling HTTP Strict Transport Security per-route

HTTP strict transport security (HSTS) is implemented in the HAProxy template and applied to edge and
re-encrypt routes that have the haproxy.router.openshift.io/hsts_header annotation.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge-terminated or re-encrypt route. You can use the oc annotate tool to do this by running
the following command:

In this example, the maximum age is set to 31536000 ms, which is approximately eight and
a half hours.

NOTE

In this example, the equal sign (=) is in quotes. This is required to properly
execute the annotate command.

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000;\ 1
includeSubDomains;preload"

Red Hat OpenShift Service on AWS 4 Networking

116

1

2

3

Example route configured with an annotation

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. If set to 0, it negates the policy.

Optional. When included, includeSubDomains tells the client that all subdomains of the
host must have the same HSTS policy as the host.

Optional. When max-age is greater than 0, you can add preload in
haproxy.router.openshift.io/hsts_header to allow external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, even before they have interacted with the site. Without
preload set, browsers must have interacted with the site over HTTPS, at least once, to get
the header.

10.1.3.2. Disabling HTTP Strict Transport Security per-route

To disable HTTP strict transport security (HSTS) per-route, you can set the max-age value in the route
annotation to 0.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

To disable HSTS, set the max-age value in the route annotation to 0, by entering the following
command:

TIP

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

...
spec:
 host: def.abc.com
 tls:
 termination: "reencrypt"
 ...
 wildcardPolicy: "Subdomain"

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

CHAPTER 10. CONFIGURING ROUTES

117

TIP

You can alternatively apply the following YAML to create the config map:

Example of disabling HSTS per-route

To disable HSTS for every route in a namespace, enter the following command:

Verification

1. To query the annotation for all routes, enter the following command:

Example output

10.1.4. Using cookies to keep route statefulness

Red Hat OpenShift Service on AWS provides sticky sessions, which enables stateful application traffic
by ensuring all traffic hits the same endpoint. However, if the endpoint pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

Red Hat OpenShift Service on AWS can use cookies to configure session persistence. The Ingress
controller selects an endpoint to handle any user requests, and creates a cookie for the session. The
cookie is passed back in the response to the request and the user sends the cookie back with the next
request in the session. The cookie tells the Ingress Controller which endpoint is handling the session,
ensuring that client requests use the cookie so that they are routed to the same pod.

NOTE

Cookies cannot be set on passthrough routes, because the HTTP traffic cannot be seen.
Instead, a number is calculated based on the source IP address, which determines the
backend.

If backends change, the traffic can be directed to the wrong server, making it less sticky.
If you are using a load balancer, which hides source IP, the same number is set for all
connections and traffic is sent to the same pod.

10.1.4.1. Annotating a route with a cookie

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the

metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=0

$ oc annotate route --all -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: routename HSTS: max-age=0

Red Hat OpenShift Service on AWS 4 Networking

118

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. By deleting the cookie it can force the next
request to re-choose an endpoint. So, if a server was overloaded it tries to remove the requests from
the client and redistribute them.

Procedure

1. Annotate the route with the specified cookie name:

where:

<route_name>

Specifies the name of the route.

<cookie_name>

Specifies the name for the cookie.

For example, to annotate the route my_route with the cookie name my_cookie:

2. Capture the route hostname in a variable:

where:

<route_name>

Specifies the name of the route.

3. Save the cookie, and then access the route:

Use the cookie saved by the previous command when connecting to the route:

10.1.5. Path-based routes

Path-based routes specify a path component that can be compared against a URL, which requires that
the traffic for the route be HTTP based. Thus, multiple routes can be served using the same hostname,
each with a different path. Routers should match routes based on the most specific path to the least.

The following table shows example routes and their accessibility:

Table 10.1. Route availability

$ oc annotate route <route_name> router.openshift.io/cookie_name="<cookie_name>"

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

$ ROUTE_NAME=$(oc get route <route_name> -o jsonpath='{.spec.host}')

$ curl $ROUTE_NAME -k -c /tmp/cookie_jar

$ curl $ROUTE_NAME -k -b /tmp/cookie_jar

CHAPTER 10. CONFIGURING ROUTES

119

1

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/text Yes (Matched by the host, not the
route)

www.example.com Yes

An unsecured route with a path

The path is the only added attribute for a path-based route.

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

10.1.6. HTTP header configuration

Red Hat OpenShift Service on AWS provides different methods for working with HTTP headers. When
setting or deleting headers, you can use specific fields in the Ingress Controller or an individual route to
modify request and response headers. You can also set certain headers by using route annotations. The
various ways of configuring headers can present challenges when working together.

NOTE

You can only set or delete headers within an IngressController or Route CR, you cannot
append them. If an HTTP header is set with a value, that value must be complete and not
require appending in the future. In situations where it makes sense to append a header,
such as the X-Forwarded-For header, use the
spec.httpHeaders.forwardedHeaderPolicy field, instead of spec.httpHeaders.actions.

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com
 path: "/test" 1
 to:
 kind: Service
 name: service-name

Red Hat OpenShift Service on AWS 4 Networking

120

10.1.6.1. Order of precedence

When the same HTTP header is modified both in the Ingress Controller and in a route, HAProxy
prioritizes the actions in certain ways depending on whether it is a request or response header.

For HTTP response headers, actions specified in the Ingress Controller are executed after the
actions specified in a route. This means that the actions specified in the Ingress Controller take
precedence.

For HTTP request headers, actions specified in a route are executed after the actions specified
in the Ingress Controller. This means that the actions specified in the route take precedence.

For example, a cluster administrator sets the X-Frame-Options response header with the value DENY in
the Ingress Controller using the following configuration:

Example IngressController spec

A route owner sets the same response header that the cluster administrator set in the Ingress
Controller, but with the value SAMEORIGIN using the following configuration:

Example Route spec

When both the IngressController spec and Route spec are configuring the X-Frame-Options header,
then the value set for this header at the global level in the Ingress Controller will take precedence, even
if a specific route allows frames.

This prioritzation occurs because the haproxy.config file uses the following logic, where the Ingress
Controller is considered the front end and individual routes are considered the back end. The header
value DENY applied to the front end configurations overrides the same header with the value

apiVersion: operator.openshift.io/v1
kind: IngressController
...
spec:
 httpHeaders:
 actions:
 response:
 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: DENY

apiVersion: route.openshift.io/v1
kind: Route
...
spec:
 httpHeaders:
 actions:
 response:
 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: SAMEORIGIN

CHAPTER 10. CONFIGURING ROUTES

121

SAMEORIGIN that is set in the back end:

Additionally, any actions defined in either the Ingress Controller or a route override values set using
route annotations.

10.1.6.2. Special case headers

The following headers are either prevented entirely from being set or deleted, or allowed under specific
circumstances:

Table 10.2. Special case header configuration options

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

proxy No No The proxy HTTP
request header
can be used to
exploit vulnerable
CGI applications
by injecting the
header value into
the
HTTP_PROXY
environment
variable. The
proxy HTTP
request header is
also non-standard
and prone to error
during
configuration.

No

frontend public
 http-response set-header X-Frame-Options 'DENY'

frontend fe_sni
 http-response set-header X-Frame-Options 'DENY'

frontend fe_no_sni
 http-response set-header X-Frame-Options 'DENY'

backend be_secure:openshift-monitoring:alertmanager-main
 http-response set-header X-Frame-Options 'SAMEORIGIN'

Red Hat OpenShift Service on AWS 4 Networking

122

host No Yes When the host
HTTP request
header is set using
the
IngressControll
er CR, HAProxy
can fail when
looking up the
correct route.

No

strict-transport-
security

No No The strict-
transport-
security HTTP
response header is
already handled
using route
annotations and
does not need a
separate
implementation.

Yes: the
haproxy.router.
openshift.io/hst
s_header route
annotation

cookie and set-
cookie

No No The cookies that
HAProxy sets are
used for session
tracking to map
client connections
to particular back-
end servers.
Allowing these
headers to be set
could interfere
with HAProxy’s
session affinity
and restrict
HAProxy’s
ownership of a
cookie.

Yes:

the
haproxy
.router.
openshi
ft.io/dis
able_co
okie
route
annotatio
n

the
haproxy
.router.
openshi
ft.io/coo
kie_nam
e route
annotatio
n

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

10.1.7. Setting or deleting HTTP request and response headers in a route

You can set or delete certain HTTP request and response headers for compliance purposes or other

CHAPTER 10. CONFIGURING ROUTES

123

1

2

3

4

You can set or delete certain HTTP request and response headers for compliance purposes or other
reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for
specific routes.

For example, you might want to enable a web application to serve content in alternate locations for
specific routes if that content is written in multiple languages, even if there is a default global location
specified by the Ingress Controller serving the routes.

The following procedure creates a route that sets the Content-Location HTTP request header so that
the URL associated with the application, https://app.example.com, directs to the location
https://app.example.com/lang/en-us. Directing application traffic to this location means that anyone
using that specific route is accessing web content written in American English.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged into an Red Hat OpenShift Service on AWS cluster as a project administrator.

You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

Procedure

1. Create a route definition and save it in a file called app-example-route.yaml:

YAML definition of the created route with HTTP header directives

The list of actions you want to perform on the HTTP headers.

The type of header you want to change. In this case, a response header.

The name of the header you want to change. For a list of available headers you can set or
delete, see HTTP header configuration .

The type of action being taken on the header. This field can have the value Set or Delete.

apiVersion: route.openshift.io/v1
kind: Route
...
spec:
 host: app.example.com
 tls:
 termination: edge
 to:
 kind: Service
 name: app-example
 httpHeaders:
 actions: 1
 response: 2
 - name: Content-Location 3
 action:
 type: Set 4
 set:
 value: /lang/en-us 5

Red Hat OpenShift Service on AWS 4 Networking

124

5 When setting HTTP headers, you must provide a value. The value can be a string from a list
of available directives for that header, for example DENY, or it can be a dynamic value that

2. Create a route to your existing web application using the newly created route definition:

For HTTP request headers, the actions specified in the route definitions are executed after any actions
performed on HTTP request headers in the Ingress Controller. This means that any values set for those
request headers in a route will take precedence over the ones set in the Ingress Controller. For more
information on the processing order of HTTP headers, see HTTP header configuration .

10.1.8. Route-specific annotations

The Ingress Controller can set the default options for all the routes it exposes. An individual route can
override some of these defaults by providing specific configurations in its annotations. Red Hat does not
support adding a route annotation to an operator-managed route.

IMPORTANT

To create a whitelist with multiple source IPs or subnets, use a space-delimited list. Any
other delimiter type causes the list to be ignored without a warning or error message.

Table 10.3. Route annotations

Variable Description Environment variable used as
default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are
random, source, roundrobin,
and leastconn. The default value
is source for TLS passthrough
routes. For all other routes, the
default is random.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use
ROUTER_LOAD_BALANCE_
ALGORITHM.

haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
'true' or 'TRUE', the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

router.openshift.io/cookie_n
ame

Specifies an optional cookie to
use for this route. The name must
consist of any combination of
upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

$ oc -n app-example create -f app-example-route.yaml

CHAPTER 10. CONFIGURING ROUTES

125

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router.
Note: If there are multiple pods,
each can have this many
connections. If you have multiple
routers, there is no coordination
among them, each may connect
this many times. If not set, or set
to 0, there is no limit.

haproxy.router.openshift.io/r
ate-limit-connections

Setting 'true' or 'TRUE' enables
rate limiting functionality which is
implemented through stick-tables
on the specific backend per route.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections made through
the same source IP address. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which a client
with the same source IP address
can make HTTP requests. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which a client
with the same source IP address
can make TCP connections. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

Variable Description Environment variable used as
default

Red Hat OpenShift Service on AWS 4 Networking

126

haproxy.router.openshift.io/ti
meout-tunnel

This timeout applies to a tunnel
connection, for example,
WebSocket over cleartext, edge,
reencrypt, or passthrough routes.
With cleartext, edge, or reencrypt
route types, this annotation is
applied as a timeout tunnel with
the existing timeout value. For the
passthrough route types, the
annotation takes precedence over
any existing timeout value set.

ROUTER_DEFAULT_TUNNE
L_TIMEOUT

ingresses.config/cluster
ingress.operator.openshift.io
/hard-stop-after

You can set either an
IngressController or the ingress
config . This annotation redeploys
the router and configures the HA
proxy to emit the haproxy hard-
stop-after global option, which
defines the maximum time
allowed to perform a clean soft-
stop.

ROUTER_HARD_STOP_AFT
ER

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

haproxy.router.openshift.io/i
p_whitelist

Sets an allowlist for the route. The
allowlist is a space-separated list
of IP addresses and CIDR ranges
for the approved source
addresses. Requests from IP
addresses that are not in the
allowlist are dropped.

The maximum number of IP
addresses and CIDR ranges
directly visible in the

haproxy.config file is 61. [1]

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

haproxy.router.openshift.io/r
ewrite-target

Sets the rewrite path of the
request on the backend.

Variable Description Environment variable used as
default

CHAPTER 10. CONFIGURING ROUTES

127

router.openshift.io/cookie-
same-site

Sets a value to restrict cookies.
The values are:

Lax: the browser does not send
cookies on cross-site requests,
but does send cookies when users
navigate to the origin site from an
external site. This is the default
browser behavior when the
SameSite value is not specified.

Strict: the browser sends cookies
only for same-site requests.

None: the browser sends cookies
for both cross-site and same-site
requests.

This value is applicable to re-
encrypt and edge routes only. For
more information, see the
SameSite cookies documentation.

haproxy.router.openshift.io/s
et-forwarded-headers

Sets the policy for handling the
Forwarded and X-Forwarded-
For HTTP headers per route. The
values are:

append: appends the header,
preserving any existing header.
This is the default value.

replace: sets the header,
removing any existing header.

never: never sets the header, but
preserves any existing header.

if-none: sets the header if it is not
already set.

ROUTER_SET_FORWARDE
D_HEADERS

Variable Description Environment variable used as
default

1. If the number of IP addresses and CIDR ranges in an allowlist exceeds 61, they are written into a
separate file that is then referenced from haproxy.config. This file is stored in the
var/lib/haproxy/router/whitelists folder.

NOTE

Red Hat OpenShift Service on AWS 4 Networking

128

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

NOTE

To ensure that the addresses are written to the allowlist, check that the full list of
CIDR ranges are listed in the Ingress Controller configuration file. The etcd
object size limit restricts how large a route annotation can be. Because of this, it
creates a threshold for the maximum number of IP addresses and CIDR ranges
that you can include in an allowlist.

NOTE

Environment variables cannot be edited.

Router timeout variables

TimeUnits are represented by a number followed by the unit: us *(microseconds), ms (milliseconds,
default), s (seconds), m (minutes), h *(hours), d (days).

The regular expression is: [1-9][0-9]*(us\|ms\|s\|m\|h\|d).

Variable Default Description

ROUTER_BACKEND_CHECK_INTE
RVAL

5000ms Length of time between subsequent
liveness checks on back ends.

ROUTER_CLIENT_FIN_TIMEOUT 1s Controls the TCP FIN timeout period for
the client connecting to the route. If the
FIN sent to close the connection does not
answer within the given time, HAProxy
closes the connection. This is harmless if
set to a low value and uses fewer
resources on the router.

ROUTER_DEFAULT_CLIENT_TIME
OUT

30s Length of time that a client has to
acknowledge or send data.

ROUTER_DEFAULT_CONNECT_TI
MEOUT

5s The maximum connection time.

ROUTER_DEFAULT_SERVER_FIN_
TIMEOUT

1s Controls the TCP FIN timeout from the
router to the pod backing the route.

ROUTER_DEFAULT_SERVER_TIME
OUT

30s Length of time that a server has to
acknowledge or send data.

ROUTER_DEFAULT_TUNNEL_TIME
OUT

1h Length of time for TCP or WebSocket
connections to remain open. This timeout
period resets whenever HAProxy reloads.

CHAPTER 10. CONFIGURING ROUTES

129

1

ROUTER_SLOWLORIS_HTTP_KEE
PALIVE

300s Set the maximum time to wait for a new
HTTP request to appear. If this is set too
low, it can cause problems with browsers
and applications not expecting a small
keepalive value.

Some effective timeout values can be the
sum of certain variables, rather than the
specific expected timeout. For example,
ROUTER_SLOWLORIS_HTTP_KEE
PALIVE adjusts timeout http-keep-
alive. It is set to 300s by default, but
HAProxy also waits on tcp-request
inspect-delay, which is set to 5s. In this
case, the overall timeout would be 300s
plus 5s.

ROUTER_SLOWLORIS_TIMEOUT 10s Length of time the transmission of an
HTTP request can take.

RELOAD_INTERVAL 5s Allows the minimum frequency for the
router to reload and accept new changes.

ROUTER_METRICS_HAPROXY_TIM
EOUT

5s Timeout for the gathering of HAProxy
metrics.

Variable Default Description

A route setting custom timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If the unit is not
provided, ms is the default.

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

A route that allows only one specific IP address

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms 1
...

Red Hat OpenShift Service on AWS 4 Networking

130

1

A route that allows several IP addresses

A route that allows an IP address CIDR network

A route that allows both IP an address and IP address CIDR networks

A route specifying a rewrite target

Sets / as rewrite path of the request on the backend.

Setting the haproxy.router.openshift.io/rewrite-target annotation on a route specifies that the Ingress
Controller should rewrite paths in HTTP requests using this route before forwarding the requests to the
backend application. The part of the request path that matches the path specified in spec.path is
replaced with the rewrite target specified in the annotation.

The following table provides examples of the path rewriting behavior for various combinations of
spec.path, request path, and rewrite target.

Table 10.4. rewrite-target examples:

Route.spec.path Request path Rewrite target Forwarded request
path

/foo /foo / /

/foo /foo/ / /

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10 192.168.1.11 192.168.1.12

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.0/24

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 180.5.61.153 192.168.1.0/24 10.0.0.0/8

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/rewrite-target: / 1
...

CHAPTER 10. CONFIGURING ROUTES

131

/foo /foo/bar / /bar

/foo /foo/bar/ / /bar/

/foo /foo /bar /bar

/foo /foo/ /bar /bar/

/foo /foo/bar /baz /baz/bar

/foo /foo/bar/ /baz /baz/bar/

/foo/ /foo / N/A (request path does
not match route path)

/foo/ /foo/ / /

/foo/ /foo/bar / /bar

Route.spec.path Request path Rewrite target Forwarded request
path

10.1.9. Creating a route using the default certificate through an Ingress object

If you create an Ingress object without specifying any TLS configuration, Red Hat OpenShift Service on
AWS generates an insecure route. To create an Ingress object that generates a secure, edge-
terminated route using the default ingress certificate, you can specify an empty TLS configuration as
follows.

Prerequisites

You have a service that you want to expose.

You have access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file for the Ingress object. In this example, the file is called example-
ingress.yaml:

YAML definition of an Ingress object

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 ...
spec:
 rules:

Red Hat OpenShift Service on AWS 4 Networking

132

1

1

2

3

Use this exact syntax to specify TLS without specifying a custom certificate.

2. Create the Ingress object by running the following command:

Verification

Verify that Red Hat OpenShift Service on AWS has created the expected route for the Ingress
object by running the following command:

Example output

The name of the route includes the name of the Ingress object followed by a random suffix.

In order to use the default certificate, the route should not specify spec.certificate.

The route should specify the edge termination policy.

10.1.10. Creating a route using the destination CA certificate in the Ingress
annotation

The route.openshift.io/destination-ca-certificate-secret annotation can be used on an Ingress object
to define a route with a custom destination CA certificate.

Prerequisites

You may have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate

 ...
 tls:
 - {} 1

$ oc create -f example-ingress.yaml

$ oc get routes -o yaml

apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: frontend-j9sdd 1
 ...
 spec:
 ...
 tls: 2
 insecureEdgeTerminationPolicy: Redirect
 termination: edge 3
 ...

CHAPTER 10. CONFIGURING ROUTES

133

1

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

Procedure

1. Add the route.openshift.io/destination-ca-certificate-secret to the Ingress annotations:

The annotation references a kubernetes secret.

2. The secret referenced in this annotation will be inserted into the generated route.

Example output

Additional resources

Specifying an alternative cluster domain using the appsDomain option

10.2. SECURED ROUTES

Secure routes provide the ability to use several types of TLS termination to serve certificates to the
client. The following sections describe how to create re-encrypt, edge, and passthrough routes with
custom certificates.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt"
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert 1
...

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: reencrypt
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert
spec:
...
 tls:
 insecureEdgeTerminationPolicy: Redirect
 termination: reencrypt
 destinationCACertificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
...

Red Hat OpenShift Service on AWS 4 Networking

134

10.2.1. Creating a re-encrypt route with a custom certificate

You can configure a secure route using reencrypt TLS termination with a custom certificate by using the
oc create route command.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and reencrypt TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You must also specify a destination CA certificate to enable the Ingress Controller to trust the
service’s certificate. You may also specify a CA certificate if needed to complete the certificate chain.
Substitute the actual path names for tls.crt, tls.key, cacert.crt, and (optionally) ca.crt. Substitute the
name of the Service resource that you want to expose for frontend. Substitute the appropriate
hostname for www.example.com.

Create a secure Route resource using reencrypt TLS termination and a custom certificate:

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: reencrypt
 key: |-

CHAPTER 10. CONFIGURING ROUTES

135

See oc create route reencrypt --help for more options.

10.2.2. Creating an edge route with a custom certificate

You can configure a secure route using edge TLS termination with a custom certificate by using the oc
create route command. With an edge route, the Ingress Controller terminates TLS encryption before
forwarding traffic to the destination pod. The route specifies the TLS certificate and key that the
Ingress Controller uses for the route.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and edge TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You may also specify a CA certificate if needed to complete the certificate chain. Substitute
the actual path names for tls.crt, tls.key, and (optionally) ca.crt. Substitute the name of the service that
you want to expose for frontend. Substitute the appropriate hostname for www.example.com.

Create a secure Route resource using edge TLS termination and a custom certificate.

 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 destinationCACertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

Red Hat OpenShift Service on AWS 4 Networking

136

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

See oc create route edge --help for more options.

10.2.3. Creating a passthrough route

You can configure a secure route using passthrough termination by using the oc create route
command. With passthrough termination, encrypted traffic is sent straight to the destination without
the router providing TLS termination. Therefore no key or certificate is required on the route.

Prerequisites

You must have a service that you want to expose.

Procedure

Create a Route resource:

If you examine the resulting Route resource, it should look similar to the following:

A Secured Route Using Passthrough Termination

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ oc create route passthrough route-passthrough-secured --service=frontend --port=8080

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1

CHAPTER 10. CONFIGURING ROUTES

137

1

2

3

The name of the object, which is limited to 63 characters.

The termination field is set to passthrough. This is the only required tls field.

Optional insecureEdgeTerminationPolicy. The only valid values are None, Redirect, or
empty for disabled.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support requiring client certificates, also known as two-way
authentication.

spec:
 host: www.example.com
 port:
 targetPort: 8080
 tls:
 termination: passthrough 2
 insecureEdgeTerminationPolicy: None 3
 to:
 kind: Service
 name: frontend

Red Hat OpenShift Service on AWS 4 Networking

138

	Table of Contents
	CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS
	1.1. USING DNS FORWARDING

	CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS
	2.1. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR
	2.2. THE INGRESS CONFIGURATION ASSET
	2.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	2.3.1. Ingress Controller TLS security profiles
	2.3.1.1. Understanding TLS security profiles
	2.3.1.2. Configuring the TLS security profile for the Ingress Controller
	2.3.1.3. Configuring mutual TLS authentication

	2.4. VIEW THE DEFAULT INGRESS CONTROLLER
	2.5. VIEW INGRESS OPERATOR STATUS
	2.6. VIEW INGRESS CONTROLLER LOGS
	2.7. VIEW INGRESS CONTROLLER STATUS
	2.8. CONFIGURING THE INGRESS CONTROLLER
	2.8.1. Setting a custom default certificate
	2.8.2. Removing a custom default certificate
	2.8.3. Autoscaling an Ingress Controller
	2.8.4. Scaling an Ingress Controller
	2.8.5. Configuring Ingress access logging
	2.8.6. Setting Ingress Controller thread count
	2.8.7. Configuring an Ingress Controller to use an internal load balancer
	2.8.8. Setting the Ingress Controller health check interval
	2.8.9. Configuring the default Ingress Controller for your cluster to be internal
	2.8.10. Configuring the route admission policy
	2.8.11. Using wildcard routes
	2.8.12. HTTP header configuration
	2.8.12.1. Order of precedence
	2.8.12.2. Special case headers

	2.8.13. Setting or deleting HTTP request and response headers in an Ingress Controller
	2.8.14. Using X-Forwarded headers
	Example use cases

	2.8.15. Enabling HTTP/2 Ingress connectivity
	2.8.16. Configuring the PROXY protocol for an Ingress Controller
	2.8.17. Specifying an alternative cluster domain using the appsDomain option
	2.8.18. Converting HTTP header case
	2.8.19. Using router compression
	2.8.20. Exposing router metrics
	2.8.21. Customizing HAProxy error code response pages
	2.8.22. Setting the Ingress Controller maximum connections

	2.9. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR CONFIGURATIONS

	CHAPTER 3. AWS LOAD BALANCER OPERATOR
	3.1. INSTALLING AN AWS LOAD BALANCER OPERATOR
	3.2. UNINSTALLING AN AWS LOAD BALANCER OPERATOR

	CHAPTER 4. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	4.1. ENABLING MULTICAST FOR A PROJECT
	4.1.1. About multicast
	4.1.2. Enabling multicast between pods

	CHAPTER 5. NETWORK VERIFICATION FOR ROSA CLUSTERS
	5.1. UNDERSTANDING NETWORK VERIFICATION FOR ROSA CLUSTERS
	5.2. SCOPE OF THE NETWORK VERIFICATION CHECKS
	5.3. AUTOMATIC NETWORK VERIFICATION BYPASSING
	5.4. RUNNING THE NETWORK VERIFICATION MANUALLY
	Running the network verification manually using OpenShift Cluster Manager
	Running the network verification manually using the CLI

	CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY
	6.1. PREREQUISITES FOR CONFIGURING A CLUSTER-WIDE PROXY
	General requirements
	Network requirements

	6.2. RESPONSIBILITIES FOR ADDITIONAL TRUST BUNDLES
	6.3. CONFIGURING A PROXY DURING INSTALLATION
	6.3.1. Configuring a proxy during installation using OpenShift Cluster Manager
	6.3.2. Configuring a proxy during installation using the CLI

	6.4. CONFIGURING A PROXY AFTER INSTALLATION
	6.4.1. Configuring a proxy after installation using OpenShift Cluster Manager
	6.4.2. Configuring a proxy after installation using the CLI

	6.5. REMOVING A CLUSTER-WIDE PROXY
	6.5.1. Removing the cluster-wide proxy using CLI
	6.5.2. Removing certificate authorities on a Red Hat OpenShift Service on AWS cluster

	CHAPTER 7. CIDR RANGE DEFINITIONS
	7.1. MACHINE CIDR
	7.2. SERVICE CIDR
	7.3. POD CIDR
	7.4. HOST PREFIX

	CHAPTER 8. NETWORK POLICY
	8.1. ABOUT NETWORK POLICY
	8.1.1. About network policy
	8.1.1.1. Using the allow-from-router network policy
	8.1.1.2. Using the allow-from-hostnetwork network policy

	8.1.2. Optimizations for network policy with OpenShift SDN
	8.1.3. Optimizations for network policy with OVN-Kubernetes network plugin
	8.1.4. Next steps

	8.2. CREATING A NETWORK POLICY
	8.2.1. Example NetworkPolicy object
	8.2.2. Creating a network policy using the CLI
	8.2.3. Creating a default deny all network policy
	8.2.4. Creating a network policy to allow traffic from external clients
	8.2.5. Creating a network policy allowing traffic to an application from all namespaces
	8.2.6. Creating a network policy allowing traffic to an application from a namespace
	8.2.7. Creating a network policy using OpenShift Cluster Manager

	8.3. VIEWING A NETWORK POLICY
	8.3.1. Example NetworkPolicy object
	8.3.2. Viewing network policies using the CLI
	8.3.3. Viewing network policies using OpenShift Cluster Manager

	8.4. DELETING A NETWORK POLICY
	8.4.1. Deleting a network policy using the CLI
	8.4.2. Deleting a network policy using OpenShift Cluster Manager

	8.5. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
	8.5.1. Configuring multitenant isolation by using network policy

	CHAPTER 9. OVN-KUBERNETES NETWORK PLUGIN
	9.1. CONFIGURING AN EGRESS IP ADDRESS
	9.1.1. Egress IP address architectural design and implementation
	9.1.1.1. Amazon Web Services (AWS) IP address capacity limits
	9.1.1.2. Assignment of egress IPs to pods
	9.1.1.3. Assignment of egress IPs to nodes
	9.1.1.4. Architectural diagram of an egress IP address configuration

	9.1.2. EgressIP object
	9.1.3. Labeling a node to host egress IP addresses
	9.1.4. Next steps
	9.1.5. Additional resources

	CHAPTER 10. CONFIGURING ROUTES
	10.1. ROUTE CONFIGURATION
	10.1.1. Creating an HTTP-based route
	10.1.2. Configuring route timeouts
	10.1.3. HTTP Strict Transport Security
	10.1.3.1. Enabling HTTP Strict Transport Security per-route
	10.1.3.2. Disabling HTTP Strict Transport Security per-route

	10.1.4. Using cookies to keep route statefulness
	10.1.4.1. Annotating a route with a cookie

	10.1.5. Path-based routes
	10.1.6. HTTP header configuration
	10.1.6.1. Order of precedence
	10.1.6.2. Special case headers

	10.1.7. Setting or deleting HTTP request and response headers in a route
	10.1.8. Route-specific annotations
	10.1.9. Creating a route using the default certificate through an Ingress object
	10.1.10. Creating a route using the destination CA certificate in the Ingress annotation

	10.2. SECURED ROUTES
	10.2.1. Creating a re-encrypt route with a custom certificate
	10.2.2. Creating an edge route with a custom certificate
	10.2.3. Creating a passthrough route

